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Abstract. A major characteristic of transients in linear dynamic systems with non-zero initial 

conditions is the maximum deviation of the trajectory from zero, which has a direct engineering 

meaning. If the maximum deviation is large, the so-called peak effect occurs. This paper com-

pletes a series of research works devoted to the peak effect in linear control systems. We consider 

a linear control system with non-random bounded exogenous disturbances and system uncertain-

ties. A regular approach is proposed to design a stabilizing static state-feedback control law that 

minimizes the peak effect. The approach is based on the technique of linear matrix inequalities 

and reduces the original problem to a parameterized semidefinite programming one, which can be 

easily solved numerically. The proposed approach can be extended to new classes of problems, in 

particular, to the case of output feedback using an observer or a dynamic controller.  
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INTRODUCTION 

April 2023 was remarkable for the 75th anniver-

sary of Feldbaum’s famous paper [1], which pioneered 

studies of transients in linear systems with non-zero 

initial conditions. Among many characteristics of tran-

sients, a major one is the maximum deviation of the 

trajectory from zero, which has a direct engineering 

meaning. If this deviation is large, the so-called peak 

effect occurs. 

To date, various approaches to estimating the devi-

ations of the trajectories of dynamic systems have 

been proposed. In this context, let us mention Russian 

researchers A.P. Krishchenko and A.N. Kanatnikov 

[2–4], A.V. Ushakov and N.A. Vunder (Polinova)    

[5–7], I.B. Furtat [8], and P.S. Shcherbakov [9]. 
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Although the peak effect is associated with linear 

systems, it also plays an important role in the non-

linear systems theory. Really, if the trajectories of a 

system linearized in a neighborhood of some point 

leave this neighborhood by undergoing a peak, it be-

comes difficult to give any guaranteed estimates for 

the behavior of the original nonlinear system. 

This paper completes a series of research works on 

the peak effect in linear control systems. The series 

began with the publication [10], where a linear matrix 

inequalities-based approach was proposed to minimize 

the deviations of linear dynamic systems, and their 

upper bounds were derived. Further, in [11, 12], these 

results were extended to continuous- and discrete-time 

linear systems with structured matrix uncertainty; the 

paper [13] considered continuous-time systems sub-

jected to non-random bounded exogenous disturb-

ances. Within the developed approach, the technique 

of linear matrix inequalities (LMIs) [14–16] proved to 

be a very effective tool to design a peak-minimizing 

feedback control law. As was demonstrated by numer-

http://doi.org/10.25728/cs.2023.3.2
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ous examples, the degree of conservatism of the upper 

bounds is rather small. 

Below, we study linear control systems in continu-

ous (Section 1) and discrete (Section 2) time that are 

subjected to system uncertainties and non-random 

bounded exogenous disturbances. For each class of 

systems, we estimate the maximum deviation of tra-

jectories and propose a regular approach to design a 

state-feedback control law minimizing this deviation. 

A numerical example in Section 3 illustrates the effec-

tiveness of the developed approach. 

The following notations are used throughout this 

paper:  stands for the Euclidean norm of a vector; 

 is the spectral norm of a matrix; the symbol T  in-

dicates the transpose operation; I  is an identity matrix 

of appropriate dimensions. All matrix inequalities are 

understood in the sense of positive or negative 

(semi)definiteness of the corresponding matrices. (In 

particular, the expression 0A , where n n
A

 , 

means that T 0x Ax   for all n
x .) 

 

1. THE CONTINUOUS CASE 

Consider a continuous-time linear control system 

described by 

     0Δ ,       0 ,x A F t H x Bu Dw x x        (1) 

where n n
A

 , n p
F

 , q n
H

 , n r
B

 , and 
n m

D
  are given matrices, with the state vector 

  n
x t  , the control action   r

u t  , a bounded 

exogenous disturbance   m
w t  ,  

  for all 0w t t   ,                   (2) 

and a matrix uncertainty 

 Δ for all 0t t  .                   (3) 

The so-called “framing” matrices F  and H  de-

fine the uncertainty structure in the system matrix, 

whereas the values   and   determine the ranges of 

exogenous disturbances and system uncertainties.  

The problem is to find a stabilizing static linear 

state-feedback control law 

u Kx                                    (4) 

that minimizes the peak value 

 
 

00 1 Δ
maxmax max max

t x wt
x t

  
   

in the closed loop system (1) under all admissible un-

certainties  Δ t  and all admissible exogenous dis-

turbances  w t . 

Recall the following result [16], presented here in a 

slightly modified statement. 

Lemma 1. For the solutions of a dynamic system 

x Ax Dw  , 1,w   

with a stable (Hurwitz) matrix A , the peak value sat-

isfies the upper bound 

 
00 1 1

maxmaxmax *
t x w

x t P
  

   , 

where *P  is the solution to the parametric semidefinite 

programming problem  

T T

min,

1
0,

P

AP PA P DD

P I



  


 

with respect to the matrix variable T n n
P P

   and 

the scalar parameter 0  . 

Applying the state-feedback control law (4) to the 

system (1), we obtain the closed loop system 

  Δx A BK F t H x Dw.               (5) 

Using Lemma 1, we arrive at the minimization 

problem for P  subject to the constraints  

     T

2
T

Δ   Δ

0  and  

A BK F t H P P A BK F t H

P DD P I.

    


 



 

The first constraint is a matrix inequality nonlinear 

jointly in the variables P  and K .  

The nonlinearity can be rid of by introducing an 

auxiliary matrix variable r n
Y KP

   and eliminat-

ing the variable K . In this case, the variable K  is 

reconstructed unambiguously: 
1

K YP
 . As a result, 

we have the inequality 

   

2
T T T T

T T TΔ Δ 0

AP PA BY Y B P DD

F t HP PH t F


     



 

      (6) 

for all values of the matrix uncertainty 

   Δ :  Δ .t t   

The definiteness of the resulting matrix family can 

be verified by solving one matrix inequality with re-

spect to an additional scalar variable. To this end, we 

adopt the so-called Petersen lemma [17], presented 

here in the following statement.  

Lemma 2. Let 
T ,n n

G G
   

n p
M

 , and 
q n

N
  be nonzero matrices. The matrix inequality 

T T T 0G M N N M     

holds for all :      if and only if there exists a 

number 0   such that  

2 T T1
0G MM N N .  


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Applying Lemma 2 to the matrix inequality (6) 

with 
2

T T T T
G AP PA BY Y B P DD


      


, 

,    M F N HP   

yields an equivalent condition for the existence of a 

positive number   such that 
2

T T T T

2 T T1
0

AP PA BY Y B P DD

FF PH HP .


     



 


 

Using the Schur complement lemma, we finally 

write this condition as an equivalent LMI in the varia-

bles , P Y , and  : 
2

T T T T 2 T T

0
AP PA BY Y B P DD FF PH

.

HP I

 
       

   



Thus, the following result has been established. 

Theorem 1. Let *P , *Y  be the solution of the con-

strained optimization problem  

min,P   

2

T T T T 2 T T

0,
AP PA BY Y B P DD FF PH

HP I

 
          

 

P I  

with respect to the matrix variables 
T n n

P P
   

and 
r n

Y
 , the scalar variable  , and the scalar 

positive parameter .  

Then for the solutions of the closed loop system 

(1), (4) with the controller 

1
* * *K Y P

 , 

the peak value satisfies the upper bound 

*P   

under all admissible exogenous disturbances (2) and 

system uncertainties (3). 

Remark 1. According to [16], the quadratic form 

  T 1 ,   0,V x x P x P
  

is a quadratic Lyapunov function for the closed loop 

system (1). Therefore, the ellipsoid 

 T 1:  1n
E x x P x

    

is invariant: the trajectory of the closed loop system 

evolving from an arbitrary point of this ellipsoid will 

remain inside it at all subsequent time instants under 

all admissible exogenous disturbances and system un-

certainties. 

The first constraint in the problem of Theorem 1 is 

nonlinear jointly in the variables and represents a pa-

rameterized LMI with the scalar parameter  . For a 

fixed value  , the optimization problem turns into a 

semidefinite programming one. Its solution is easily 

found numerically on a one-dimensional grid for the 

parameter  . 

 

2. THE DISCRETE CASE 

Passing to the discrete-time problem, we consider a 

linear control system of the form 

 1 Δ ,k k k k kx A F H x Bu Dw               (7) 

where 
n n

A
 , 

n p
F

 , 
q n

H
 , 

n r
B

 , and 
n m

D
  are given matrices, with an initial condition 

0x , the state vector 
n

kx  , the control action 

r
ku  , a bounded exogenous disturbance 

m
kw  , 

for all 0kw k   , 1, 2,…,              (8) 

and a matrix uncertainty 

Δ for all 0k k   , 1, 2,...               (9) 

It is required to find a stabilizing static linear state-

feedback control law 

k ku Kx ,                                (10) 

that minimizes the peak value 

00,1,2, 1 Δ
max max max max

k k

k
k x w

x
    

   

in the closed loop system (7) under all admissible un-

certainties Δk  and all admissible exogenous disturb-

ances kw . 

According to [18], Lemma 1 has a discrete analog 

as follows. 

Lemma 3. For the solutions of the dynamic system 

1k k kx Ax Dw   , 1kw  , with a stable (Schur) ma-

trix A , the peak value satisfies the upper bound 

00 1 2 1 1
max max max

k

k *
k , , , x w

x P
   

   , 

where *P  is the solution to the parametric semidefinite 

programming problem  

T T

min,

1 1
0,

1

P

APA P DD

P I



 
 

 

with respect to the matrix variable 
T n n

P P
   and 

the scalar parameter 0 1   . 

The closed loop system (7), (10) has the form  

 1 Δk k k kx A BK F H x Dw .      
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Using Lemma 3, we obtain the minimization prob-

lem for P  subject to the constraints  

     T

2
T

1 Δ   Δ

0  and  
1

A BK F t H P A BK F t H

P DD P I .

   



 



 

The first constraint can be equivalently trans-

formed to 

  

  

T

2
T

Δ
0,

Δ
1

P P A BK F t H

A BK F t H P DD P

    
 

   
 

representing a matrix inequality nonlinear jointly in 

the variables P  and K . As in the continuous case, 

eliminating the variable K  by introducing the auxilia-

ry matrix variable 
r n

Y KP
   gives 

 

 

T T T T T T

2
T

Δ
0.

Δ
1

P PA Y B PH t F

AP BY F t HP DD P

  
 

   
 





 (11)  

This inequality must hold for all matrix uncertainties 

Δ :  Δk k . 
 

Writing the relation (11) as 

  

  

T T T

2
T

T
T T

0
Δ 0

1

Δ 0 0
0

P PA Y B

t HP
FAP BY DD P

PH
t F

  
           

 
 
 

 

and applying the Petersen lemma with 

T T T

2
T

1

P PA Y B

G
AP BY DD P

  
      

, 

 
0

,    0M N HP
F

 
  
 

, 

we arrive at an equivalent condition for the existence 

of a positive number   such that 

 

 

T T T

2 T
2

T

T

0
0

1

1
0 0

0

P PA Y B

F
FAP BY DD P

PH
HP .

  
            

 
  
  

  

Using the Schur complement lemma again, we fi-

nally obtain 

T T T T

2
T 2 T 0 0

1

0

P PA Y B PH

AP BY DD P FF

HP I

  
 

      
 

 

. 

Thus, the following result has been established. 

Theorem 2. Let *P , *Y  be the solution of the opti-

mization problem  

T T T T

2
T 2 T

min,

0 0,
1

0

,

P

P PA Y B PH

AP BY DD P FF

HP I

P I



  
 

       
 

 

 

with respect to the matrix variables 
T n n

P P
   

and 
r n

Y
 , the scalar variable  , and the scalar 

parameter 0 1   . 

Then for the solutions of the closed loop system 

(7), (10) with the controller 

1
* * *K Y P

 , 

the peak value satisfies the upper bound 

*P   

under all admissible exogenous disturbances (8) and 

system uncertainties (9).  

Remark 1 remains valid in the discrete case as 

well.  

3. AN EXAMPLE 

We illustrate the proposed approach by an example of a 

two-mass system. It consists of two solid bodies with mass-

es 1m  and 2m  connected by a spring with an elastic coeffi-

cient k . The bodies slide without friction along a fixed hor-

izontal rod. A control action is applied to the left body to 

compensate an exogenous disturbance w , 0.25w  , af-

fecting the right body (Fig. 1). 

 
 

 

 
Fig. 1. The two-mass system. 
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Let 1x  and 2x  be the coordinates of the left and right 

bodies, respectively, and let 1v  and 2v  be their velocities. 

Assume that the bodies have unit masses and the uncertain-

ty is concentrated in the elastic coefficient of the spring: 

1 Δk   , Δ 0.1   . 

The dynamics of this system are described by equation 

(1) with  

0 0 1 0

0 0 0 1

1 1 0 0

1 1 0 0

A

 
 
 
 
 

 

, 

0

0

1

0

B

 
 
 
 
 
 

, 

0

0

0

1

D

 
 
 
 
 
 

, 

0

0

1

1

F

 
 
 
 
 
 

,  1 1 0 0H   , 

where the state vector has the form 

1

2

1

2

x

x
x

v

v

 
 
 
 
  
 

. 

Using Theorem 1, we find the matrix 

*

2.4483 1.0584 0.5874 1.1188

1.0584 3.7785 0.7298 0.4198

0.5874 0.7298 4.3554 0.8388

1.1188 0.4198 0.8388 2.8905

P

  
  
  
 
   

, 

and the corresponding controller 

 *  2.0410    0.2025   1.4978   0.8333K      

ensures the upper bound  

* 2.3131P                           (12) 

for the peak value under all admissible exogenous disturb-

ances and system uncertainties. 

 

 
 

Fig. 2. The projection of the closed loop system trajectory on the plane 

 1 2 ,v v . 

Figure 2 shows the projection of the trajectory  *x t  of 

the closed loop system with the controller *K  on the plane 

 1 2,v v  under the following conditions: the initial state 

0 0

0.6493

0.5893
,  1,

0.1444

0.4585

x x

 
   
 
 
 

                    (13) 

the admissible exogenous disturbance    0.25 sin 2w t t , 

and the system uncertainty realization Δ 0.1 . Also, see the 

projections of the invariant ellipsoid with the matrix *P  and 

the unit ball of initial conditions in this figure. 

 

 

 

Fig. 3. Dynamics of  x t . 

 
Figure 3 presents the dynamics of the norm of the tra-

jectory  *x t ; the peak in the system reaches a value of 

1.6281. 

The calculations were carried out in Matlab R2019b v 

9.7 using CVX [19], a free software package for convex 

programming. 

What is the “worst-case” initial condition causing the 

largest peak value? This question has a rather complicated 

nature. In some particular cases, however, it can be an-

swered meaningfully; for example, see the papers [1, 9, 10]. 

Of course, the worst-case initial condition can be found 

numerically, but its analytical calculation in a relatively 

general statement is still an open problem. 

CONCLUSIONS  

We have proposed an approach to peak minimiza-

tion in linear control systems subjected to arbitrary 

bounded exogenous disturbances and system uncer-

tainties. This approach is based on the technique of 

linear matrix inequalities and reduces the original 
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problem to a parametric semidefinite programming 

one.  

The approach has a high potential for generaliza-

tions: it can be extended to new classes of problems, in 

particular, to the case of output feedback using an ob-

server or a dynamic controller. 
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