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Abstract. This paper considers the application of subdefinite (SD) models, a variation of con-

straint programming, to the localization problem of a mobile robot. A complex technology with 

semantic maps and point cloud maps is proposed. The technology is intended to accelerate and 

increase the accuracy of global localization in large, symmetric, and periodic environments. The 

conventional localization approach is based on data from rangefinders generating point clouds; 

the idea proposed instead is, first, to match the objects observed by the robot to those on the se-

mantic map (recognize the scene), and then apply SD computations to perform localization via 

visual landmarks. SD computations are used to determine interval constraints on the robot’s posi-

tions, represented by several sets for each hypothesis obtained during the scene recognition. With-

in the interval constraints, the robot is localized using rangefinder data based on a particle filter 

initialized within these constraints. According to the experiments conducted on the open KITTI-

360 dataset, localization based on SD computations can reduce the search space to 0.2% of the 

original map size. The complex technology shows a significant advantage compared to approach-

es involving point clouds or visual landmarks only, especially in scenarios with multiple hypothe-

ses about the matches of observed objects and those on the semantic map. 
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Localization is crucial in modern mobile robotics 

since the vast majority of robot control approaches are 

based on the current position knowledge. When it is 

difficult to use satellite navigation (e.g., in urban or 

indoor environments), one applies localization meth-

ods building a 3D map in the form of a point cloud. 

The popularity of this approach is determined, among 

other things, by its versatility: there is no need to place 

additional labels (devices) in the robot’s environment 

to aid localization. Such a detailed map can also be 

used in navigation, as it contains information about 

obstacles. It can be built by means of common sensors 

such as scanning laser rangefinders and depth camer-

as. The modern development of SLAM (Simultaneous 

Localization and Mapping) methods [1] allows build-

ing quite accurate maps of large areas, but the follow-

ing global localization problem arises when using such 

maps further: it is necessary to determine the robot’s 

starting position without knowledge of any initial con-

ditions. This problem is solved during robot initializa-

tion (the start of operation) and also when the robot 

gets lost (its position differs from the expected one) 

due to errors during localization or, e.g., was moved 

by third parties. All these situations prevent the use of 

available data on the robot’s previous position and 

displacement for localization. Finding the robot’s posi-

tion in the entire space (usually limited by the map 

size) becomes more difficult as the map size increases, 

as noted in the review [2] of the corresponding ap-

proaches. Besides the high volume of necessary com-

putations, the additional problem is that the above ur-

ban and indoor environments often contain domains 

with quite similar geometry, especially in typical 

buildings. Such “periodicity” and “symmetry” of the 

environment lead to the so-called local minima on the 

map, in which the robot can erroneously globally lo-

calize itself. And the number of such local minima 

grows with the map size. 
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Researchers tackle this problem from different 

standpoints. One R&D direction involves only point 

clouds, and the task is to construct qualitative de-

scriptors associated with point clouds in order to iden-

tify and compare geometric and other features of their 

elements, including semantic ones. Generally speak-

ing, this approach includes three main stages: de-

scriptor extraction, descriptor matching, and position 

refinement. Among descriptor extraction methods, we 

mention FPFH (Fast Point Feature Histograms) [3], 

NDT (Normal Distribution Transform) [4], NeRF 

(Neural Radiance Fields) [5], Minkloc3d [6], and oth-

ers [7]. Different approaches are used for descriptor 

matching: RANSAC (RANdom SAmple Consensus) 

[8], graph-based approaches [9], optimization algo-

rithms [10], and learning approaches [11] are wide-

spread. ICP (Iterative Closest Point) [12] and its ex-

tensions (for example, see [13]) are used to further 

refine the robot’s position. Also note probabilistic ap-

proaches, such as the histogram filter or particle filter 

[14], applied to point clouds [15]. However, these de-

scriptors are primarily based on the geometric features 

of the mutual arrangement of the points, and the prob-

lem of local minima due to the periodicity and sym-

metry of the spaces cannot be eliminated accordingly. 

Despite that the descriptors narrows the search space, 

they remain at the point cloud level and, to some ex-

tent, are associated with the above problems, so other 

approaches pass to a “higher” map representation lev-

el, which will be discussed later. 

Similar to descriptor construction, Place Recogni-

tion [16] encodes the entire environment of a robot as 

a vector of numbers. Usually, neural network models 

are applied for this purpose; they are trained so that 

the same environment, taken from different angles, at 

different times of day, etc., produces vectors close to 

each other. Such models often have multimodal input 

and consider point clouds, “raw” images, and the se-

mantics of the scene. Thus, the map is provided with a 

set of “key frames” with encoding vectors, and locali-

zation is reduced to finding the frame best matching 

the robot’s current observation from a set of sensors. 

This approach is good in the sense of utilizing all 

available information about the environment, but it 

requires dense coverage of the space with key frames. 

A strong change in camera angle can also deteriorate 

the frame search for different compositions of the ro-

bot’s sensors. Such methods demonstrate the best per-

formance for sensor compositions with full view, but 

this is not possible or reasonable for all robots.  

This paper follows another R&D direction with the 

so-called semantic maps. On such maps, objects are 

assigned semantic labels (classes). Methods for obtain-

ing semantic maps in an automatic set are being ac-

tively developed [17, 18]. A set of same-class objects 

is extracted in the environment directly observed by a 

robot. Then it is necessary to recognize the scene, i.e., 

match the objects of the map to the objects in the envi-

ronment (scene). Matching at the object level allows 

narrowing the search space compared to searching in 

3D maps. Semantics gives additional “uniqueness” to 

scenes with monotonous geometry. Once a match is 

found, localization methods based on visual landmarks 

can be used. However, one problem of this direction is 

that such scene recognition methods generate a num-

ber of hypotheses about object matching. Therefore, it 

is required to perform localization for each hypothesis 

and evaluate the resulting quality of object matching. 

The direction with semantic maps has several ad-

vantages: the methods are less sensitive to changes in 

camera angle and allow for the manual editing of se-

mantic maps. The latter is an obvious benefit of the 

method because the environment may change over 

time and performing a complete mapping procedure 

often seems unreasonable.  

In view of the aforesaid, the aim of this research is 

to accelerate and increase the accuracy of global local-

ization of a mobile robot on point cloud maps. We 

choose the R&D direction involving point clouds 

jointly with semantic maps, which requires scene 

recognition. This paper focuses on the global localiza-

tion problem of a mobile robot based on scene recog-

nition results considering such features as high object 

positioning errors, object matching errors, and selec-

tion of the best result among a set of hypotheses. 

 

In modern works on localization using semantic 

maps addressing scene recognition, a prevalent meth-

od is an optimization-based approach for matching 

two sets of 3D points, known as SVD (Singular Value 

Decomposition) [19]. Localization by this method 

based on scene recognition results was performed in 

[20–22]. The approach minimizes the root-mean-

square (RMS) error of point positions between two 

sets, but requires exact element-by-element corre-

spondence of one set to another and neglects the posi-

tion errors in computations. In [23], the ICP approach 

(see above) was applied not to point clouds but to two 

sets of objects: on the map and on the scene. In several 

publications (for example, [24, 25]), robot localization 

was performed by the 2D-3D reprojection technology: 

the positions of flat objects in the image were matched 
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to their 3D positions. This approach eliminates the 

need for the 3D localization of the scene objects in 

space and, therefore, partially offsets the errors of de-

termining this distance, which can be significant.  

A seemingly promising direction is to combine lo-

calization by point clouds with data obtained by scene 

recognition methods. An interesting approach was 

proposed in [26]: the separate 3D registration of point 

clouds of selected objects, followed by a refinement 

using ICP.  

At the same time, to the best of the author’s 

knowledge, search probabilistic approaches based on a 

histogram filter or a particle filter have not been ap-

plied in the literature to perform localization via visual 

landmarks in the setting under consideration. An ex-

planation is that these methods require restricting the 

search space, causing difficulties for the majority of 

the localization approaches discussed here: they output 

a point in space rather than a domain. Imposing inter-

val constraints on the robot’s position would settle this 

problem. The common approach of constraint pro-

gramming [27] yields such data. Its generalization in 

the form of subdefinite (SD) computations [28] was 

applied to perform localization via visual landmarks 

and use a histogram filter within the resulting con-

straints [29]. Below, this approach will be applied to 

robot localization based on a set of hypotheses using a 

particle filter (PF), which determines the robot’s posi-

tion from point clouds within the resulting constraints. 

 

The complex global localization technology pro-

posed in this paper is within the direction using se-

mantic maps. This technology requires both a map 

layer (in the form of a point cloud) and a semantic lay-

er (with marked positions of objects and some seman-

tic information about them). In addition to the two 

map layers, the input data are images and point clouds 

from the robot’s sensors. The complex technology al-

lows solving the localization problem in the following 

stages: 

1. recognizing and localizing all objects in the ro-

bot’s environment (forming the scene); 

2. recognizing the scene (matching the objects rec-

ognized to those on the semantic map and obtaining 

several hypotheses); 

3. applying the SD localization approach to these 

hypotheses (discarding contradictory hypotheses and 

determining interval constraints on the robot’s posi-

tion); 

4. determining the robot’s position by means of a 

PF in the resulting constraints for each hypothesis and 

calculating quality values; 

5. selecting the best solution with the highest quali-

ty value. 

The first stage is implemented either by the classi-

cal method for recognizing objects in images and fur-

ther localizing them using depth maps or point clouds 

[30], or by 3D recognition approaches [31].  

The second stage, including scene recognition, was 

described in detail in [32]. Graph theory algorithms 

were used therein to extract geometric features in the 

mutual arrangement of groups of objects. CLIP (Con-

trastive Language-Image Pre-training) [33], a founda-

tional visual-language model, was applied to consider 

the visual similarity of objects in addition to the se-

mantic label, as previously done by most researchers 

in the field of robot localization with semantic maps. 

According to the conclusions, the visual similarity cri-

terion of objects used jointly with the geometric fea-

ture criterion significantly improves the accuracy of 

scene recognition compared to methods involving only 

one of the criteria. However, several problems of 

working with objects, including high localization er-

rors, the presence of visually similar objects, errors of 

recognition systems, and the multiplicity of solutions, 

lead to many hypotheses at the output of such systems, 

and the correct solution does not always have the 

highest quality value.  

In the third stage, the SD localization approach––

the focus of this paper––is applied. The approach 

serves to perform robot localization via visual land-

marks: it imposes interval constraints on the robot’s 

positions and allows identifying possible input data 

inconsistencies due to the above features of scene 

recognition.  

In the fourth stage, the robot’s position is deter-

mined using a PF and a map layer (a point cloud). The 

rationale behind this approach is that a PF can be natu-

rally initialized in interval constraints derived from SD 

localization. In addition, a PF can handle a wide set of 

input data, and a quality value of any particle can be 

obtained for these data; in turn, the value represents a 

hypothesis about the robot’s position in the localiza-

tion problem.  

The fifth stage is to select the best solution for all 

hypotheses of the second stage (the one with the high-

est quality value).  

The flowchart of the complex global localization 

technology is shown in Fig. 1.  
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Fig. 1. The flowchart of the complex global localization technology. 

 
2.1. Localization via Landmarks Based on SD Models 

To apply SD computations, one has to describe the 

problem under consideration in the form of an SD 

model. Such a model represents the desired variables, 

their definitional domain, as well as interpretation and 

assignment functions to update them [28]. The desired 

variables––the robot’s position––are specified in the 

form of multi-intervals, i.e., a non-intersecting set of 

intervals in ascending order: 
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where *a is some SD variable defined by a multi-

interval; a
i
low and a

i
high, 1, 1,i N   are lower and up-

per limits, respectively, of intervals forming a multi-

interval. Multi-intervals are a special case of SD vari-

ables, denoted by the left-hand superscript “*” 

throughout this paper.  

Originally, these multi-intervals are initialized with 

all available values. Then, the so-called interpretation 

functions are defined to reduce the uncertainty (i.e., 

narrow the limits of the multi-intervals): the new value 

calculated at each iteration is the intersection of the 

old one with that obtained by applying the interpreta-

tion function. The absence of intersection means that 

the input data contain inconsistencies and should be 

excluded from consideration. Interpretation functions 

are defined based on the following relationship be-

tween the robot’s position (*X, *Y, *θ), the position of 

the observed landmarks (Xl, Yl), and their measure-

ments, which include the distance rl and angle αl to the 

object: 
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where *Δrl and *Δαl are the measurement errors of rl 

and αl, respectively, expressed in intervals (they can be 

obtained from the RMS errors by the N sigma rule: 

*Δrl = [–Nσrl, Nσrl]. In formulas (1)–(5), some varia-

bles are represented as multi-intervals and are calcu-

lated using interval arithmetic [34]. For each observed 

landmark obtained during scene recognition, a differ-

ent set of the interpretation functions (1)–(5) is 

formed. The procedure of SD computations is reduced 

to the iterative application of functions to a set of SD 

variables. Once a function has been applied, it is re-

moved from the list of active functions; however, if an 

input variable for some assignment function outside 

the active list has been updated (its value has 

changed), this function will be returned to the list of 

active ones. The computational procedure continues 

until the list of active functions is empty. In practice, 

one may also limit the maximum number of iterations 

or set a desired accuracy for the resulting values of the 

variables.  

At the same time, several situations cannot be re-

solved by scene recognition methods. These include 

symmetry situations: algorithms on graphs are unable 

to distinguish the order of appearance of objects when 

increasing the angle to them, since the graph contains 

information only about the distance between two ob-

jects. This situation can be resolved at the level of SD 

models by introducing additional correctness checking 

functions. Based on the current constraints (*X, *Y, 

*θ), it is necessary to calculate the angles to the left-

most and rightmost objects in the scene and check the 

nonnegativity of their difference: 
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where the subscripts “left” and “right” indicate the 

leftmost and rightmost, respectively, landmarks by the 

angle. One should apply additional correctness check-

ing functions not to the full set (*X, *Y, *θ) but to the 

Cartesian product where each element is a tuple of 

three intervals for each variable. The tuples not satis-

fying condition (6) are excluded from the total set. 

The output is the values of the SD variables repre-

sented by the set of tuples of intervals. Such tuples 

describe the union of rectangular domains (with sides 

parallel to the x- and y-axes, sometimes referred to as 

bounding rectangles [34]) specifying an angle con-

straint. However, the answer in this form may be 

somewhat redundant and contain unnecessary values 

(Fig. 2a). 
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Fig. 2. Exhaustive estimation: (a) the redundant estimation of the robot’s 

location bounded by blue dash-and-dot lines, where *X is the input SD 

variable and *Y is the calculated one; (b) the exhaustive estimation of its 

location by splitting the input variable.  

 

For such situations, exhaustive estimation algo-

rithms are used in interval analysis [34]: the intervals 

exceeding a given constraint are iteratively split, and 

the computational procedure is reapplied to the result. 

Figure 2b shows an example of such splitting after the 

first iteration of the algorithm on the variable *X and 

the computation of the new values of *Y1 and *Y2. 

Thus, the general global localization algorithm based 

on SD computations (SD localization algorithm) can 

be represented as the following pseudocode. 
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Global SD localization algorithm via visual landmarks 

1. 

 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Algorithm sdm_global_localization({<Xl, Yl, rl, αl, σr, σα>}, Nσ, 

xy_lim): 

   -- Xl, Yl – the positions of objects on the map 

   -- rl, αl – the measurements of objects in the scene 

   -- σr, σα – the measurement errors of objects 

   -- Nσ – the factor to convert the errors into intervals 

   -- xy_lim – the limit size of intervals for x and y 

   V = ∅ 

   *X = *Y = [[-∞, ∞]] 

   *θ = [[-π, π]] 

   R = init_R({<Xl, Yl, rl, αl, σr, σα>}, Nσ) -- (1)-(5) 

   Status, *X, *Y, *θ = sdm_process(*X, *Y, *θ, R) 

   if !Status 

      return V 

   C = init_C({<Xl, Yl, rl, αl, σr, σα>}, Nσ) -- (6) 

   function process_leaf(*x, *y, *γ) 

      Status,*x, *y, *γ = sdm_process(*x, *y, *γ, R) 

      if Status 

         if |*x| > xy_lim: 

            *x1, *x2 = divide(*x) 

            process_leaf(*x1, *y, *γ) 

            process_leaf(*x2, *y, *γ) 

         elif |*y| > xy_lim: 

            *y1, *y2 = divide(*y) 

            process_leaf(*x, *y1, *γ) 

            process_leaf(*x, *y2, *γ) 

         else 

            add (*x, *y, *γ) to V 

   for (*x, *y, *γ) in *X×*Y×*θ do 

      if C(*x, *y, *γ) then 

         process_leaf(*x, *y, *γ) 

   return V 

The sdm_global_localization algorithm takes as 

input a set of landmark positions and their measure-

ments, the factor Nσ to convert the RMS errors into 

intervals, and the limit xy_lim for the intervals. The 

init_R auxiliary function initializes the parameters of 

the assignment function (1)–(5) based on landmark 

data. The sdm_process function computes the SD var-

iables as described above (also, see [28]) and returns 

the status (success or failure) and the updated values 

of the SD variables. The init_C function initializes the 

parameters of the additional correctness checking 

functions (6). The divide function splits an interval 

into two parts at its center, and the algorithm returns a 

set of interval tuples that do not exceed the limit 

xy_lim in the x- and y-axis and have passed all addi-

tional checks.  

2.2 Localization Using a Particle Filter  

within the Constraints 

The constraints yielded by the 

sdm_global_localization algorithm describe a domain 

where the robot can be located. With these constraints 

available, one can carry out a search using a PF. Each 

particle in this context is a hypothesis about the ro-

bot’s position. It is required to initialize the initial dis-

tribution within the constraints uniformly. For the op-

eration of the PF, it is necessary to evaluate the quality 

of each particle. The idea is to use dense map data in 

the form of a point cloud and a point cloud obtained 

from the robot. To compare the two point clouds, one 

should calculate the shortest distances between the 

points in the robot’s cloud and those in the map cloud. 
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The arithmetic mean of these distances will show the 

overlapping quality of the clouds. However, it is rec-

ommended to use a more “sensitive” estimate to ac-

celerate the convergence of the PF: 
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                        (7) 

where p is the desired particle estimate; d is the mean 

of the shortest distances; finally, σ is the desired sensi-

tivity threshold. At each iteration of the PF operation, 

the weights of all particles are calculated by transfer-

ring the point cloud from the robot to the particle co-

ordinates and calculating the estimate (7). Next, a 

resampling procedure is applied to discard low-weight 

particles and multiply high-weight ones; the probabil-

ity with which a particle will fall into the new sample 

is proportional to its weight. Because some particles

are represented in multiple instances in the resampling 

process, it makes sense to add some random noise to 

each particle at the beginning of each iteration in order 

to separate the same hypotheses and cover the search 

space more densely. The procedure consisting of the 

above steps can be performed either for a fixed num-

ber of iterations or until reaching target values of some 

criteria, e.g., the mean weight of the particles, the val-

ues of the covariance matrix constructed from the par-

ticle distribution, etc. There are different practices to 

select the desired position: the weighted average of all 

particles, the particle with the maximum weight, and 

initial clustering of particles with the subsequent ap-

plication of the above methods to local clusters. Once 

the desired robot’s position is computed, its quality 

can be evaluated using the same metric (7). The global 

localization algorithm using a PF is as follows.  

 
Global localization algorithm via point clouds using a particle filter within constraints 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
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18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Algorithm pf_global_localization(V, σ, N, iter, Δ, PCDmap, PCDrobot): 

   -- V – constraints on the robot’s position 

   -- σ – sensitivity  

   -- N – the number of particles 

   -- iter – the number of iterations 

   -- Δ – noise parameters 

   -- PCDmap – map point cloud 

   -- PCDrobot – robot’s point cloud 

   P = ∅ 

   for n in N do 

      v = sample_element(V) 

      p = sample_particle(v) 

      add p to P 

   for i in iter do 

      W = ∅ 

      P’ = ∅ 

      for p in P do 

         p = random_shift(p, Δ) 

         add p to P’ 

         PCD = transform_cloud(PCDrobot, p) 

         d = get_mean_p2p(PCD, PCDmap) 

         w = get_w(d, σ) -- (7) 

         add w to W 

      P = resampling(P’, W) 

   posefinal = get_pose(P, W) 

   PCDfinal = transform_cloud(PCDrobot, posefinal) 

   dfinal = get_mean_p2p(PCDfinal, PCDmap) 

   wfinal = get_w(dfinal, σ) -- (7) 

   return posefinal, wfinal 
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The pf_global_localization algorithm takes as in-

put a set of constraints yielded by the 

sdm_global_localization algorithm, a series of pa-

rameter values, and point clouds from the robot and 

map. The sample_element function randomly selects 

one of the interval tuples in proportion to the total do-

main size (the product of the sizes of all intervals). 

The sample_particle function equiprobably generates 

a particle including the position on the x- and y-axis 

and the angle so that all values will belong to the se-

lected intervals. The random_shift function adds ran-

dom white noise with the specified parameters to the 

particles. The transform_cloud function performs a 

geometric transfer of the point cloud to the particle’s 

coordinates. The get_mean_p2p function computes 

the shortest distances between the points of the first 

and second clouds. The get_w function computes the 

particle weight by formula (7). The resampling func-

tion resamples the particles, and the get_pose function 

computes the robot’s position in one of the above 

ways (e.g., by taking the weighted average, by multi-

plying the particle matrix by a weight vector). The 

algorithm returns the robot’s position and the weight 

of this position as a quality criterion. 

Thus, the sdm_global_localization and 

pf_global_localization algorithms are sequentially 

applied to each hypothesis selected for matching scene 

objects to map objects; in the resulting set of solutions 

with calculated quality criteria, the best one is chosen 

in terms of the introduced metric. 

 

The complex technology was experimentally stud-

ied on KITTI-360 [35], an adapted open dataset, for 

the scene recognition task proposed in [32]. The pre-

pared data
1
 contain descriptions of semantic maps and 

scenes in the form of object sets with an indication of 

matches between these sets. As input data for the 

sdm_global_localization algorithm, we chose the re-

sults of the scene recognition method based on the 

search of isomorphic subgraph sig_lite_clip [32], 

which showed the best results in terms of the metric of 

finding a completely correct answer. The answer for 

the scene recognition task is a match between ob-

served objects and objects on the map; this match is 

used to form a localization task based on landmark 

data. Nevertheless, a significant part of the answers 

did not contain the correct answer (when all objects 

                                                           
1 URL: https://github.com/MoscowskyAnton/scene_recognition_ 

kitti_360  

are matched correctly) in the first place in the list of 

hypotheses ordered by the certainty factor (a quality 

value of scene recognition results). To test the effec-

tiveness of the technology in dealing with such input 

data, the ten answers with the maximum certainty fac-

tors were selected for each input scene.  

The selected scenes were divided into several 

groups: super_true, has_true, and wrong. The su-

per_true group corresponds to those scene recognition 

results in which the correct answer of matching scene 

objects to map objects is present and has the highest 

certainty factor among the selected ten answers. The 

has_true group contains the answers in which the cor-

rect answer is present, but the certainty factor is not 

the highest among the other hypotheses. The wrong 

group contains results without completely correct an-

swers. The size of the groups was correlated as 68%, 

27%, and 4% to the total number of scenes, and the 

remaining number was not processed by recognition 

methods. All experiments were carried out on a com-

puter with an AMD Ryzen7 2700X Eight-Core 

3.70GHz processor and 32GB RAM, without involv-

ing GPUs. 

For the ten hypotheses obtained, the SD localiza-

tion procedure (SDM, Subdefinite Models) with Nσ = 

4, in the variants with (xy_lim = 10 m) and without 

(xy_lim = ∞ m) additional interval splitting was per-

formed for each scene (see Fig. 2). The resulting inter-

val constraints on the robot’s position for all hypothe-

ses of the same scene were evaluated for interval accu-

racy and interval coverage (Table 1). The interval ac-

curacy was calculated by determining whether the true 

robot’s position, known from the dataset, belongs to 

the calculated interval constraints (the larger the value 

is, the better the result will be). The interval coverage 

reflects the reduction of the search space. It was eval-

uated by distributing a million particles (robot’s posi-

tions) uniformly over the entire map area, determining 

the number of particles belonging to any of the result-

ing constraint sets, and taking the ratio of the resulting 

number to the entire set (the smaller its value is, the 

better the result will be). 

According to Table 1, the wrong group (no com-

pletely correct answers) is far behind the other groups 

in interval accuracy. Also, there is an order-of-

magnitude difference in interval coverage for the vari-

ant of the algorithm with splitting, albeit with a small 

loss of interval accuracy, compared to the variant 

without splitting. However, an order-of-magnitude 

decrease in interval coverage causes an order-of-

magnitude increase in the running time of the algo-

rithm.  

https://github.com/MoscowskyAnton/scene_recognition_kitti_360
https://github.com/MoscowskyAnton/scene_recognition_kitti_360


 

 
 

 

 
 

 ●

Table 1 

Testing results for the SD localization approach 

Method 

Interval accuracy, %, ↑ Interval coverage, %, ↓ |t|, s 

Group  Group  
All groups 

super_true has_true wrong super_true has_true wrong 

SDM with splitting 97.1 98 17.6 0.23 0.41 0.65 0.69 

SDM without splitting 99.8 100 37 3.22 4.44 0.37 0.03 

 

The proposed technique was compared with other 

global localization methods to evaluate the accuracy of 

determining the robot’s position. All approaches under 

study were implemented by the author or taken from 

open source libraries. The methods working with the 

scene recognition result received all ten variants for 

each scene as input and chose the best one by the qual-

ity value; for the best solution, the position and angle 

errors and the running time were calculated according-

ly. The errors were described by the mean (|.|) and the 

median (M). The running time of the scene recognition 

method was not considered; for the method and se-

quence selected, it was 41.55 ± 46.5 s [32] on the 

same computational hardware. Note that in the KITTI-

360 set, the point clouds for the map are presented not 

in a monolithic version but as several overlapping do-

mains (sub-maps); where possible, one of the sub-

maps best fitting the search space was selected. The 

following approaches were considered in the study: 

 RANSAC+ICP, a classical localization approach 

based on point clouds only, with the calculation of 

FPFH descriptors [3], searching for their matches us-

ing the RANSAC method [8], and further refinement 

using ICP [12]. This approach was chosen for consid-

eration because of the available open implementations. 

RANSAC matching was performed for each sub-map, 

and ICP refinement was performed for the position 

with the highest fitness value.  

 SVD, a localization method based on scene 

recognition data [19]. For different scene recognition 

results, the quality of the solution was determined by 

the average position error of each object between the 

scene and the map. 

 SVD+ICP, localization from scene recognition 

data using the SVD method and further position re-

finement using ICP via point clouds. The fitness pa-

rameter of the ICP method was taken as a quality val-

ue.  

 SDM+PF, the SD localization technology via 

landmarks (proposed in this paper) with the 

sdm_global_localization algorithm (Nσ = 4, xy_lim = 

10 m) and a PF used within the constraints by the 

pf_global_localization algorithm (N = 150; σ = 0.1; 

iter = 5; Δ = (0.5; 0.1)). The particle with the highest 

weight was selected as the solution; the weight also 

served as a criterion for selecting solutions for differ-

ent scene recognition results.  

 SDM+RANSAC+ICP, the RANSAC+ICP ap-

proach applied to a point cloud derived from the con-

straints calculated by the sdm_global_localization 

algorithm. The computed constraints were extended by 

the range of the rangefinder. The fitness value of the 

ICP method was also taken as a measure of solution 

evaluation. The variant of the SDM method without 

splitting (xy_lim = ∞) was used, and the other parame-

ters corresponded to those in SDM+PF.  

Additionally, the recall@k (R@k) metric, often en-

countered in global localization tasks, was calculated 

for the results. It shows the percentage of the answers 

falling within some certainty region for k answers. In 

the literature on global localization [36, 37], the cer-

tainty region is usually chosen to be 20 m: from a 

practical viewpoint, it is no longer important how 

much the error exceeds this value.  

Table 2 presents the numerical results of the meth-

ods obtained for the super_true group.  

According to the results in Table 2, the widespread 

SVD approach without reference to point clouds sig-

nificantly outperforms the other methods in almost all 

parameters. The matter is that the certainty factor used 

for normalizing answers in scene recognition methods 

ideologically coincides with the quality metric of the 

SVD method; therefore, for the super_true group, this 

method makes almost no mistake, selecting the hy-

pothesis with the highest certainty factor (actually, the 

correct one). This fact can also be observed when 

comparing SVD with its extension SVD+ICP, where 

the mean error increases significantly due to the ap-

pearance of scenes with a different hypothesis pre-

ferred, but the median error is reduced compared to 

SVD as ICP improves the robot’s position on the point 

cloud data in over 50% of the cases. Other methods 

using scene recognition results show a comparable 

median but a strongly higher mean due to incorrectly 

chosen hypotheses. (In some cases, they are at other 

ends of the map, thereby significantly affecting the 

mean.) The impact of errors “distant” from the correct 

answer is also indirectly confirmed by the superior 

R@k values for SDM+PF, since the R@k metric de-

scribes a threshold estimate. 
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The results for the has_true group are of greater in-

terest within the study because they reflect the ability 

of different methods to find the correct answer in a set 

of similar hypotheses. Table 3 summarizes the numer-

ical results for this group. 

In Table 3, SVD (the best method of Table 2) has 

significant accuracy losses and shows poor perfor-

mance. The reason is that it neglects additional point 

cloud data, in contrast to the other methods. This fact 

confirms the importance of the complex approach pro-

posed above. However, additional correction using 

ICP significantly improves the accuracy and provides 

almost better results in all parameters and good time 

performance of the algorithm. Generally speaking, the 

values of the accuracy measures of the methods based 

on the results of scene recognition and position re-

finement via point clouds insignificantly differ from 

those for the super_true group (see Table 2). Hence, it 

is possible to find a solution among many similar hy-

potheses. The strong decrease in the R@1 value is due 

to the incorrect best answer in the has_true group; the 

decrease in the R@5 value is because the correct an-

swer may fall outside the top five solutions.  

The group of wrong solutions (without a complete-

ly correct answer) is also of interest in localization via 

visual landmarks: the problem statement contains 

knowingly false data. The numerical results are given 

in Table 4.  

According to the experimental results in Table 4, 

the lack of a correct answer from the scene recognition 

system has a negative impact on the results (all accu-

racy measures decrease significantly compared to Ta-

bles 2 and 3). Therefore, it is important to develop ro-

bust scene recognition methods. The SD localization 

approach based on correctness checking functions al-

lows discarding some hypotheses: on average, 17.5% 

of all processed hypotheses are discarded, and this 

value varies insignificantly within the groups under 

study (16.6, 20.1, and 18.5%, respectively).  

Figure 3 provides the values of recall@1 and re-

call@5 without division into groups. 

The proposed methods based on search space re-

duction (SDM+PF and SDM+RANSAC+ICP) show 

comparable results, in terms of accuracy, with the 

SVD-based approach, even excelling them in some 

cases   (see   Fig. 3).   Hence,   this   R&D   direction   is  

 
Table 2 

Experimental results for the super_true group of solutions 

Method |r|, m M(r), m |α|, rad M(α), rad |t|, s M(t), s R@1, % R@5, % 

RANSAC+ICP 233.3 190.1 0.71 0.12 4418.1 4171.5 37 - 

SVD 4.7 2.3 0.26 0.06 0.005 0.004 94.4 95.6 

SVD+ICP 39.5 1.6 0.29 0.06 18.6 17.7 94.9 96.1 

SDM+PF 83.7 2.1 0.39 0.06 95.1 97.1 98.4 99.3 

SDM+RANSAC+ICP 100.6 1.4 0.28 0.05 1009 976 69.4 83.7 

 

Table 3 

Experimental results for the has_true group of solutions 

Method |r| , m M(r), m |α|, rad M(α), rad |t|, s M(t), s R@1, % R@5, % 

RANSAC+ICP 207.5 158.9 1 0.46 4038.3 4002 27.7 – 

SVD 191.1 28.9 1.15 0.83 0.005 0.004 44.3 85.8 

SVD+ICP 38.4 2 0.35 0.04 19.6 19.6 44.5 85.9 

SDM+PF 80.4 1.5 0.29 0.05 94.8 95.6 62.2 63.9 

SDM+RANSAC+ ICP 71.5 6.7 0.22 0.03 911.2 878.3 61.5 84.6 

 

Table 4 

Experimental results for the wrong group of solutions 

Method |r|, m M(r), m |α|, rad M(α), rad |t|, s M(t), s R@1, % R@5, % 

RANSAC+ICP 289 262.3 0.87 0.06 4501 4255 33.3 – 

SVD 351 298.3 1.22 0.92 0.004 0.004 24.3 30.7 

SVD+ICP 206.7 95.2 1.13 0.86 17.8 17.2 24.5 30.7 

SDM+PF 203.4 150.8 1.34 1 79.1 83.4 25.7 25.7 

SDM+RANSAC+ICP 210.5 285.5 0.59 0.07 1076.6 1030.9 13.3 20 
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(a) 

 
(b) 

 
Fig. 3. The distributions and means of recall@k for different methods: (a) recall@1 and (b) recall@5.     

 
promising for solving global localization problems. 

The values of the operating parameters of the algo-

rithms used in this study are rather for orientation, 

since no software optimization issues arose during the 

implementation of the methods. The PF-based ap-

proach using the point-to-point distance for cloud 

comparison has a limitation: it performs well only near 

the correct answer and with small deviations in angle. 

Investigating and applying more sensitive metrics for 

comparing point clouds, including their color charac-

teristics, would potentially improve the result as well. 

Note separately that SDM+RANSAC+ICP has 

demonstrated both a significant increase in accuracy 

and a reduction in running time compared to the clas-

sical RANSAC+ICP approach. This finding suggests 

that the search space reduction technology based on 

SD localization can be used for other global localiza-

tion methods with point clouds.   

This paper has described a subdefinite (SD) locali-

zation approach as part of a complex global localiza-

tion technology for a robot on 3D maps equipped with 

a semantic layer. By recognizing and localizing the 

objects in the robot’s field of view, one can solve the 

scene recognition problem by matching them with the 

map objects. The SD localization approach is applied 

to the resulting data to determine constraints on the 

robot’s position, which in turn can be used to reduce 

the search area for a localization method based on 

rangefinder data.  

According to the experiments, the point cloud lo-

calization methods applied within the constraints ob-

tained by the complex technology significantly im-

prove the accuracy and time performance of the algo-

rithm compared to the basic global localization ap-

proach without semantics. The reduction of the search 

space to 0.2% of the map size confirms the applicabil-

ity of this technology for any localization methods 

based on rangefinder data. The experiments have also 

demonstrated that combining localization via land-

marks with localization via point clouds is effective 

when the correct scene recognition answer “hides” 

among several similar hypotheses. Thus, based on the 

experimental results, the aim of this research––

improving the quality of global localization––has been 

achieved. The quality of the algorithm has been im-

proved owing to SD computations, which are used 

within the integrated localization technology with se-

mantic maps.  

Further research will analyze and apply more sen-

sitive point cloud registration methods to increase the 

accuracy of robot positioning and hypothesis estima-

tion. In addition, it is reasonable to consider the pro-

posed approach jointly with Place Recognition to re-

duce the search space among the available key frames: 

they are often provided with a coordinate label, and 

the latter can be used to determine compliance with 

the constraints yielded by SD localization. Note that a 
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promising task is the multicriteria optimization of the 

parameters of the methods used, which requires signif-

icant computational resources. However, this task goes 

beyond the scope of the paper, as the parameters have 

been chosen empirically. 
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