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Abstract. This paper considers the scheduling problem for a complex of basic jobs under the 

condition that at some uncertain times, execution requests for supplementary higher-priority jobs 

are received. If a supplementary job request arrives during the execution of a basic job, then the 

latter is terminated and must be restarted at some time upon the complete service of the former. 

All jobs (basic and supplementary) are executed without interruption. By assumption, during the 

execution of a basic job, two or more supplementary job requests are unlikely to arrive, and such 

cases are not analyzed. Also, a supplementary job request can arrive only after the complete ser-

vice of the previous supplementary request. Two problem formulations are studied as follows. In 

the first, the performance criterion is the completion time of the basic job complex, and the prob-

lem is to minimize this time. In the second formulation, the probability of a collision is mini-

mized, as a situation where a supplementary job request arrives during the execution of a basic 

job. The problems are solved via their reduction to infinite zero-sum two-player (antagonistic) 

games and the discrete approximation of the latter by finite games. Model examples are consid-

ered. The problem formulation with non-fixed durations of the basic jobs, linearly dependent on 

the amount of additional resources allocated, is investigated as well. In this case, job scheduling is 

reduced to a linear programming problem. 
 

Keywords: job scheduling, collision, zero-sum two-player game, antagonistic game, non-renewable re-

sources, mixed strategy, optimal strategy.  
 

 

 

Special automated control systems (ACSs) of vari-

ous classes and purposes are widely used in the devel-

opment, operation, and management of complex ob-

jects. Such systems are oriented to perform several 

control functions in given fields and have essential 

properties (system parameters) and characteristics re-

flecting the efficiency of their realization [1]. 

In modern conditions, it is important to develop 

control actions in real-time automated systems. The 

main characteristic of such problems is an essential 

upper bound on the time to process input information 

and output the result, in the form of control actions on 

the object or messages to the user. The problem be-

comes even more complicated under uncertainty, 

when it is necessary to find a schedule in a changing 

environment, i.e., when new (unpredicted) requests for 

control signals arrive. 

Besides pure science, the above class of problems 

is of practical value. The need for fast algorithms 

composing multiprocessor schedules often arises in 

real-time distributed computing and operational con-

trol based on the processing and analysis of incoming 

real-time data. The following examples can serve as an 

illustration of the wide practical spread of real-time 

multiprocessor ACSs and the importance of efficient 

computation and control algorithms: 

 Modern space monitoring systems are real-time 

systems that continuously process incoming data on 

the motion of objects in near-Earth space. 

 Nuclear reactor control systems at nuclear power 

plants receive real-time data from many sensors and 

must promptly implement control actions on the reac-

tor based on these data. 

 In developed countries, real-time systems are 

used in government analytical centers to monitor and 

analyze continuous economic or environmental infor-
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mation coming from various points. Such systems 

must efficiently process huge amounts of data and, 

based on these data, promptly notify of any problems 

identified in the early stages of occurrence. 

 When testing aircraft and other complex tech-

nical objects, it is crucial to receive and promptly pro-

cess, by a real-time computing system, periodic input 

information about the state of various object nodes. 

 At a modern airport with many runways, deci-

sion-making includes the assignment of aircraft to dif-

ferent runways as well as their takeoff and landing 

order. 

 In complex logistics systems, decisions must be 

made in real time when critical situations occur. 

 In emergencies, it is necessary to process incom-

ing information urgently and calculate elimination 

forces and means (make schedules) in real time. 

Note that the correctness of a real-time ACS de-

pends not only on the computational accuracy but also 

on the time to obtain the results. Real-time scheduling 

is an important part of such systems: the system de-

signer must ensure that all jobs will be executed in due 

time. 

Along with the problem of constructing a feasible 

schedule for a known real-time computing system, the 

inverse problem is also topical: design a real-time sys-

tem of some minimal possible configuration in which 

a feasible schedule can always be found for a given 

complex of jobs. This problem is crucial for onboard 

computing systems, which usually designed by mini-

mizing the necessary computational resources in order 

to save their mass and power consumption. An algo-

rithm for designing such systems was described in the 

paper [2]. 

Job scheduling arises in many spheres of human 

activity, such as construction, economics, warfare, 

ecology, mining, management of complex technical 

objects (airplanes, power plants, and nuclear reactors), 

transport scheduling, management of computational 

processes, particularly in real-time systems, and other 

industries. This topic was widely addressed in the lit-

erature. For example, we mention the fundamental 

monographs [3, 4], where various problems of sched-

uling theory and discrete optimization were studied, 

classified (into polynomially solvable and NP-hard), 

and solved via algorithms. In addition, the authors 

analyzed the computational complexity of the pro-

posed algorithms. Based on the concept of the distance 

between problem instances, methods for solving sev-

eral NP-hard problems with the maximum delay min-

imization criterion and time-optimal scheduling prob-

lems were developed in the book [5]. 

Various mathematical apparatus is used in schedul-

ing problems. For example, a technique for managing 

computational processes with directive deadlines was 

described in the papers [6, 7]. The technique involves 

finite automata with a stopwatch and time diagrams. 

This approach is especially relevant in the design of 

real-time systems. 

Job scheduling under uncertainty and risk is of 

great interest. For example, such problems with non-

fixed parameters were investigated in [8–10]. By as-

sumption, the durations of jobs, as well as available 

and required resources, are given by probabilistic 

characteristics or their possible ranges. In the latter 

case, an algorithm for partitioning the set of all possi-

ble parameter values into the so-called stability poly-

hedra was developed. For all parameter values belong-

ing to each such polyhedron, the structure of the opti-

mal schedule remains unchanged. Hence, it is possible 

to construct a schedule for each polyhedron in advance 

and choose the necessary solution in real-time compu-

tations as soon as the values of uncertain parameters 

become known. This approach is especially topical in 

the design and operation of real-time systems with 

strictly limited computation time. 

According to the production planning methodology 

proposed in [11], the schedule of job execution is 

compiled together with the analysis of possible chang-

es in production capacities. The original problem was 

reduced to a nonlinear integer mathematical program-

ming problem. The scheduling problem of job comple-

tion dates with the stochastically varying amounts of 

resources required for job execution was investigated 

in the paper [12].   

This work continues the research initiated in [13, 

14]. The scheduling problem of a complex of basic 

jobs under uncertainty is considered. By assumption, 

at some uncertain times, there arrive execution re-

quests for supplementary higher-priority jobs. Two 

problem formulations are studied using a game-

theoretic approach. The first one is to minimize the 

completion time of the basic job complex. In the se-

cond formulation, the performance criterion is the 

probability of no collision. (A collision is a situation 

where a supplementary job request arrives during the 

execution of a basic job.) We also investigate the for-

mulation with non-fixed durations of basic jobs, line-

arly depending on the amount of supplementary re-

sources allocated for this purpose. In this case, a feasi-

ble schedule is found by solving a linear programming 

problem.  

 

There is a complex of basic jobs 

 1 2,  ,  ,  nW w w w   with known durations 1 2,   ,  ,  nt t t  

and a given execution sequence 1 2      nw w w  . 
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At some uncertain times 1 20   my y y T    , 

there may arrive execution requests for supplementary 

jobs  1 2,  ,  ,  mZ z z z   with known durations 

1 2,  ,  ,  m    , respectively. The upper threshold 

(deadline) 

1

.
n

i

i

T t


  

is given. 

Supplementary jobs have a higher priority than the 

basic ones. If a supplementary job request arrives dur-

ing the execution of a basic job, then the latter is ter-

minated and must be restarted at some time upon the 

complete service of the former. This situation is called 

a collision. 

All jobs (basic and supplementary) are executed 

without interruption. By assumption, during the execu-

tion of a basic job, two or more supplementary job 

requests are unlikely to arrive, and such cases are not 

analyzed. Also, a supplementary job request can arrive 

only after the complete service of the previous sup-

plementary request. Let the basic and supplementary 

jobs represent program modules solving some applica-

tion tasks by an available computing device. It is a 

renewable resource, i.e., can be reused. When a sup-

plementary job request arrives, this device is immedi-

ately passed for its execution. By assumption, in case 

of no collisions, the basic job must be completed no 

later than the deadline T. We consider two problem 

formulations as follows. 

Problem 1. It is required to design an optimal exe-

cution strategy for the basic job complex by minimiz-

ing the completion time of the last job wn (the entire 

set of jobs, including the supplementary ones). 

Problem 2. Assume that the execution requests for 

the complex of basic jobs W and supplementary jobs Z 

are received repeatedly. It is required to design an op-

timal scheduling strategy for the basic jobs by maxim-

izing the probability of no collision. 

Note that in both formulations, the arrival of a re-

quest for supplementary job jz  becomes known only 

at a time jy , 1, j m . Such problems arise, e.g., dur-

ing flight tests. In normal mode, computations are per-

formed using application modules ,   1, iw i n . At un-

certain times jy , 1, j m , an abnormal situation may 

occur, e.g., the values of some important parameters 

may go beyond admissible limits. In this case, the 

computations planned are interrupted, and supplemen-

tary higher-priority jobs are executed.  

We also investigate the problem formulation with 

non-fixed durations of basic jobs, linearly dependent 

on the amount of additional (non-renewable) resources 

allocated. 

 

First, consider the case 1m . Let a request for 

supplementary job z arrive at a time y, and let its dura-

tion be  . We introduce a zero-sum two-player (an-

tagonistic) game with a payoff function 

 1 2,  ,  ,  , nF x x x y . In this game, the strategy of the 

first player determines the times ix  to start the basic 

jobs ,  1, iw W i n  , and the strategy of the second 

player determines the arrival time y of the request for 

the supplementary job z. The payoff function is de-

fined as follows: 

1 2

1

1

( , ,..., , )

if 0 ,

or 

for some 1 1,

or ;

if for some 1

or for some 1 1. 

n

n n

k k k

n n

n

i

i k

k k k

k k

F x x x y

x t y x

x t y x

k n

x t y T

y t

x y x t k n

x y x k n





     
 

     
   
 

   
 

  
 
   
 
 

     
        



 
In other words, in the absence of a collision, we have 

 1 2,  ,  ,  ,   .n n nF x x x y x t    If a collision occurs dur-

ing the execution of some job ,kw W  

 1 2,  ,  ,  ,  .
n

n i

i k

F x x x y y t


      

This means that the optimal guaranteeing strategy 

of the first player to schedule the execution of the 

basic job complex W is 0 0 0
1 1 10,  ,i i ix x x t   

2,   .i n  In this case, all the basic jobs W will be 

completed at the time 0
n nx t  (no collision) or 

0
n nx t    (collision occurrence). With any other 

strategy 1 2,  ,  ,  nx x x , in the worst case, the basic job 

complex W will be completed at the time n nx t   

0
n nx t    since nx  0

nx . Thus, the strategy 

 0 0 0
1 2,  ,  ,  nx x x  is the optimal guaranteeing strategy 

under 1.m   

Consider an illustrative example. 
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Example 1. For 1n m  , 

 

if 0 ,

or if

(no collision);

if

(collision occurrence)

,  

.

F

x

x t

y x

x t y T

y t

x

y x t

y

 
 
 
 
 

  
 
 
 
 



   

  

 

 



  



 

The graph of this payoff function is shown in Fig. 1. 

 

 

 
Fig. 1. The payoff function in Problem 1 with n = m = 1.  

 

In this case, we have  0, 2F y t    for all 

 0,y T
 

and  ,  2F x y t    for 0x   and any 

 ,y x x t   . Hence, 0 0x   is the optimal guarantee-

ing strategy of the first player. ♦ 

The case 1,  1n m   is considered by analogy. As 

a scheduling strategy we choose  0 0 0
1 2,  ,  ,  nx x x . In 

the absence of a collision on the interval 0 0
1 1 1, x x t   , 

we fix 0
1x  and let 0 0

2 1 1x x t  . If a collision occurs on 

the interval 0 0
1 1 1, x x t    at the time 1y , we let 

0
1 1 1.x y    Similarly, in the first case, the interval 

0 0
2 2 2, x x t    is examined for collisions; in the second 

case, the interval 0 0
1 1 1, x x t   , and so on. Thus, the 

optimal job scheduling strategy W is constructed dy-
namically, depending on the arrival of supplementary 
job requests. 

 

 

Now we define the payoff function of the antago-

nistic game as follows: 

1 2 1 2

1

1

( , ,..., , , ,..., )

1 if 

for all 1,  and 1, ,

or 0 ,

or ;

0 if 

for some 1 , 1 ,

or  . 

n m

i i j i j

j j

n n j

i j i i

i j j i

F x x x y y y

x t y x

i n j m

y x

x t y T

x y x t

i n j m

x y x

     
 

  
    
 
    

  
 
   
 
    
 

     

 

Let x  1 2( ,   ,   ,   )nx x x  and 1 2( ,   ,   ,   )my y y y  . 

Then  ,   1F x y   if there is no collision and 

 ,   0F x y   otherwise. Let  1:   ,i i iX x x t x   

11,   1,    0,   ni n x x T    ,  1:  ,j j jY y y y    

11,   1,   0,  mj m y y T    , and  f x  be the mixed 

strategy of the first player, i.e., a probability measure 

on the set X. By the definition of the payoff function 

 ,  F x y , 

     ,  , 
X

E f y F x y df x   

is the probability of no collision under a fixed y . The 

optimal mixed strategy of the first player,  0f x , 

maximizes the value of 

 min , 
y Y

E f y


: 

   0max min ,  min ,  
y Y y Yf

E f y E f y
 

 ,  

where the maximum is taken over all probability 

measures on the set X. In other words,  0f x  is the 

best guaranteeing strategy of the first player. 
Example 2. Consider the case 1n m  , 

   0, 1 ,  0, 1X Y  , and 1.T   We will write ,  ,  ,x y t  and 

  instead 
1 1 1,  ,  ,x y t  and 

1 , respectively. Let 0.25t   and 

0.25   . Then 

 

1 if  

 or  ;

0 i

  ,

f  

,

y x t

y x
F x y

x y x t

 

  

  

 
 
 

  
 
   

  

   0, 1 ,  0, 1x y  . 

The graph of the payoff function F is shown in Fig. 2. 

Let  0f x  be a probability measure uniformly distrib-

uted on the interval [0, 1]. By the definition of the payoff 

function  , F x y , we have 
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   
1

0

0

,   1F x y df x t    

for all  0, 1y . If the probability measure  f x  is not 

uniformly distributed on the interval [0, 1], then there exists 

a segment  0 0,  0, 1x x t      such that 

 
0

0

.

x t

x

df x t



    

Hence, there exists a value  0, 1y  for which 

   
1

0

,  1 .F x y df x t     

Therefore, 

   
 

   
1 1

0

0,1
0 0

,  max min ,  ,
yf

F x y df x F x y df x


   

where the maximum is taken over all probability measures 

on the interval [0, 1]. So,  0f x  is the optimal mixed strat-

egy of the first player. ♦ 

 

 

 

Fig. 2. The payoff function in Problem 2 with n = m = 1, t ≤ 0.25,  

τ ≤ 0.25, and T = 1. 

 

Next, we can apply the discrete approximation 

method of an infinite game by a finite one [15]. For 

any 0  , this method yields the  -optimal mixed 

strategy of the first player,  f x
, concentrated in a 

finite number of points. Let  f x
 be concentrated in 

points 
1 2,  ,  ,  pv v v  with jumps  

1 2

1

,  ,  ,  , 0,  1,  , 1.
p

p j j

j

q q q q j p q


     

Each point ,  1, jv j p , is associated with some 

schedule for the job set W , which should be executed 

with probability 
jq . 

Example 3. Let 1n m  ,    0, 1 ,  0, 1 , X Y   

1,  0.25,T t   and 0.25  . The payoff function has the 

following form: 

 

1 if   0.25

,  ,

0  if   0.

 or  0.25

2 0.2

;

5 5

y x

F x y
y x

x y x

  
 
 

  
 
     

 

   0, 1 ,  0, 1 .x y   

According to Example 2,  0f x  is the optimal mixed 

strategy of the first player and 

   
1

0

0

,  1 0.25 0.25 0.5F x y df x      

for all  0, 1y . Let  f x  be a probability measure on the 

segment [0, 1] concentrated in two points, 0x   and 1x  , 

with jumps of 0.5. Then 

   
1

0

,  0.5F x y df x   

for all  0, 1y . Hence, like  0f x ,  f x  is the optimal 

mixed strategy of the first player. Thus, the job 
1w  should 

be started at time 0 or time 1 equiprobably (with probability 

0.5). 

The graph of the payoff function F is shown in Fig. 3. 

 

 

 

Fig. 3. The payoff function in Problem 2 with n = m = 1, t = 0.25,  

τ = 0.25, and T = 1. 

 

 

In this section, we assume the availability of L 

types of additional non-renewable resources to execute 

the basic job complex W, in amounts 1 2,  ,  ,  LR R R , 

respectively. (Non-renewability means that the re-

sources cannot be reused.) If a job iw W  is allocated 
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an amount 
ilr  of the lth resource type, 1, l L , its du-

ration will be reduced to  

0

1

,   1,  ,
L

i i il il

l

t t a r i n


    

where 
ila  are given nonnegative numbers; 0

it  denotes 

the duration of this job without additional resources 

allocated. By assumption, the following constraints 

hold: 
00 ,  1,  ,   1,  , il ilr r i n l L                     (1) 

 

1

  ,  1,  , 
n

il l

i

r R l L


                          (2) 

0 0

1

0,
L

i il il

l

t a r


                            (3) 

where 0 ,  1,  ,  1,  ,ilr i n l L   are given positive numbers 

(the maximum admissible amounts of resources that 

can be allocated to the job). Inequalities (1) limit the 

amounts of each resource type that can be allocated to 

each job. Next, inequalities (2) limit the total amount 

of each resource type allocated to all jobs together. 

Finally, inequalities (3) limit the durations of the jobs.  

A resource allocation ,  1,  ,  1, ilr i n l L  , is called 

feasible if conditions (1)–(3) are valid. 

The objective is to determine a feasible resource al-

location facilitating the solution of Problems 1 and 2. 

According to Sections 2 and 3, such a resource alloca-

tion minimizes the total duration of the job complex 

W. Thus, we arrive at the following linear program-

ming problem: 

0

,  1,  ,  1, 
1 1

min
il

n L

i il il
r i n l L

i l

t a r
 

 

 
 

 
   

subject to the constraints (1) and (2). The solution of 

this problem will give the optimal feasible resource 

allocation.  

 

In this paper, we have studied the scheduling prob-

lem for a complex of basic jobs under the condition 

that at some uncertain times, execution requests for 

supplementary higher-priority jobs are received. The 

execution sequence of the basic jobs is fixed. If a sup-

plementary job request arrives during the execution of 

a basic job, then the latter is terminated and must be 

restarted at some time upon the complete service of 

the former. All jobs (basic and supplementary) are 

executed without interruption. Two problem formula-

tions have been considered. In the first, the perfor-

mance criterion is the completion time of the basic job 

complex, and the problem is to minimize this time. In 

the second formulation, the probability of a collision is 

minimized, as a situation where a supplementary job 

request arrives during the execution of a basic job. The 

problems have been solved via their reduction to infi-

nite zero-sum two-player (antagonistic) games and the 

discrete approximation of the latter by finite games. 

The scheduling method has been illustrated on model 

examples. Also, the problem formulation with non-

fixed durations of the basic jobs, linearly dependent on 

the amount of additional resources allocated, has been 

investigated. In this case, a feasible schedule is found 

by solving a linear programming problem. 

The results of this paper can be used to plan com-

putations during the testing and operation of complex 

technical objects (such as airplanes and nuclear reac-

tors). In the planned mode, computations are per-

formed using application modules, and an abnormal 

situation may occur at uncertain times (e.g., the values 

of some parameters may go beyond an admissible 

range). In this case, scheduled computations are inter-

rupted and supplementary higher-priority jobs are exe-

cuted.  

Scheduling problems under uncertainty were stud-

ied in [8–10] under the assumption of renewable re-

sources and the non-fixed values of some parameters 

(such as job durations or the amounts of available re-

sources). The parameters were defined through either 

their admissible ranges or probabilistic characteristics. 

The solution algorithms were based on the branch-

and-bound method. In contrast to the cited works, this 

paper has addressed a scheduling problem with uncer-

tain request arrivals. Also, the case of additional non-

renewable resources has been investigated. Problems 

with a heterogeneous set of resources were considered 

in [13, 14] in the deterministic setup. 

In the future, we intend to analyze a more general 

problem formulation with several computing devices 

for basic and supplementary jobs. 
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