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Abstract. This paper presents a communication network design algorithm for finding a guaran-

teed transportation plan of a given volume under uncertain factors. The volumes of production 

and the capacities of communication lines are expressed as linear functions of invested resources. 

The well-known Dantzig–Wolfe decomposition algorithm is applied to solve the dual problem 

due to its stepped block structure. In view of their specifics, the linear problems arising in itera-

tions are solved using effective network and graph theory methods: the maximum flow, the min-

imum cutset in the network, the connectivity components, and the minimum spanning trees of the 

graphs are found. The existing algorithms for these problems have the complexity estimates       

О( 2
mn ), О( 2

n m ), and O(n + m), where n is the number of graph vertices and m is the number of 

edges. 
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INTRODUCTION  

Network structure problems arise in the design of 

transport or other real networks as well as many other 

spheres of human activities. The general statement of 

such problems was given, e.g., in the books [1, 2]. 

This paper considers the linear design problem for 

the Gale supply and demand model [3] under finitely 

many uncertain factors, a linear programming problem 

of high dimension. The pronounced peculiarity of this 

problem––the stepped block structure of the constraint 

matrix––suggests finding special algorithms to solve 

it, different from those commonly used in linear pro-

gramming problems. As is known, special algorithms 

with higher efficiency and the capability to increase 

the dimension were developed for many analysis prob-

lems of communication networks as linear program-

ming problems (transportation, the shortest path, the 

maximum flow, the minimum cost flow, and others). 

One example is the method of potentials for the stand-

ard transport problem and its various modifications. 

This method concretizes the simplex method for a 

special type of linear programming problems [4]. The 

modified method of potentials for the problem with 

capacity constraints can be also found in the literature 

[5]. Some researchers described an algorithm of the 

method of potentials for the multi-index transport 

problem [6, 7] and the transportation problem (the 

problem with an arbitrary-structure network [8]). All 

these methods refer to the analysis problems of com-

munication networks. The first coauthor developed an 

algorithm of generalized potentials for the linear de-

sign problems of communication networks [9] and a 

modification of this method for the linear design prob-

lem of communication networks under uncertain fac-

tors [10]. The latter problem is studied below. 

This paper considers a communication network de-

sign algorithm for finding a guaranteed transportation 

plan of a given volume under uncertain factors. The 

volumes of production and the capacities of communi-
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cation lines are expressed as linear functions of invest-

ed resources. The well-known Dantzig–Wolfe decom-

position algorithm is applied to solve the dual problem 

due to its stepped block structure.  In view of their 

specifics, the linear problems arising in iterations are 

solved using effective network and graph theory 

methods: the maximum flow, the minimum cutset in 

the network, the connectivity components, and the 

minimum spanning trees of the graphs are found. The 

existing algorithms for these problems have the com-

plexity estimates O ( 2
mn ), O ( 2

n m ), and O (n + m), 

where n is the number of graph vertices and m is the 

number of edges. Some examples of such algorithms 

were presented in [11–20]. This result significantly 

excels the exponential complexity of general linear 

programming methods and the polynomial complexity 

[15] of special methods, e.g.,  
4 2 3 3 2( )О mn m n m n  , 

where m is the number of problem constraints and n is 

the number of variables [14]. Therefore, the proposed 

method is more efficient.  

1. PROBLEM STATEMENT 

We formulate the problem in mathematical terms. 

Consider the following components of the problem:  

– a direct graph (G, Г) with a set of arcs Г and a set 

of vertices G;  

– a unique product that can be manufactured in the 

vertices of a set A and then consumed in the vertices of 

a set C; 

– a set B of intermediate vertices in which the 

product is neither manufactured nor consumed;  

– a homogeneous separable resource, which is al-

located over the sets A (vertices) and Г (arcs).  
Assume that the volumes of production in the ver-

tices of the set A and the capacities of the arcs of the 

set Г have a known dependence on the invested re-

sources. The problem is to allocate the limited re-

source among the production points and communica-

tion lines of the network so that: (a) for any value of 

the uncertain factors, the network allows a flow satis-

fying the demand and (b) the cost of this resource al-

location achieves minimum. Note that the resource is 

homogeneous and separable, i.e., arbitrarily divisible. 

The problem with n production points and limited 

product supply can be reduced to the problem with one 

production point and unlimited product supply [2]. For 

this purpose, one vertex (number 0) is added to the 

graph and is connected to each vertex i of the set A by 

an arc with a capacity 
i (

ix , k). The extended graph 

will also be denoted by (G, Г). Assume that the ca-

pacity functions are linear: φ ( , )i iх k  = 
k k
i i ib a x , 

where k
ib  and k

ia  indicate the coefficients of the cor-

responding linear dependences. 

We introduce the following notations: 
id  is the 

product demand at point i; k
jy  is the flow along arc j 

under uncertain factor k; jx  is the resource invested in 

arc j; D(i) is the numbers of the incoming arcs for ver-

tex i; finally, C(i) is the numbers of the outgoing arcs 

for vertex i. 

The mathematical problem statement is as follows: 

,
min( ),  j

x y
j

x

  

   
0,  ,k k

j j

j C i j D i

y y i A B
 

      

   
,  , k k

j j i

j D i j C i

y y d i C
 

                   (1) 

,  ,k k k
j j j jy a x b j    

0,  0, ,  1, , .k
j jx y j k l      

According to the well-known rules of the duality 

theory of linear programming, the dual problem for (1) 

has the form 

 

   

2

1 2

,
1 1

1

max ( ) , 

1 0,  \ (0),

0,  (0), 

0,  Г,

0, , 0,  , 1, , ,

l l
k k k
i i j j

i C k j k

l
k k
j j

k

k k
jn j

k k k
jn j n j

k k
j i

d b

a j C

j С

j

j i C k l

 
   



 
    

 

   

    

      

       

 



        (2) 

where the vectors λ and µ are the variables of the dual 

problem and 1( )n j  and 2( )n j  are the start and end 

vertices of arc j, respectively.  

Consider the additional sets of variables 
1,  , , l

z z z  to transform the problem constraints into 

equivalent equalities. Figure 1 shows the structure of 

the coefficient matrix for the constraints of problem 

(2), where E denotes an identity matrix, IN is the inci-

dence matrix of the network graph, and  

1 0 0

0 0 0

0 0

i

i

i

n

a

A

a

 
 

      
   
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λ1 μ1 z1 λ2 μ2 z2 ... z  b 

0 A1 0 0 A2 0 ... E x 
1 
... 
1 

INT E -E 0 0 0 ... 0 y1 
0 
... 
0 

... ... ... ... ... ... ... ... ... ... 

0 0 0 0 INT E -E 0 yl 
0 
... 
0 

 
 

 
Fig. 1. The block structure of the coefficient matrix. 

 

According to Fig. 1, the coefficient matrix of prob-

lem (2) has a stepped block structure with some set of 

connecting sinks. There exist effective decomposition 

methods for such problems, e.g., the Dantzig–Wolfe 

decomposition method [12]. Consider its modification 

with an unbounded set given by block constraints. The 

idea of this method is to decompose a high-

dimensional problem into several subproblems of low-

er dimensions and solve them sequentially at each step 

of an iterative algorithm. The following optimization 

problem arises at each step of the decomposition 

method: 

   

     
2

1 2

,
max , 

0,  0 , 

0,  Г \ 0 ,

0,  ,  0,  ,

k k k
i i j j

i C j

k k
jn j

k k k
jn j n j

k k
j i

d b

j С

j C

j i C

 
 

 
    

 

    

      

     

 

          (3) 

where 
k
jb  are variable coefficients. According to the 

Dantzig–Wolfe method, it is necessary to find the op-

timal basis solution ( ,   ) (if the problem is solvable) 

or the basis ray ( ,   ) on which the objective function 

is unbounded (otherwise).  

2. THE SOLUTION ALGORITHM 

The analysis begins with the constraint matrix of 

problem (3), namely, its rank. The following result is 

true. 

Proposition 1. Let A be the coefficient matrix of 

problem (3). Then, rank A = n + m – 1, where n is the 

number of vertices and m is the number of arcs in the 

graph (G, Г). 

P r o o f.  

Let 0( ), ГG  be some connecting subtree of the graph 

(G, Г), which obviously exists due to the connectivity of 

this graph. Then, as is known, 0 1Г n  . Consider a sys-

tem of (n + m – 1) inequality constraints: 

   
2

0,  0 , k k
jn j j С     

     
1 2

00,  Г \ 0 ,k k k
jn j n j j C      

0,    k
j j   . 

The coefficient matrix of this system has the block form 

          
 

0            

IN E
A

E

 
 
 

,   

where the matrices IN and E are the same as above and E  

is some partial-identity matrix. 

The matrix A  has dimension (m + n – 1), with (n – 1) 

rows in the first group and m rows in the second one. By the 

well-known theorems of graph theory [1], the rows of the 

incidence matrix of a direct graph are linearly independent 

if and only if the corresponding arcs do not form a circuit. 

The connecting subtree contains no circuits; therefore, the 

first group of rows in the matrix A  is linearly independent. 

Due to the zero block in the second group of rows, the 

whole system of rows in the matrix A  is linearly independ-

ent and rank A   n + m – 1. Since the matrix A contains    

(m + n – 1) columns, rank A   n + m – 1. Considered joint-

ly, these inequalities imply rank A = n + m – 1. The proof of 

Proposition 1 is complete. ♦ 

Consider two alternatives for the coefficients 
0

k
jb  

of the objective function as follows.  

In the first alternative, these coefficients contain a 

negative one, i.e., 
00 : 0.k
jj b   Then problem (3) has 

no solution due to the unboundedness of the objective 

function. To prove this result, we construct a vector     

( ,   ) of the form 

 
000,  0 ,  0,  ,  1.k k k

i i ji G C j j          

Obviously, the vectors p( ,   ), p > 0, are admis-

sible in problem (3) and the value of the objective 

function tends to +  as p→ + . Within the decom-

position method, it is then necessary to design a basis 

ray on which the objective function tends to + . Ac-

cording to the linear programming theory, a ray is a 

basis one if and only if it turns into equalities (n + m – 

2) linearly independent constraints of problem (3). 

There are only two cases concerning the structure 

of the network graph. In the first case, the graph (G, Г) 

preserves connectivity after removing arc 0j . The al-

gorithm to check graph connectivity has the complexi-

ty estimate O(n + m), where n is the number of graph 
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vertices and  m denotes the number of edges [17]. In 

this case, it is possible to construct a minimum span-

ning subtree 0( , Г )G  of the graph (G, Г) such that 

0 0j Г . The ray ( ,    ) designed above is a basis one 

since it turns into equality (n + m – 2) linearly inde-

pendent constraints: 

   

     
2

1 2

0

0

0

0,  Г 0 , 

0,  Г \ 0 ,

0,  ,  .

k k
jn j

k k k
jn j n j

k
j

j С

j С

j j j

     

    

   

         (4) 

In the second case, the graph loses the connectivity 

property after removing arc 0j . Obviously, the only 

possible outcome here is the formation of two con-

nected components 1 1( , Г )G  and ( 2 2, Г ).G  Consider 

the following ray ( ,   ): 

01 2 00,  ,  1,  ,     0,  ,  1.k k k k
i i i ji G i G j j            

As is easily checked, all the vectors p( ,   ), p > 0, 

satisfy the problem constraints and the value of the 

objective function is unbounded (from above) when 

increasing the parameter p. The constructed ray is a 

basis one. To show this fact, consider a connecting 

subtree 0( , Г )G  of the graph (G, Г). In this case, sys-

tem (4) is the linearly independent group of equality 

constraints corresponding to this ray. Thus, the case of 

a negative component
00 : 0k
jj b   has been fully inves-

tigated. 

In the second alternative, all coefficients of the arcs 

are nonnegative, i.e.,  Гj  
0

0.k
jb   We introduce 

an additional vertex of the graph (G, Г) (vertex  ) and 

a group of arcs between this vertex and those of the set 

C with the capacities id . The coefficients 
k
jb  will be 

interpreted as the capacities of the corresponding arcs. 

The resulting network is a communication network 

with source 0, sink  , and known capacities of all its 

communication lines (Fig. 2).  

According to the rules of the duality theory, the du-

al problem for (3) has the form 

   

   

,
min 0,

0,  ,

,  , 

,  , 0, .

x y

k k
j j

j C i j D i

k k
j j i

j D i j C i

k k k
j j j

y y i A B

y y d i C

y b j y j

 

 

   

  

   

 

 
               (5) 

 

 
Fig. 2.  The general structure of the formed graph. 

 

As is well known, problem (3) is solvable if and 

only if problem (5) has a non-empty set of admissible 

solutions. Therefore, it is of interest to establish a non-

emptiness criterion for this set. We formulate it as fol-

lows.  

Proposition 2. The set of admissible solutions in 

problem (5) is non-empty if and only if the two-pole 

network designed above has the maximum flow 

.i

i C

d

  

P r o o f.  

Sufficiency. Assume that the maximum flow in this net-

work is given by  

.i

i C

d


  

The additional arcs introduced above form a cutset of 

the network. Hence, the maximum flow is achieved when 

the values of flows on each of them equal their capacities. 

Therefore, the balance equations  

   

k k
j j i

j D i j C i

y y d

 

    

hold for all i C . 
The flow constraints for the remaining vertices 

i A B   are also implemented in the form of strict equa-

tions. 

Necessity. Assume that the set of admissible solutions in 

problem (5) is non-empty. In this case, we can form a flow 

as an admissible solution of problem (5) that satisfies the 

system of equalities 

   
,  . k k

j j i

j D i j C i

y y d i C

 

                      (6) 

Now, suppose that there exists a vertex i for which the 

flow balance constraint is a strict inequality: 

   
,   0.k k

j j i

j D i j C i

y y d p p

 

      

In this case, there exists a path between the network ver-

tices 0 and i without zero-flow arcs. Let y  denote the min-
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imum flow along this path; this value is positive. Next, we 

introduce the value Y = min( ,y  p) and subtract it from the 

flows along the given path. Obviously, the arc flows 

changed in this way will remain nonnegative and will not 

violate the constraints of problem (5), including the balance 

equations of the intermediate vertices:  

   
0,  .k k

j j

j C i j D i

y y i A B

 

      

If there still exist some network vertices violating any of 

equations (6), the described procedure should be repeated. 

An admissible flow of problem (5) will be generated in a 

finite number of iterations. This flow is given by  

i

i C

d


  

and satisfies all the relations (6). 

By the well-known Ford–Fulkerson theorem [18], the 

admissible flows of problem (5) have the upper bound 

.i

i C

d


  

Therefore, the designed flow is maximum, and the proof of 

Proposition 2 is complete. ♦ 

The algorithm for finding the maximum flow in a 

two-pole network has the complexity estimate           

O(
2 ) mn  [16]. Due to Proposition 2, if the maximum 

flow is 

,i

i C

d

  

then the set of admissible solutions in problem (5) is 

non-empty and the minimum value of the objective 

function in problem (5) is 0. According to the duality 

theory of linear programming, the maximum value of 

the objective function in problem (3) is also 0, and the 

optimal basis solution of the problem is given by the 

vector ( ,   ) such that 

0,  ,     0,  .k k
i ii G j       

As has been noted, the maximum flow does not ex-

ceed the value 

.i

i C

d

  

Now, assume that the maximum flow is strictly 

smaller than 

.i

i C

d

  

We construct the minimum cutset of this flow. By the 

definition, a cutset is a partition of the set of vertices 

into two subsets 1 1:0G G  and 2 2: .G G  Let B de-

note the arc base of the cutset: 

    1 1 2 2: ,   .B j n j G n j G     

The algorithm for finding the minimum cutset in a 

two-pole network has the complexity estimate            

O(
2 ) nm  [16]. We form the graph (  2 2\ , Г \ ).G D   

Possibly, it has several connectivity components, fur-

ther denoted by (
1 1
2 2, Г ), , G  ( 2 2, Г ).p p

G  The algorithms 

for finding connected components in a graph have the 

complexity estimates O(
2 ) n  or O(m+n) [18]. Also, 

we form the set 0 2 .C G C   Note that 0C  : oth-

erwise, the capacity of the cutest would be 

.i

i C

d

  

Consider the partition of the set 0  C  into compo-

nents 1, , , pC C  where 0 2
i

iC C G  , and the sets 

  2:q qB j B n j C    (Fig. 3). The following re-

sult is true. 

 

 

 

Fig. 3. The structure of the connectivity components of the graph. 

 

Proposition 3. There exists at least one partition 

component 0p  such that 

0 0

 .
p p

k

i j

i C i B

d b
 

   

P r o o f. 

Assume on the contrary that  

    1,..., .

m m

k
i j

i C i B

d b m p

 

     

Summing these inequalities over all m gives the integral 

inequality 

1 1

 .

m m

p p

k
i j

m i C m i B

d b

   

   
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Adding the same value 

0\

i

i C C

d


  

to both parts of this inequality, we obtain the new relation 

 .k
i j

i C i B

d b

 

   

But it contradicts the previous considerations: B is the 

arc base of the minimum cutset, and the maximum flow in 

the network is strictly less than 

.i

i C

d


  

Hence, the original assumption is false, and the conclu-

sion follows. ♦ 

Now, we can investigate the case where the maxi-

mum flow is strictly smaller than the value 

.i

i C

d

  

We form the vector ( ,   ) by the following rules: 

0 0

0 0

2 21,  , 0, \ , 

1, ,  0, Г \ .

p pk k
i i

k k
i p i p

i G i G G

j B j B

     

     
 

As is easily checked, all the vectors p( λ, μ ), p > 0, 

satisfy the constraints of problem (3). Let us show that 

the objective function of the problem is unbounded 

from above when increasing the parameter p. At the 

points of the vector p( λ, μ ), the objective function of 

problem (3) has the form 

  2
20 0

:

.

p p

k
i j

i C j n j G

p d b
 

 
 
 
 
   

By Proposition 3, the bracketed expression is strictly 

positive; hence, the objective function is unbounded 

when increasing the parameter p.  

Next, it is necessary to establish that the ray ( λ, μ ) 

is a basis one. We introduce the following notations 

for the dimensions of the sets under consideration: 

0 0

2 2
0 0 0 0Г .,   Г, p pr G n m    Let us form arbitrary 

spanning subtrees:  
0 0

2 *, Гp pG  in the graph  
0 0

2 2,Гp pG  

and ( , ГG ) in the graph   
0 0 0

2 2 2\ , Г \ Г .p p pG G B  As 

has been mentioned above, the algorithms have the 

complexity estimates O
2( )mn  and 

2( )О n m , where n 

is the number of vertices and m is the number of graph 

edges. The following relations are obvious: 

 

   

   

   

 

2

1 2

01 2
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         (7) 

According to the well-known theorems of graph 

theory, 
0

*
0 0Г 1,  Г 1, pn n n      and 0 0Г r ; 

therefore, the total number of equalities in system (7) 

is  0 0 0( 1) 1  n n n r     +(m – 0r ) = n + m – 2. This 

fact justifies the basis property of the ray ( ,   ). 

The method can be described by the flowchart in 

Fig. 4.  

 

 
 
Fig. 4. The flowchart of the method. 

 

CONCLUSIONS  

This paper has proposed a communication network 

design algorithm for finding a guaranteed transporta-

tion plan of a given volume under uncertain factors.  
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MATHEMATICAL PROBLEMS OF CONTROL 

The volumes of production and the capacities of 

communication lines are expressed as linear functions 

of invested resources. 

This method involves algorithms for finding the 

maximum flow and minimum cutest and algorithms 

for selecting connectivity components and designing 

the minimum spanning tree; see the Introduction. Effi-

cient computational schemes to implement such algo-

rithms are well-known [13, 14]. Complexity estimates 

have been also presented for some of their implemen-

tations. Note that the algorithm solves the dual prob-

lem (5) instead of the original one (3). However, the 

transition to the primal problem (3) is carried out using 

the general duality theory of linear programming and, 

apparently, does not require separate consideration. 

The complexity estimates of the proposed algorithm 

substantially excel those of common linear program-

ming methods (exponential complexity) and special 

methods (polynomial complexity). Therefore, it will 

be useful for solving high-dimensional problems of 

this class. 
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