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Аннотация. Исследуются соотношения между вычислимостью и непрерывностью. 

Рассматривается вычислимость над произвольным исходным базисом типов данных и 

функций (основой) при помощи рекурсивных схем Маккарти и строго типизированных 

функционалов конечных типов. Доказано, что в этом случае вычислимые функционалы 

сильно непрерывны в бэровском смысле: для функций-параметров при любом значении 

остальных аргументов можно найти конечную совокупность их значений, однозначно 

определяющую результат. На базе относительной вычислимости развивается подход к 

конструктивной топологии, в котором эквиваленты точечный подход (элемент – 

фундаментальная последовательность окрестностей) и аппроксимационный подход 

абстрактной топологии (функция над топологическими пространствами является 

окрестностным отношением). Формулируется понятие Б-пространств, позволяющее 

конструктивизировать сепарабельные пространства со счётной базой окрестностей. 

Доказывается непрерывность точечных конструктивных функций Б-пространств и 

возможность их преобразования в окрестностные отношения. Устанавливается 

эквивалентность понятий вычислимости относительно некоторой основы и 

непрерывности. Формулируется понятие относительно конструктивной функции, 

перерабатывающей каждый элемент в элемент, конструктивный относительно аргумента и 

фиксированной основы. Устанавливается его эквивалентность понятию счётно 

непрерывной функции, образующейся объединением счётного семейства непрерывных на 

подпространствах функций. Поскольку любое сепарабельное пространство со счётной 

базой может быть описано как Б-пространство, этот результат не содержит 

конструктивных ограничений. Обсуждается взаимосвязь предлагаемого подхода с другими 

подходами к конструктивной топологии. 
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В работах, посвящённых вычислимости в 

топологических пространствах, с необходимостью 

присутствует её связь с непрерывностью (их 

обсуждению посвящён § 3). Вычислимость 

рассматривается на базе единой стандартной 

модели: машин Тьюринга. Возникает вопрос о 

взаимосвязи абстрактного общего понятия 

вычислимости с непрерывностью. Ответу на него 

посвящена данная статья. 
 

________________________________ 
# Работа выполнена в рамках проекта 125021302067-9 Инсти-

тута программных систем им. А. К. Айламазяна РАН. 

 

1.1. Рекурсивные схемы 

Практика программирования показала, что 

функциональные программы для дискретных и 

непрерывных задач пишутся в разном стиле. 

Стандартное в информатике определение вычисли-

мости через машины Тьюринга либо λ-исчисление 

[1] прагматически корректно прежде всего для 

дискретных задач. Хотя практически все 

рассматриваемые в теории варианты вычислимо-

сти формально равносильны, области их практиче-

ской применимости могут различаться. Поскольку 
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здесь анализируется вычислимость для непрерыв-

ных задач, нужно проявить некоторую аккурат-

ность, выбрав вариант определения вычислимости, 

подходящий для используемого стиля программи-

рования. В данной работе основным понятием 

вычислимости является относительная вычисли-

мость рекурсивных схем по Маккарти [2] над 

основой: базисом исходных функций и предикатов. 

Она обобщается на строго типизированное исчис-

ление функционалов конечных типов. Формально 

это является ограничением определения λ-функ-

ционалов конечных типов с комбинатором не-

подвижной точки, прямыми произведениями и 

условными операторами, детально исследованного 

в информатике [1, 3, 4]. 
Определение 1. Башня типов данных .  

1. Конечная совокупность типов данных 0 , 

обязательно включающая тип bool.  

2. Все типы из 0  принадлежат .  

3. Тип 1( , , )n   называется записью. Если 

1, , n    и не являются записями, то 

1( , , )n   . Если все члены записи – типы из 

0 , то запись принадлежит подклассу 1 .  

4. Если 1, , n   , то 1( , , )n     . 

Такие типы называются функциональными.  
5. Каждому типу сопоставляется неограничен-

ная совокупность переменных этого типа.   
Определение 2. Основа.  

1. Каждому типу данных из 0  сопоставлено 

непустое множество данных, обязательно включа-

ющее элемент «мягкая ошибка»  . Типу bool 

сопоставляется множество { , , }T F  .  

2. Для каждых типов вида 1( , , )n   имеются 

функции  

1 1: ( , , ( , , ));n njoin       

1: (( , , ) ),i n ipr      

удовлетворяющие условию  

1( ( , , )) = при 1 .i n ipr join a a a i n        (1) 

3. Конечная совокупность исходных типизиро-

ванных функций с аргументами и значениями из 

1  и констант с типами из 0  (логические 

константы true  и false  имеются в любом случае). 

Все функции устойчивы относительно  : 

если 1 1( , , , , , , ) =n kf x x y y z , z  , 

то для всех x  1 1( , , , , , , ) =n kf x x x y y z  

(такие функции в информатике называют 

генерическими). Константы из основы называются 

исходными. Структуры, все элементы которых – 

константы, также считаются константами.  

Функции с логическим значением результата 

называются предикатами. ♦ 
В дальнейшем последовательность выражений 

1, , na a  часто будет обозначаться a . 

Соответственно,   – последовательность  . 

Условие (1) означает, что тип записи изоморфен 

прямому произведению множеств значений 

составляющих его типов. Но ситуация несколько 

тоньше, поскольку множества значений 

функциональных типов не определяются и, 

соответственно, констант этих типов до появления 

явных определений нет, за исключением исходных 

функций. Поэтому условие (1) означает, что если 

какие-то значения соответствующих типов 

имеются, то имеется и значение, соответствующее 

их n-ке. 
Далее, никаких ограничений на появление   в 

качестве элементов записи нет. Легко видеть, что 

функции join  и 
ipr  устойчивы относительно  . 

Это позволяет обойти возражения Кларка и 

рассматривать лишь функции с одним аргументом 

или же с одним предметным аргументом и одним 

функциональным. 
В дальнейшем, если исключены двусмыслен-

ности, функция join опускается.  
Определение 3. Термы.  
1. Константы и переменные типа   являются 

термами типа  .  

2. Если f  – терм типа 1( , , )n    , а 

1, , nt t  – термы типов 1, , n   соответственно 

(такая последовательность термов t  называется 

подходящей для f), то 1( , , )nf t t  – терм типа .   

3. Если b  – терм типа bool, r  и u  – термы 

типа τ, то  
b r uif then else fi  

– терм типа  . Такие термы называются 

условными. ♦ 
Обозначение 1 1{ , , , , , },n kt f f x x  или сокра-

щённо { , },t f x  означает, что в терме используются 

лишь перечисленные константы и переменные, 

кроме исходных. Заметим, что некоторые из 

переменных могут быть функционального типа. 

Параметрами терма 1( , , )nf t t  называются все 

,it  не имеющие вида 1( , , )kr r , и все ir  для таких 

записей. Ввиду ограничений на типы это 

определение не рекурсивно. Метаобозначение 

1< , , >nf t t  означает, что 1, , nt t  – список всех 

параметров терма, переставленных в удобном 

порядке. В одном и том же предложении порядок в 

выражениях 1< , , >nf r r  не меняется.  
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Определение 4. Рекурсивная схема.  

Пусть 
1, , nf f  – новые константы функцио-

нальных типов, называемые рекурсивными 

функциями. Тогда совокупность определений вида  

1 1 1( , , ) [ , , , , , ],i k n kf x x t f f x x  

где x  – последовательность переменных, подходя-

щая для 
if , называется рекурсивной схемой. ♦ 

Последовательность определений внутри 

рекурсивной схемы не имеет значения.  
Определение 5. Вычислительная обстановка, 

определяемая рекурсивной схемой, состоит из 

основы и функций, определённых схемой 

(рекурсивных функций). 

 

1.2. Абстрактная вычислимость 

Рассмотрим программы, работающие на основе 

рекурсивных схем, строго определим их исполне-

ние и вычислительные возможности. 
Терм называется замкнутым, если он не 

содержит переменных. 
Процесс вычисления определим в духе правил 

переписывания термов, чтобы вычислительная 

система оказалась подсистемой рекурсивных 

функционалов конечных типов из работы [1], и 

воспользуемся установленными там результатами. 
По принципиальным соображениям (функцио-

налы должны работать не только с определимыми 

с их помощью аргументами) в вычислениях 

разрешается использовать константы для всех 

элементов типов из 0 .  

Определение 6. Нормальная форма – терм, к 

которому не может быть применено ни одно 

правило преобразования. Процесс вычисления 

замкнутого терма определяется как последователь-

ность замен подтермов, пока не получится 

нормальная форма (если это когда-то произойдёт). 

Если процесс вычисления не завершается, то 

значением считается  . Терм вычисляется, когда 

к нему применяется одно из правил переписыва-

ния. Терм исчезает в случаях, оговорённых в 

правилах переписывания, или когда он является 

подтермом исчезающего терма.  
1. Если терм имеет нормальную форму, то 

процесс завершён и эта нормальная форма 

является его значением.  

2. Если терм имеет вид ( )f t , где f  – базовая 

функция, и все параметры – константы, то он 

заменяется на результат вычисления f .  

3. Если терм имеет вид < , >f c t , где f  – 

базовая функция, c  – константы, и < , >f c    , 

то он заменяется на результат вычисления 

< , >f c  , а все элеиенты t  исчезают.  

4. Терм 1( ( , , ))i npr join t t  заменяется на it , все 

остальные jt  исчезают.  

5. r uif true then else fi  заменяется на r , u  

исчезает.  

6. u rif false then else fi  заменяется на r , u  

исчезает.  

7. ir uif then else f  заменяется на  , r  и u  

исчезают.  
8. Если терм имеет вид ( )f t , где f  – 

рекурсивная функция, то он заменяется на 

определение ,f  в котором вместо переменных 

подставлены термы из t .  
Результат преобразований промежуточный, 

если к нему может быть применено лишь 

правило 8.  

Замечание 1. Условие генеричности содержа-

тельно означает, что данный аргумент   не 

используется в вычислениях. Правило 3 выражает 

условие, чтобы это выполнялось для всех 

исходных функций.  
Рассмотрим структуру промежуточных 

результатов. 
Определим дисциплину вычислений, 

позволяющую с гарантией получить результат, 

если он возможен. 
Определение 7. Вычисление регулярно, если 

оно удовлетворяет следующим ограничениям.  
1. Правило 8 применяется лишь в 

промежуточном терме.  

2. В терме 1( , , )nf t t r uif then else fi  термы r  

и u  и их подтермы не вычисляются.  
3. В промежуточном терме в подтерме 

1( , , )nf t t , где f  не является исходной 

функцией, it  не вычисляются.  

4. Любой подтерм 1( , , )nf t t , появившийся в 

промежуточном терме, в дальнейшем вычислении 

либо исчезает, либо вычисляется. ♦ 
Определение 8. Рекурсивная функция 

тотальна, если любое её регулярное вычисление 

заканчивается. Функция генеральна
1
, если она 

тотальна и любое её вычисление при аргументах, 

не равных  , не даёт  . Рекурсивный функционал 

тотален (генерален), если при любой подстановке 

в него вместо функциональных параметров 

тотальных (генеральных) функций получающаяся 

функция – тотальная (генеральная). 

                                                      
1 Название дано по аналогии с общерекурсивной.  
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Функция f  типа  , где все 1,i  , 

вычислима, если есть рекурсивная функция, 

результатом вычисления которой для каждого 

значения c  аргументов f  является ( )f c . 

Функционал < , >f x , где x  и результат типов  

из 1 , а f  типов  , где все 1,i  , 

вычислим, если имеется рекурсивный функционал 

  такой, что при расширении основы любыми 

подходящими по типам f  и подстановке c  

вместо x  результат вычисления ( , )f c  равен 

( , )f c . ♦ 

Замечание 2. В тотальных функциях ошибка 

появляется как вычисленное значение и может 

быть обработана. Если же функция зацикливается, 

вычисляясь бесконечно, то обработать такую 

ситуацию в общем случае невозможно. 
Определения для функционалов не 

ограничиваются функциями, определимыми в 

основе. Они должны работать над любыми 

функциями. Также отметим, что любая внешняя 

функция тотальна. 
Для функционалов более высоких типов 

определить вычислимость не пытаемся, поскольку 

множество функций таких типов остаётся 

неопределённым.  

 

1.3. Свойства вычислимости 

Теорема 1 (теорема корректности вычисле-

ний).  
1. Все завершающиеся вычисления дают один и 

тот же результат.  
2. Если какое-то вычисление завершается, то 

завершаются все регулярные вычисления.  
Д о к а з а т е л ь с т в о. Первый пункт – следствие 

теоремы о корректности правил переписывания для 

типизированного  -исчисления с рекурсией [1, гл. 5].  

Второй пункт – следствие теоремы о головной 

рекурсии [1, гл. 3.7].  

Лемма 1. Никакой вычислимый функционал не 

может выдать в качестве компонента 

результата новую функцию.  
Д о к а з а т е л ь с т в о. Согласно  синтаксиче-

ским ограничениям, все нормальные формы являются 

константами.  

Поскольку вычислить новую функцию невозможно, 

определим понятие преобразования функции при 

помощи вычислимого функционала.  

Определение 9. Функционал < , >f x  

преобразует функцию f  в g , если после 

добавления функции f  к основе для всех c  

< , > = ( )f c g c . ♦ 

Это определение естественно обобщается на 

переработку структуры функций в структуру 

функций.  
Лемма 2. Любой вычислимый функционал   

преобразует вычислимые функции в вычислимые.  
Д о к а з а т е л ь с т в о. Добавляем определения 

функций-аргументов f  в определение функционала   

и без расширения основы получаем определение 

функции-результата  

( ) ( , ).x f x    

Определение 10. Конечная совокупность Х 

значений аргументов ( ) =i i if b d  функционала 

< , >f x  гарантирует на c  значение y , если 

при подстановке любых функций, удовлетворяю-

щих ( ) = ,i if b d  значение < , > =f c y . Если 

любое её подмножество не гарантирует значения, 

она его в точности гарантирует. Совокупность 

X  будем задавать как множество пар ( , )i ic d  

(называемое фрагментом функции). Функция 

имеет фрагмент X , если она принимает на всех ic  

значения 
id . ♦ 

Практический критерий проверки, что 

фрагмент в точности гарантирует значение: 

запустить функционал на тестирование со 

следующими функциями: F , равной   повсюду, 

кроме данного множества, а на ic  выдающей id , и 

её модификации, дополнительно выдающие 

ошибку на одном из ic . Но это работает не всегда. 

Если рекурсивная схема зацикливается, то не 

получаем ответа. Такое может случиться и когда 

был «незаконный» вызов функции-параметра, в 

результате которого вычисление пошло по 

другому пути. 
Введённые ограничения (отсутствие исходных 

функционалов) позволяют установить 

нарушающуюся в более общем случае бэровскую 

непрерывность вычислимых функций.  
Теорема 2 (теорема непрерывности 1). Для 

любого замкнутого терма t , в рекурсивной схеме 

определения которого присутствуют лишь 

функциональные переменные 1, , nf f  и 

регулярное вычисление которого конечно, 

имеются фрагменты iX  таких, что при 

подстановке в него других функций, имеющих те 

же фрагменты, значение терма не меняется.  
Д о к а з а т е л ь с т в о. В вычислении 

присутствует лишь конечное число вызовов функций-

параметров. Если другие функции имеют те же 

значения на данных параметрах, то вычисление будет 

повторено с тем же результатом вычислений.  
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Пример 1. Существенность ограничений сложности 

типов в основе показывает следующий пример. Теорема 

непрерывности нарушается, если добавить исходный 

функционал второго типа : (( ) )FZ  nat nat bool  с 

определением 

, если нет такого, что ( ) = ,
( )

иначе.

T i f i
FZ f


 


 ♦ 

Таким образом, определена концепция 

вычислимости, приспособленная к релятивизации 

на многие исходные пространства и любые 

исходные функции, дающая сильную непрерыв-

ность вычислимых функционалов второго типа. 
Пример 2. Минимальной основой, порождающей 

стандартные вычислимые функции натуральных чисел, 

является система типов { }nat, bool , где nat интер-

претируется как тип натуральных чисел, константы 

0nat , предиката ( )Z nat bool , функций ,S Pd  

типа ( )nat nat , интерпретируемых как  

( ) ( = 0), ( ) = 1,

, если = 0,
( ) =

1, если > 0

Z x x S x x

x
Pd x

x x .

 






 

Напомним, что истина и ложь добавляются всегда. 

Сложение и умножение определяются рекурсивной 

схемой  

( , ) ( ) ( ( ), ( )) ,

( , ) ( ) 0 ( ( , ( )), ) .

A x y Z y x A S x Pd y

M x y Z y A M x Pd y x






if then else fi

if then else fi
 

Функция второго порядка I  итерирует применение 

аргумента f  x  раз, Err  формально всегда даёт 

ошибку, а фактически её выполнение никогда не 

заканчивается и она ничего не выдаёт:  

( , , ) ( )

( ( ), ( ), ) ,

( ) ( )

I x y f Z x y

I Pd x f y f

Err x Err x .




 

if then

else fi  

Связки lisp-логики [5] определяются схемами, 

поэтому далее используем их свободно:  

,

,

.

A B A B F

A B A T B

A A F T

 


 
 

if then else fi

if then else fi

if then else fi

 

Если в обстановке есть или моделируются 

натуральные числа, то пользуемся стандартными 

обозначениями для операций и отождествляем 

натуральные числа с их кодом.  

 

1.4. Свойства обобщённого графика 

Как было замечено выше, можно без ограниче-

ния общности рассматривать функционалы с дву-

мя аргументами: исходного типа и функциональ-

ным. Следующее соглашение обеспечивает воз-

можность пользоваться результатами стандартной 

теории алгоритмов. 

Соглашение о перечислимости и списках. 

Для каждого исходного типа добавлен предикат 

равенства и функция перечисления en  такая, что 

последовательность 
0( )nen a  перечисляет без 

повторений все элементы данного типа, где 0a  – 

константа. Хотя бы один из исходных типов 

бесконечен. 
Тогда этот бесконечный тип может быть 

использован как изоморф натуральных чисел. 

Будем обозначать i-й элемент просто как i . 

Конечно, если среди исходных типов есть 

натуральные числа, то можно ими воспользоваться 

прямо. Как в стандартной теории вычислимости, 

определим примитивно рекурсивные кодирования 

n-к, списков и конечных множеств числами, 

операции объединения и пересечения закодирован-

ных множеств и предикат принадлежности числа 

множеству. Для удобства несколько конкретизиру-

ем кодирование множества. Это список, в котором 

нет повторяющихся элементов. 
Определение 11. Обобщённый график – 

перечислимое множество троек ( , , )X c d , где 

значение c  не содержит
2
 константы  , и для 

каждых троек ( , , )i iX c d  с одним и тем же c  ни 

одно из iX  не вложено в другое jX .  Обобщённый 

график является графиком функционала ( , )F f x , 

если во всех тройках X  – фрагмент, гарантиру-

ющий d  на c . График полон, если для любых , c , 

для которых вычисление ( , )F c  заканчивается, 

найдётся ( , , )X c d , где X  – фрагмент  . ♦  

Зададим в виде спецификации, реализуемой 

стандартными методами программирования, 

оператор вычисления функционала ( , )F f x  по 

полному графику G :  

если в перечислении   есть тройка ( , , ),

         где фрагмент , то ;

если такой нет, работаем бесконечно.

G X x d

X f d








 

Таким образом, полный обобщённый график – 

сильное и адекватное определение функционала. 

Было бы отлично, если бы рекурсивную схему для 

него удалось построить синтаксическими преобра-

зованиями схемы функционала. Рассмотрим 

возникающие при этом сложности. 
Лемма 3 (прослеживание вызовов). Пусть 

рекурсивная схема определяет функционал   с 

функциональными параметрами if  и предметным 

                                                      
2 Напомним, что элемент   не превращает в ошибку всю 
запись. 
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(т. е. из 1 ) параметром x . Тогда выполнено 

следующее.  
1. При вычислении других функций этой схемы 

if  может быть применено, лишь если данная 

функция также представляет собой функционал и 
в качестве некоторых его функциональных 

параметров подставлено if .  

2. Все места возможного применения if  в 

терме t  могут быть статически найдены при 
анализе рекурсивной схемы и они имеют вид 

( )( )jpr F t , где F  – функциональный параметр 

некоторой функции.  

3. Применение if  произойдёт тогда и только 

тогда, когда место возможного применения if  

окажется на пути вычисления со значением if  

параметра ( )jpr F .  

Д о к а з а т е л ь с т в о. Дадим эскиз доказательства. 

Поскольку if  не является ни исходной, ни определяе-

мой в схеме функцией, она может быть лишь значением 

некоторого параметра. Это доказывает пункт 1.  

Построим список функциональных параметров 

схемы для Φ, компоненты которых могут быть 

заменены на  f. Само fi принадлежит этому списку. Если 

внутри определения какой-либо функции вместо 

параметра g подставляется функция из Φ, то g 

добавляется к Φ. Применения параметров из   

являются возможными применениями fi. Пункт 2 

доказан. Пункт 3 следует из пункта 2. ♦ 

Лемма о прослеживании работает и в случае, 

когда в схеме есть функционалы, вычисляющие 

функции, поскольку они не могут вычислить 

новые функции. Последующие построения в 

принципе можно проделать для случая, когда 

такие функционалы разрешены. Но поскольку это 

непринципиально для основной цели работы  

(операторы над функциями топологического 

пространства здесь не рассматриваются), ограни-

чимся схемами второго порядка, не определяющи-

ми функции, выдающие функции. 
Задача 1. Модифицировать определение функ-

ционала так, чтобы в случае завершения работы на 

данных параметрах он выдавал бы в точности 

гарантирующий результат фрагмент функции-

параметра. 
Задача 2. Модифицировать определение терма 

с одной функциональной переменной так, чтобы 

он вместо функции принимал в качестве параметра 

фрагмент и по возможности давал бы не только 

результат, но и диагностику, достаточен ли 

фрагмент для корректного вычисления. 
Функцию-параметр обозначим f, а вычисля-

емый терм [ ]T f . Заметим, что преобразования 

схемы проводятся для данного конкретного терма, 

поскольку необходимо предварительное просле-

живание. Базируясь на прослеживании, можно в 

задаче 1 разметить подтермы в исходной рекур-

сивной схеме, а в задаче 2 – подтермы преобразуе-

мого терма и опять-таки определений в исходной 

рекурсивной схеме. 
Определение 12. Подтерм красный, если он 

содержит вызов f . Подтерм жёлтый, если он 

такого не содержит, но является непосредственной 

составляющей красного терма (аргумент красной 

функции, компонента красной записи, 

альтернатива условного выражения с красным 

условием). Он белый в остальных случаях. Если 

[ ]T f  белый, то его помечаем как жёлтый. ♦ 

С помощью леммы о прослеживании можно 

раскрасить подтермы любого терма. 
Несколько удобнее, чтобы индикатор ошибки 

обрабатывался первым, поэтому он всегда 

снабжается флагом true. В дальнейшем через   

обозначается пустое множество, через   n-ка 

пустых множеств, через { }x  одноэлементное 

множество. Без ограничения общности можно 

предполагать, что все определяемые в схеме 

функции выдают результатом запись с n  

компонентами. Если S  – запись, то ( , )x S  – 

результат добавления к ней компонента x . Это не 

приводит к двусмысленностям, поскольку в башне 

типов записи не могут быть компонентами 

записей. Заметим, что стандартное сворачивание 

n-ки в код списка не всегда корректно в связи с 

замечаниями Кларка: код списка, один из 

элементов которого ошибка, всегда ошибка. Чтобы 

не тратить излишние усилия с конкретными 

номерами, определим для каждого 

встречающегося в схеме типа n-к функцию 

1 2(( , , )) = ( , , )n ntail x x x x . 

Стандартными методами строим следующие 

вспомогательные функции.  
1. Функцию ( , )Ev X a , выдающую ( , )bfalse , 

если при некотором b  пара ( , )a b X , и ( , )Atrue  

иначе.  
2. Функцию  , строящую объединение двух 

множеств.  
Через A  обозначим константу, которой будет 

заменяться ненужное далее значение. 

Модификация 1. [ , ]pt X t  – вычисление при 

гарантированной успешности. Оно получается до-

бавлением ко всем определённым в схеме 

функционалам, содержащим потенциальные при-

менения f, предметного параметра X , и 

рекурсивной заменой всех вызовов ( )f r  функции-



 

 
 

 

 
 

 ●

параметра, прослеженных по лемме 5, на 

( ( , ))ptail Ev X r . Эта модификация даёт простей-

шее частичное решение задачи 2 без диагностики 

ошибок, связанных с параметром, отсутствующим 

в фрагменте. Заметим, что даже это частичное 

решение индивидуально для [ ]T f , поскольку 

раскраска зависит от T . 
Модификация 2. Отслеживание и сбор приме-

нений функции-параметра: переработка T  в 
vT . 

Для каждой функции, имеющей красное 

вхождение, определяем её красный вариант с 

дополнительным параметром 1X  типа фрагмент.  

1. Красный вариант f :  

1 2

1 1 2

2

( ) ( ) ( , ( ), )

( ( ( , ( ( ))), { ( )},

( ( , ( ( )))) .

vf x pr x pr x A

pr Ev X tail tail x X pr x

pr Ev X tail tail x





if then true

else

fi

  (2) 

2. Красный вариант остальных исходных 

функций:  

1 1 2( , ) ( ) ( , ( ), )v X x pr x pr x A  if then true  

2( , ( ), ( ( ( )))) .pr x tail tail xelse false fi  

3. Красный вариант функции, определяемой как 

( , ) ,x t    есть  

1( , , ) ,v vX x t    

где 
vt  вычисляется рекурсивно по указанным ниже 

правилам.  
Рекурсивно производим следующие замены.  
1. Все белые подтермы остаются без 

изменений. Все жёлтые t  заменяем на  

= ( , , )vt ttrue . 

2. Запись 
1 1( , , ) ( , , )v v

n nt t t t :  

1 1 2 1 2( ( ) ( , ( ) ( ), )v v v

npr t pr t pr t A if then true elif

1 2 1 2( ) ( , ( ) ( ), )v v v

n npr t pr t pr t A elif then true  

2 1 2

1

( , ( ) ( ),

( ( )), , ( ( ))) .

v v

n

v v

n

pr t pr t

tail tail t tail tail t

 else false

fi
 

3. Условный терм  vb r uif then else fi :  

1 2( ) ( , ( ), )v vpr b pr b Aif then true  

2 1

2 2

( ) ( ( ),

( ) ( ), ( ( ))),

v v

v v v

pr b pr r

pr b pr r tail tail r

elif then
 

1 2 2( ( ), ( ) ( ), ( ( )))v v v vpr r pr b pr u tail tail uelse fi . 

4. Красная функция ( )s :  

1 2

1 2 2

( ) ( , ( ), )

( ( ), ( ) ( ), ( ( ))) .

v v

v v v v

pr s pr s A

pr r pr b pr u tail tail u

if then true

else fi
 

Эта сложная перестройка программы соответ-

ствует понятию завершителя (continuation) в 

функциональных программах [1, 6]. В отличие от 

указанных работ здесь не понадобилось добавлять 

оператор третьего уровня, удалось перестроить 

функцию с понижением уровня. 
Теорема 3 (обобщённый график). По схеме 

генерального функционала   можно построить 

определение функции, перечисляющей его 

обобщённый график.  
Д о к а з а т е л ь с т в о. Внесём дополнительную 

модификацию в схему 
vT  для терма 0 0= ( , )T f x , где 

0 0( , )f x  – константы
3
. Введём новую переменную для 

фрагмента X  и добавим её в качестве параметра ко 

всем определениям и применениям функций, не 

используя её нигде внутри определений, кроме 

обязательного параметра при вызове любой функции. 

Единственное исключение – (2), в котором она 

используется в Ev . В связи с этим переопределим 

исходный функционал   как  

( , ) [ , ]g vX x X x .   

Стандартными методами построим некоторое 

перечисление ( )Enum i  пар «фрагмент и предметный 

параметр» ( , )X x , начинающееся с нуля.  

Определим функцию построения начального 

отрезка обобщённого графика. Для сокращения и 

обеспечения понятности записи обозначим 

неоднократно встречающееся выражение 

1 2( ( ( )), ( ( )))g pr Enum i pr Enum i  просто [ ]g :  

( , , ) = 1Gr i G n i n G if then  

1([ ]) ( 1, , )gpr Gr i G n elif then  

2

3 2

( 1, {( ([ ]),

([ ]), ( ( )))}, ) .

g

g

Gr i G pr

pr pr Enum i n

  



else

fi
 

Она шаг за шагом добавляет найденные фрагменты, 

верифицированно гарантирующие 2 ( ( ))pr Enum i  на 

1( ( ))pr Enum i . В пределе получается полный график 

функционала.  

Замечание 3. Этот алгоритм даёт перечисление 

с повторениями. От этого можно избавиться 

стандартными методами. 
Полное исследование соотношений между 

функционалами и обобщёнными графиками 

требует отдельного рассмотрения. Ограничимся 

упоминанием, что синтаксическое преобразование 

произвольного функционала в график в общем 

случае невозможно: его существование означало 

бы, в частности, разрешимость проблемы 

зацикливания. Поэтому важны частные случаи.  

                                                      
3 Здесь 0f  может быть как новой исходной функцией, так и 

определённой в той же схеме; это влияет на процесс построе-

ния vT , но не на новые модификации. 
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2.1. Б-пространства 

Ю. Л. Ершов определил конструктивизацию 

топологических пространств со счётным базисом 

окрестностей (А-пространства) [7, 8]. Дадим 

обобщённое для случая подпространств 

произвольных сепарабельных пространств со 

счётной базой окрестностей определение, 

воспользовавшись идеями П. Мартин-Лёфа [9] и 

А. Лакомба [10]. При этом избавимся от исходной 

привязки к натуральным числам, имеющейся у 

всех перечисленных авторов и стандартной для 

всех работ по конструктивной топологии, 

перечисленных в фундаментальной монографии 

[11]. В случае обращения к натуральным числам 

это явно отмечается. 

Определение 13. Б0-пространство – сепара-

бельное полное пространство, в котором выделен 

счётный базис окрестностей. Этот базис с добав-

ленным пустым множеством обозначим A . Опре-

делим на A  основу.  
1. Константы   и U  (пустое множество и всё 

пространство).  
2. Генеральная функция счётности : ( )e A A

такая, что последовательность . ( )nn e   пробегает 

без повторений
4
 всё A .  

3. Генеральная операция пересечения 

окрестностей A B .  
4. Генеральный предикат A B  (А тоньше В), 

означающий, что либо замыкание A  вложено в B , 

либо =A B  и B  – одноэлементное открыто-

замкнутое множество.  
5. Генеральный предикат #A B  ( A  отделено от 

B ), означающий, что замыкания окрестностей не 

пересекаются.  
6. (Необязательный) Некоторые дополнитель-

ные функции и предикаты на A . ♦ 

Пункт 2 задаёт биморфизм A  в nat, который 

не является изоморфизмом, поскольку в основе нет 

функции Pd  и предиката равенства (даже =a  ). 

Он необходим, чтобы гарантировать конструкти-

визацию счётности A . Конструктивными объекта-

ми, согласно определению 2, являются также n-ки 

окрестностей.  
Предложение 1. Если в Б0-пространстве вы-

числим предикат равенства окрестностей =a b , 

то окрестности образуют модель натуральных 

чисел и вычислимы все частично-рекурсивные 

функции на них.  
                                                      
4 В данном случае   является общепринятым квантором 

функциональности и принадлежит метаязыку. 

Д о к а з а т е л ь с т в о. Для доказательства 

достаточно построить функцию ( )Pd a , поскольку 

( ) =Z a a  .  

( , )

( ) ( ( ), )

( ) ( , ).

Pda x a a

e x a x Pda e x а

Pd a Pda a

  



  

if then

elif then else fi  

Если есть равенство, то свободно используются 

известные функции натуральных чисел, в частности, 

кортежи и операции над ними. Кортежи в данном 

случае являются также кортежами окрестностей. ♦ 

Определение 14. Метрическое Б0-простран-

ство.  
Б0-пространство метрическое, если имеется 

вычислимая генеральная функция меры  , 

сопоставляющая каждой окрестности рациональ-

ное число ( ) 0a , и  

1. ( ) = 0A  тогда и только тогда, когда A  

содержит не более чем одну точку.  
2. Если A B  и A B , то ( ) < ( )A B  .  

3. Если #A B , A C , B C , то 

( ) ( ) < ( )A B C   .  

4. У каждой точки 0xБ  есть базовая окрест-

ность сколь угодно малой меры.  
Пример 3. Если базовые окрестности в некотором 

пространстве имеют по вложению структуру дерева, то 

A B  означает, что, когда B  не лист, A  находится на 

пути из .B  Но лист – конечная точка пути, и тогда 

= .A B  

Рассмотрим хаусдорфовы Б0-пространства. 

Вычислимым элементом Б0-пространства естественно 

считать класс эквивалентности вычислимых сходящих-

ся последовательностей вложенных окрестностей. 

Н. А. Шанин [12] показал, что этого недостаточно: 

нужно иметь также явно заданный вычислимый 

регулятор сходимости данной последовательности. 

Поскольку не предполагается мера либо равномерная 

структуры окрестностей, необходимо соблюсти 

аккуратность.  

Определение 15. Вычислимый элемент. 
Шанинской точкой называется пара всюду 

определённых функций ,f r , где 

( ( ( ))) ( ))x f e x f x  , а функция ( , )r x y  (регулятор) 

такова, что для любой пары окрестностей x y  

выполнено ( ( , ))f r x y y  либо ( ( , ))f r x y # x . Если 

,f r  вычислимы, то элемент  Б0-пространства 

конструктивен относительно данной основы. 
Шанинские точки ( , )f r  и 1 1( , )f r  

эквивалентны 1 1( , ) ( , )f r f r , если для любых n  

1 1( ( ( ( )), ( ))) ( )f r f e n f n f n  и 1 1( ( ( ( )), ( )))f r f e n f n 

1( ).f n  

Замечание 4. Содержательный смысл регуля-

тора состоит в том, что он позволяет попасть либо 
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в меньшую окрестность, либо в зазор между 

меньшей и большей, тем самым обходя 

неприятный с конструктивной точки зрения 

случай, когда граница испытуемой окрестности 

попадает в точности на предел f, и в результате она 

не может отделиться от членов ( )f n , а ( )f n  не 

могут попасть внутрь.  
Определение 16. Б-пространство – непустое 

подмножество Б0-пространства X   (материнского 

пространства) X X  с базой обобщённых 

окрестностей, каждая из которых есть пересечение 

базисной окрестности из A  с множеством X . ♦ 
Таким образом, все перечисленные выше 

функции и предикаты наследуются Б-про-
странством от материнского Б0-пространства.  

Лемма 4. Свойства шанинских точек.  
1. В случае, если пара функций – шанинская 

точка, пересечение всех ( )f a  содержит не более 

одного элемента.  
2. В полном пространстве это пересечение 

непусто.  
3. В метрическом пространстве шанинская 

последовательность f  имеет меру членов, 

стремящуюся к нулю.  
Д о к а з а т е л ь с т в о. Пусть даны две различные 

точки ,x y . Тогда по сепарабельности есть базовые 

окрестности x A , y B , #A B . Тогда возьмём 

1A A , 1x A . Поскольку 1 1( ( , ))f r A A A , то 

1( ( , ))#f r A A B , и тем самым y  не принадлежит 

пересечению всех ( )f n . Первый пункт доказан. Второй 

пункт выполнен по определению полноты. Третий 

пункт выполнен, поскольку для любой окрестности, где 

( )
a
f a A , имеем ( ( ))f r A A . ♦ 

В случае метрических пространств (как у 
П. Мартин-Лёфа и в других работах, перечис-

ленных в книге [13]) регуляторы не нужны, 
поскольку достаточно потребовать быстрой 

сходимости последовательности (например, что 

мера каждого ( )f n  не превосходит 2 n ). В общем 

случае при отсутствии регуляторов справедливы 

контрпримеры из основополагающей работы [12], 
разрушающие конструктивность построений. 

Предложение 2. Любое сепарабельное про-

странство   со счётной базой окрестностей 
может быть представлено как Б-пространство.  

Д о к а з а т е л ь с т в о. Б0-пространством 0  

служит пополнение  . Оно тоже имеет счётную базу 

окрестностей. На ней определяем основу, и получаем Б-

пространство. Окрестностями будут пересечения 

окрестностей из базы 0  с  .  

Заметим, что конкретизация основы для   не 

оговаривается. Все функционалы работают над 
0  и 

принадлежность   оговаривается внешним образом, 

никак не используясь в вычислениях. 
Определение 17. Вычислимая функция над 

элементами Б-пространств :f   – вычисли-

мый функционал  
: ((( , ) ( , )), , ( , )),  nat natA A A A A A  

преобразующий любую шанинскую точку 

( , ); ( )
a

f r f a   в функцию 

, . (( , ), , )s r mn nm  , являющуюся шанинской 

точкой ( , ); ( )
a

g q g a  , причём  

1 1 1 1( , ) ( , ) (( , )) (( , )).s r s r s r s r         (3) 

Здесь ( , )s r  понимается в смысле определённого 

выше преобразования функций.  

Замечание 5. Таким образом, определение 17 

можно перевести на более привычный язык 

следующим образом: по шанинской паре ( , )s r , 

представляющей x ,   выдаёт шанинскую точку 

( , )g q , представляющую ( )f x , следующим 

образом:  
( , , , ) = ( ( ), ( , )).s r i j g i q i j  

Аргументы функций пробегают всё 

пространство 0 , ограничиваются лишь результа-

ты и требование корректности. Тотальность и 

генеральность также рассматриваются на всём 

пространстве 0 .  

Пример 4. Приведём пример, иллюстрирующий 

важную роль регуляторов непрерывности. Возьмём 

обычное пространство действительных чисел с базисом 

окрестностей: интервалы рациональных точек 

1 1
,

2 2n n
a a
 

  
 

. Рассмотрим функционал, 

перерабатывающий каждую окрестность 

1 1
,

2 2n n
a a
 

  
 

 в 
1 1

1 , 1
2 2n n

 
  

 
, если её нижняя 

граница больше нуля, 
1 1

1 , 1
2 2n n

 
    
 

, если верхняя 

граница меньше нуля, и 
1 1

,
2 2n n

 
  
 

, если 0  

находится внутри интервала. Он перерабатывает 

каждую вычислимую сходящуюся последовательность 

в вычислимую сходящуюся последовательность, но 

получить регулятор невозможно, поскольку он должен 

выдавать окрестности нуля по последовательностям, 

все члены которых включают нуль. Но тогда он должен 

выдать 
1 1

,
2 2

 
 
 

 по конечному числу её членов, и  

подменив её на последовательность, отделяющуюся от 

нуля на следующем шаге, получаем неверный результат 

(метод обмана).  

Замечание 6. Функции не предполагаются 

всюду определёнными как операторы на элементах 
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пространства. Более того, возникает ещё один 

случай, когда функция не определена: если 

нарушено условие корректности (3) для 

шанинских пар, представляющих данный элемент. 

Корректная работа должна обеспечиваться лишь 

на элементах множества  . Эквивалентности 

регуляторов результата для различных шанинских 

представлений аргумента не требуется.  

 

2.2. Основная теорема 

Теорема 4. Функция непрерывна на Б-про-

странстве тогда и только тогда, когда она 

вычислима относительно некоторой основы.  
Доказательство теоремы требует нескольких 

дополнительных построений. 
Лемма 5. Вычислимая функция преобразует 

конструктивные точки   в конструктивные 

точки  .  
Следствие леммы 2. Заметим, что аргументы 

вычислимой функции не предполагаются 

вычислимыми. Она должна корректно работать 

над любыми. В этом принципиальное отличие от 

стандартных концепций конструктивности [11], 

даже если их релятивизовать. 
Лемма 6. Все вычислимые функции непрерывны 

на своей области определения.  
Д о к а з а т е л ь с т в о.  

Следствие теоремы непрерывности 1. Пусть дана 

окрестность Y  результата ,g q . Тогда его регулятор 

даёт ( )q Y  такое, что ( ( ))g q Y Y . По теореме 

непрерывности используется лишь конечное число 

значений [ ( ), , ( ( ))]nf f e   функции-аргумента f  

для того, чтобы найти ( ( ))g q Y . Возьмём теперь 

произвольную шанинскую точку 1 1,f g  из ( ( ))nf e  . 

Подменив в ней 1 1[ ( ), , ( ( ))]nf f e   на 

[ ( ), , ( ( ))]nf f e   и все значения 1( )g a  такие, что 

1( ( )) ( ( ))nf e g g a  , на ( )ne  , получаем эквивалент-

ную шанинскую точку. Она принадлежит ( ( ))g q Y  и, 

тем самым, Y . Итак, по любой окрестности результата 

можно найти окрестность аргумента, отображающуюся 

в неё.  

Основная теорема в одну сторону доказана. 

Остаётся для каждой непрерывной на Б-пространстве 

функции найти основу, относительно которой она 

конструктивна. ♦ 

Функции в данном контексте не являются 

полноправными значениями. Совокупности вычис-

лимых функций нет. Они образуют множество, 

внешнее по отношению к вычислительной модели. 

Тем более это относится к функционалам. Но 

имеется известное топологическое преобразова-

ние: перейти от непрерывной функции к отно-

шению окрестностей результата и аргумента. Его 

конструктивная форма предложена П. Мартин-

Лёфом [9]: здесь она обобщена на пространства, не 

являющиеся метрическими.  

Определение 18. Понижение типа.  

Аппроксимация – перечисляющая окрестности 

функция  такая, что для любых a  и b  есть c , 

( ) ( ) = ( )a b c . Аппроксимация максимальна, 

если для любых a b  есть такое c , что ( )a# c  

либо ( )c b .  

Открытое множество – функция , значением 

которой являются окрестности и для любого a , 

если ( )b a , то имеется c , такое, что ( ) =c b . 

Окрестностное отношение – функция R  из A  

в пары окрестностей ( , )X Y  точек ,x y   

такая, что < >R X  – аппроксимация в  , 
1 < >R Y  – открытое множество в  . ♦  

Для обеспечения конструктивности построим 

через R  перечисляющие функции аппроксимации 

и открытого множества. 
Лемма 7. Функция как отношение. Для любой 

непрерывной функции :f   Б-пространств 

можно найти окрестностное отношение R  

такое, что для любой окрестности a  аргумента 

x  < >R a  содержит ( )f x , а для окрестности b  

результата ( )f x  объединение окрестностей 
1 < >R b

 содержит
5
 1( ( ))f f x , и для любого 

( )z# f x  есть окрестность a  такая, что 

некоторая окрестность из < >R a  отделена от 

z .  
Д о к а з а т е л ь с т в о. Возьмём произвольную 

непрерывную функцию :f  . Поскольку f  

непрерывна, то для любой окрестности Y  результата 

( )f x  имеются окрестности X  аргумента x  такие, что 

для любого x X  ( )f x Y . Они образуют искомое 

отношение R . ♦ 

При этом для x X  < >R X  максимально. 

Построим вычислимую относительно материн-

ского пространства и R  функцию поиска sf(a,b):  

0( , , )

( , )

#

0( , , 1)

( , ) 0( , , 0).

sf a b x a b

R a x

x a x x a x

sf a b x

sf a b sf a b

 









if then

if then

if then elif then fi

else fi

else fi

(4) 

                                                      
5 1f   рассматривается как отношение, а не как функция: 

1 = {( , ) ( , ) }R x y | y x R  . 
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Эта функция находит в аппроксимации 

окрестность, вложенную либо отделённую от 

меньшей для любой пары вложенных окрестностей 

из аппроксимации
6
.  

Лемма 8 (повышение типа). Если окрест-

ностное отношение R  представляет функцию 

,f  то f  вычислима относительно материнских 

Б0-пространств, предиката = u R .  

Д о к а з а т е л ь с т в о. Поскольку имеется 

предикат равенства, можно отождествить окрестности с 

патуральными числами и пользоваться стандартными 

рекурсивными функциями.  

Построим последовательность-результат . ( )n g n  по 

функции f  из шанинской точки. Инвариантом создава-

емой функции является  

Для любого n ( ), ( )f n g n R  и ( 1) ( )g n g n  .  

Определим вспомогательную функцию ( , ):sr a b   

1 2

2

0( , , ) ( ( )) = ( ( ))

( ( )) 0( , , ( ))

( , ) 0( , , 0).

sr a b n pr R n a pr R n b

pr R n sr a b S n

sr a b sr a b

  






if

then else fi  

При условии, что вычисление sr  для данных ,a b  

конечно, она удовлетворяет следующему инварианту:  

( , ( , )) ( , ) .a sr a b R sr a b b    

Функция g  определяется схемой  

2 1( ) ( ) (0) ( ( ), ( ( )) .g n Z n f sr f n g Pd n if then else fi  

Конечность вычисления g  гарантируется в случае, 

если f  принадлежит области определения функции, 

послужившей основой для построения R . 

Регулятор по окрестностному отношению уже 

построен выше (см. формулу (4)), нужно лишь заменить 

найденную окрестность на её номер в результате 

искомой функции.  

Тем самым основная теорема доказана. ♦ 

Следствием этого является  
Лемма 9. Результат f(x) непрерывной функции 

конструктивен относительно R  и x .  

Д о к а з а т е л ь с т в о. Функция sf  даёт результат, 

а sr  – его регулятор.  

 

2.3. Вычислимость окрестностного отношения 

Возникает вопрос о вычислимости окрестно-

стного отношения относительно основы, для 

которой вычислима данная непрерывная функция. 

Здесь приходится использовать многоступенчатые 

нетривиальные трансформации определения функ-

ции и нетривиальную технику программирования. 

                                                      
6 С конструктивной точки зрения доказательство корректно-

сти данной функции требует применения бар-индукции Брау-

эра [16], что ещё раз показывает существенность требования 

счётности базиса окрестностей. 

Поскольку для логических результатов работы эта 

техника вторична, в данном пункте она 

описывается в виде идей преобразований и 

формулировок результатов, а исследование 

получившейся концепции вычислимости, 

обладающей некоторыми нетривиальными 

свойствами и при этом достаточной силой, – 

предмет других работ. 
Для вычисления окрестностного отношения 

хотелось бы запустить функцию хотя бы для всех 

конструктивных чисел. Это невозможно ввиду 

отсутствия средств изменения значений 

функциональных переменных. Но можно обойти 

эту трудность для генеральных функций, 

пользуясь основной теоремой. Поэтому 

доказательство теоремы требует нескольких 

вспомогательных построений. Они представляют 

самостоятельный интерес и поэтому проведены 

для общего случая, но достаточно громоздки 

технически. Идея же, на которой они базируются, 

проста и прозрачна. 
Теорема 5 (вычисление отношения). По 

определению функционала  , вычисляющего 

генеральную функцию f ,  можно построить 

определение окрестностного отношения для этой 
функции в той же основе, пополненной 
предикатом равенства.  

Д о к а з а т е л ь с т в о. Построим, проанализировав 

определение функции, перечисление обобщённого 

графика функционала (основная техническая часть 

работы) и заменим в нём все пары (( , ), )F y z  на 

1( , ( ))x pr z , где x  – наименьшая из окрестностей в 

1( )pr F . Первый элемент шанинской пары монотонно 

убывает, значит, если оказалось достаточно других 

объемлющих его элементов, то тем более в окрестности 

x  результат функции попадёт в окрестность 
1( )pr z , а 

построения регулятора на значение функции не влияют  

и они опускаются.  

 

2.4. Относительная конструктивность 

Возникает задача: является ли относительная 

конструктивность характеристикой какого-то 

класса функций? 
Определение 19. Относительная конструктив-

ность. Функция   на Б-пространстве конструк-

тивна относительно : ( )f  , если для каждо-

го числа x  есть конструктивная функция   над 

основой , , ,S Pd Z f  такая, что ( ) = ( ).x x 
 
 ♦ 

Прежде всего, тривиален ответ: этот класс 

шире вычислимых (непрерывных) функций. 

Результат функции Дирихле 0  либо 1  и конструк-

тивен. Но сама эта функция не конструктивна 

относительно никакого базиса. 
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Определение 20. Функция счётно непрерывна, 

если Б-пространство можно разбить на счётную 

совокупность Б-пространств, на каждом из них она 

непрерывна.  
Теорема 6 (эквивалентность понятий). Функ-

ция относительно конструктивна тогда и только 

тогда, когда она счётно непрерывна.  
Д о к а з а т е л ь с т в о.  

Только тогда. Пусть функция относительно 

конструктивна. Поскольку каждый её результат 

порождается функционалом, определимым над основой 

, , ,S Pd Z F  и являющимся конструктивной функцией, 

сопоставим всем числам вычисляющие их функцио-

налы. Поскольку совокупность вычислимых функцио-

налов счётна, и каждая конструктивная функция непре-

рывна, получили требуемое разбиение. 

Тогда. Пусть функция счётно непрерывна. Возьмём 

окрестностные функционалы 
i , определяющие 

каждый из непрерывных фрагментов, и объединим их в 

функцию ( , ) = ( )ii n n  . Тогда каждый ( )f x  вычис-

лим относительно .  ♦ 

Это построение принципиально неконструктив-

но. Объединить конструктивные фрагменты в 

единую конструктивную функцию на простран-

стве невозможно. Таким образом, вопрос, какая 

именно функция применяется к данному элементу, 

неразрешим относительно никакой основы. 

Заметим, что в выполненных построениях ни разу 

не использовались запросы к предикату  принад-

лежности элемента носителю Б-пространства или 

к свойствам, выделяющих Б-пространство из 

материнского. 
Пример 5. Наконец, построим функцию действи-

тельного переменного, не являющуюся счётно непре-

рывной. Возьмём первый ординал мощности континуум 

и упорядочим действительные числа по этому ординалу 

следующим образом. Каждому ординалу сопоставим 

действительное число, не имеющее конструктивного 

представления через ранее упорядоченные числа. Такое 

найдётся, поскольку мощность каждого ординала, 

меньшего первого континуального, меньше контину-

ума, и через каждое число конструктивно определима 

лишь счётная совокупность чисел. Тогда функция, со-

поставляющая каждому x  следующее за ним 1,x  не 

является относительно конструктивной для любого 

числа и тем самым не является счётно непрерывной.  

 

3.1. Взаимосвязь с другими концепциями 

конструктивности в топологии 

Прежде всего, заметим, что в работах, 

использованных и описанных в [11] непрерыв-

ность конструктивных функционалов в том или 

ином виде заранее предполагается. 

Лишь в советском конструктивизме [14] 

непрерывность функций действительного перемен-

ного доказывалась полностью независимо, но там 

функционалы были «хакерскими»: во-первых, они 

должны были перерабатывать лишь конструктив-

ные функции и, во-вторых, считался известным 

исходный код алгоритма любой функции, с ним 

можно было делать всё, что угодно. Первый пункт, 

как было показано в работе [15], безвреден, если 

не предполагать второго: пространство функций в 

интуиционизме может состоять лишь из алгорит-

мически вычислимых, но доступа к их программам 

не должно быть. 

Маленькое видоизменение определения функ-

ционалов высших типов (отсутствие исходных, 

внешним образом заданных функционалов высших 

порядков) привело к сильной «бэровской» непре-

рывности и одновременно к возможности обра-

батывать любые функции. Эту непрерывность 

можно обосновать интуиционистски, если принять 

брауэров принцип бар-индукции [16]. Тем самым 

был сделан ещё один шаг. Можно предполагать 

знание алгоритмов функций, если разрешить 

использовать их лишь как в современной 

информатике: вызывая замкнутые модули. 

В топологии следуем линии Ю. Л. Ершова 

[7, 8] и П. Мартин-Лёфа [9]. Сам П. Мартин-Лёф 

пользовался алгоритмами, а топологию вводил как 

бесточечную, на базе аппроксимаций, и функции 

на топологических пространствах как окрест-

ностные отношения. Последователи линии 

П. Мартин-Лёфа ограничивались рассмотрением 

компактности и, как следствие, традиционных 

пространств действительных чисел, Кантора и 

Бэра, они больше склонялись к формальной 

топологии. Обзор работ линии П. Мартин-Лёфа 

дан в работе [17]. 

Э. Бишоп развил концепцию конструктивности, 

которую метко охарактеризовал в разговоре 

А. Г. Драгалин: пользоваться лишь алгоритмами, 

но никогда не подтверждать и не отрицать этого 

[18]. У развивавших концепцию Бишопа [19–21] 

понятие непрерывности вводится косвенно, через 

лемму Гейне – Бореля, которая эквивалентна бар-

индукции Брауэра. Обзор этой линии Э. Бишопа 

дан в работе [13]. Понятие подпространства у 

обеих школ подвержено сильным ограничениям. 

Используемое понятие более абстрактно и не 

зависит от конкретного базиса вычислимости. Оно 

позволило рассматривать произвольные подпрост-

ранства, выделенные неконструктивным способом, 

а также избежать использования выделяющего 

предиката в конструктивных построениях. При 

этом производное понятие базы на Б-пространстве 

не удовлетворяет традиционным требованиям к 
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базе открытых множеств. В частности, пересека-

ющиеся как базовые окрестности объекты могут 

иметь пустое пересечение как множества, а 

базовые окрестности как множества могут быть 

пустыми. Но они наследуются из материнского Б0-

пространства, и это позволяет корректно работать 

с ними. 

Удалось соединить преимущества аппроксима-

ционного (или, что с точки зрения автора то же 

самое, подхода формальных топологий) и 

точечного подхода. Определить функции чисто 

функционально (через элементы) и получить как 

непрерывность, так и возможность обработки не 

заданных алгоритмами элементов. Частично род-

нит с советским конструктивизмом требование, 

что функционалы заданы программой, но эта про-

грамма используется корректно как вызываемый 

модуль, над которым можно лишь проводить 

эксперименты, применяя его для различных аргу-

ментов (в том числе заданных внешним образом), 

и совокупность программ не используется как 

целое. 

Единственным существенным ограничением 

остаётся счётность базиса открытых множеств. 

Возможность переноса на неотделимые простран-

ства и пространства с несчётной базой требует 

дополнительных исследований. 
 

3.2. Связь с приложениями и метрологией 

В дальнейшем вычислительными задачами 

называются задачи, связанные с действительными 

числами либо другими хаусдорфовыми простран-

ствами, и они противопоставляются дискретным. 

Тонкость в определении регулятора соот-

ветствует отсутствию в конструктивном анализе 

дихотомии , ( )x y x y y x     и в её замене на 

неточное сравнение  

( > 0 , ( > < )).x y y x y x      

В вычислительной практике это приводит к 

тому, что в случае представлений действительных 

чисел с перекрытием операция равенства оказыва-

ется трудно вычислимой, и на этой базе они браку-

ются. Но с физической точки зрения точных 

действительных чисел нет. В алгоритмах 

сравнение чисел как равенство приводит к массе 

трудно выявимых ошибок и неустойчивостей. 

Надо было бы в каждом случае задумываться, с 

какой точностью достаточно сравнивать данные, 

но этому мешает педагогическая проблема: почти 

везде рациональные числа трактуются как 

подмножество действительных, что игнорирует их 

принципиально разную природу. 

Соответственно, получаем ещё один важный 

практический вывод: часто встречающееся возра-

жение против представления действительных 

чисел системами с перекрытием (пример таких 

систем см. в работе [22]) – сложность вычисления 

равенства – с прикладной и научной точек зрения 

неосновательно. 

Полученная эквивалентность конструктивности 

и чисто топологического понятия является новой. 

Отдалённой аналогией является теорема: мощ-

ность совокупности непрерывных функций на 

пространстве со счётной базой окрестностей есть 

континуум. Ранее конструктивность была лишь 

частным случаем топологии, а теперь она ока-

зывается именно топологией. Это является след-

ствием важного методологического принципа: лю-

бая привязка к конкретным представлениям и 

структурам данных ограничивает наш взгляд 

(вспомним И. Канта, сказавшего: «Мы можем мыс-

лить вещи лишь в пространстве и во времени», что 

несправедливо для современной логики, матема-

тики и физики). И таковыми структурами чаще 

всего оказываются действительные числа. Поэтому 

переход к максимально абстрактным представ-

лениям многократно показал в математике и 

логике свою мощь. Но стоит помнить, что переход 

от идеальных объектов к реальным в таком случае 

более труден и может быть многошаговым. 

Исходные «неразвитые» концепции 

П.  Мартин-Лёфа и Н. А. Шанина оказались луч-

шими для обобщения и модификации. Это под-

тверждает ещё один методологический принцип: 

оптимизация уменьшает гибкость, т. е. способ-

ность к обобщению и изменению. В эволюции это 

означает вымирание хорошо приспособленных 

специализированных видов при изменении среды. 

Первым показал на примере, что одни и те же 

пространства функций в конструктивной матема-

тике могут иметь разные пространства конструк-

тивных функционалов, П. Мартин-Лёф, но он явно 

не отметил различие его функционалов с функ-

ционалами советского конструктивизма. В даль-

нейшем стало видно, что расхождения могут 

начаться и на более высоких уровнях. И 

предлагаемая концепция вычислимости – один из 

примеров. Она расходится на третьем уровне с 

концепцией П. Мартин-Лёфа. 

С практической точки зрения можно сделать 

вывод: если программа написана в функцио-

нальном стиле без использования некорректных с 

конструктивной точки зрения операций над 

действительными числами (равенство, , sign( )x  

и т. п.), то она определяет непрерывную функцию 

и никаких других доказательств не нужно. Заодно 
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принятые ограничения на вычислимость высших 

порядков показывают, почему в численных 

задачах стиль функционального программиро-

вания другой, чем в дискретных: например, не 

используются категорные конструкции. Категор-

ные функционалы – более высокого порядка, чем 

допускаемые в основе, и они разрушают 

вычислимость на топологических пространствах, 

как показано в примере 1. Но их использование 

как макросов ничего не портит. 

Одновременно теоретический и практический 

вопрос: какие преобразования программ допусти-

мы в качестве макросов в вычислительных зада-

чах? Представляется, что это суперкомпиляция 

[23]. Но до сих пор она исследовалась прежде 

всего для дискретных задач. 

Данное исследование порождает серию теоре-

тических вопросов, касающихся использованной 

концепции вычислимости. Она формально слабее 

обычной концепции вычислимых функционалов 

конечного типа. При этом она избавляет от 

необходимости явно строить модели множеств 

функционалов конечных типов и позволяет решать 

достаточно сильные задачи. Здесь нужны допол-

нительные исследования, в частности, о возмож-

ности расширений, сохраняющих топологические 

свойства и позволяющих вычислять функционалы, 

потребовавшие внешней перестройки программ. 

Результаты п. 2.4 частично докладывались на 

Тринадцатом Национальном суперкомпьютерном 

форуме (НСКФ-2024) и опубликованы в его 

интернет-материалах. Результаты работы были 

анонсированы в докладе на Смирновских чтениях. 

Полный текст статьи докладывался на семинаре 
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Abstract. The relationship between computability and continuity is studied. Computability over 

an arbitrary initial basis of data types and functions (a base) is considered using McCarthy recur-

sive schemata and strongly typed operators of finite types. In this case, computable operators are 

proved to be strongly continuous in the Baire sense: for parameter functions with any value of the 

other arguments, it is possible to find a finite collection of their values that uniquely determines 

the result. Based on relative computability, an approach to constructive topology is developed 

within which the pointwise approach (an element is a fundamental sequence of neighborhoods) 

and the approximation approach of abstract topology (a function over topological spaces is a 

neighborhood relation) are equivalent. The concept of B-spaces is formulated, allowing one to 

constructivize separable spaces with a countable base of neighborhoods. The continuity of 

pointwise constructive functions of B-spaces and their transformability into neighborhood rela-

tions are proved. The equivalence of the concepts of computability relative to a certain base and 

continuity is established. The concept of a relatively constructive function is formulated: such a 

function transforms each element into an element constructible relative to its argument and a 

fixed base. Its equivalence to the concept of a countably continuous function formed by the union 

of a countable family of functions continuous on subspaces is established. Since any separable 

space with a countable base can be described as a B-space, this result contains no constructive 

restrictions. The connection between the proposed approach and other approaches to constructive 

topology is discussed. 

 
Keywords: relative computability, separability, countable base, pointwise spaces, abstract topology, approx-

imation approach, Baire continuity, continuity on subspaces. 
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