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Abstract. Redundancy management in a technical system involves a monitoring procedure to 

reconfigure the system as needed. The four-part survey presents modern diagnosis methods for 

dynamic systems as an integral function of monitoring. Part III is devoted to diagnosis methods 

employing neural networks, fuzzy models, structural models, set-based models, and a statistical 

approach. The fundamentals of creating and training neural networks to perform diagnostic func-

tions are considered. The approach with fuzzy models is described, including general modeling 

rules and the features of their use in diagnosis tasks. The approach with structural models is 

demonstrated, including its features in failure detection. The fundamentals of set-theory methods, 

particularly the formalism of zonotopes, are presented. Finally, the approach based on statistical 

pattern recognition is briefly discussed. 

 
Keywords: artificial neuron, neural network, fuzzy models, membership function, fuzzy clustering, structur-

al models, Dulmage–Mendelsohn decomposition, diagnosability, zonotopes, gradations in discrete feature 

space, empirical likelihood ratio estimate.  

 

 

 

INTRODUCTION  

The main limitation of approaches with analytical 

models is the need for precise knowledge of such 

models (both their structure and parameters), which is 

often impossible in practical applications. In the case 

of mathematical models with partial uncertainty, there 

exist well-developed procedures for their parametric 

or structural identification [1–3]. However, here the 

focus is on the “initial” elimination of this drawback 

(i.e., the one inherent in the approach itself). Such ap-

proaches include the use of neural networks, fuzzy 

models, structural models, the apparatus of set theory, 

and statistical estimates. 

Proponents of such methods, deliberately or due to 

insufficient information, refrain from a detailed de-

scription of the processes occurring in a system diag-

nosed. In one way or another, this makes the models 

used rough (inaccurate, approximate) but provides 

greater flexibility in fault diagnosis, reducing or com-

pletely bypassing negative effects. That is why such 

approaches are applied for the effective monitoring of 

dynamic systems [4]. 

1. NEURAL NETWORK-BASED DIAGNOSIS METHODS 

Neural networks (NNs) are widely used in fault di-

agnosis [5–9]. One modification of such networks [10, 

11] uses Nonlinear AutoRegressive with eXogenous 

inputs (NARX) models in combination with learning 

algorithms.  
 

1.1. Formation of an ARX Neural Network 

One approach involves developing and training a 

set of NN-based estimators to reproduce the behavior 

of a system under consideration. The structure of the 

ith individual neuron [12] uses a Multiple Input Single 

Output (MISO) system in which the output signal 
iy  

is calculated as a function of the weighted sum of all 
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inputs 
iu  of the neuron, 

.1iu ,…, . ii nu , with correspond-

ing weights 
.1iw ,…, . ii nw  (Fig. 1). The function f  is 

called the activation function.  

 

 

 
Fig. 1. One example of an artificial neuron.  

 

NNs are classified according to the ways of con-

necting their elements [13, 14]. In a feedforward NN, 

the elements are grouped into unidirectional layers. 

The first (input) layer receives information directly 

from the network inputs; then, each sequential hidden 

layer receives input data from the neurons of the pre-

vious layer and transmits the output data to the neu-

rons of the next layer, up to the last output layer, 

where the final network output data are generated. 

Therefore, neurons are connected layer-to-layer but 

not within the same layer. The only limitation is the 

number of neurons in the output layer, which must 

coincide with the number of actual output channels of 

the network. 

 

 

 
Fig. 2. An open-loop dynamic NN. 

 

On the other hand, recurrent NNs [13] are multi-

layer networks in which the output data of some neu-

rons is fed back to neurons of previous layers. Thus, 

information is transmitted both forward and backward 

and provides dynamic memory within the network. 

An intermediate solution is an NN with a connect-

ed delay line. Networks of this type are suitable for 

modeling or predicting the evolution of a dynamic sys-

tem. In particular, a properly trained open-loop NARX 

network can estimate current (or future) results based 

on past measurements of the system’s input and output 

data. 

Generally speaking, for Multiple Input Multiple 

Output (MIMO) systems, open-loop NARX networks 

follow the law 

net 1
ˆ ( ,..., ,  ,...,  ),

u yt t t d t t dy = f u u y y              (1) 

where ˆty  is the estimate of the system output at step t; 

u and y are the measured system inputs and outputs, 

respectively; ud  and yd  are the number of input and 

output delays, respectively; finally, netf  is a function 

implemented by the network that depends on the ar-

chitecture of the layers, the number of neurons, their 

weights, and activation functions. Figure 2 shows the 

structure of an open-loop NARX network used as an 

estimator. 

 

 

 
Fig. 3. A closed-loop dynamic NN. 

 

The difference between the measured output 
ty  

and its estimate (1) is taken as the diagnosis residual 

.tr  

When only input measurements are available, the 

NARX network can become a dynamic NN by closing 

the feedback loop of the network outputs to the inputs 

(Fig. 3). 

The developer of a fault diagnosis system can vary 

the number of neurons and the connections between 

them, while the weights .i jw  within each neuron are 

assigned by training the network. 
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Since NN components are often chosen subjective-

ly, they may be incompletely adequate for the system 

or process modeled, which affects NN implementa-

tions.  

 

1.2. Neural Network Training 

An NN becomes a diagnosis tool after its training 

(assignment of the weights w ) on pre-selected exam-

ples of the functioning of the system diagnosed, both 

in operable and inoperable states (in particular, due to 

the occurrence of a single fault or a combination of 

faults). Besides the basic network with fixed weights 

after training, there are modifications with refinement 

(retraining) of network parameters during its opera-

tion. In addition, an NN should be retrained each time, 

even for homogeneous objects operating in different 

conditions and with different historical operation data. 

An NN can be trained only to the “diagnostic 

events” (normal, operable, pre-fault, and inoperable 

states) that are initially known and used in the training 

process. If the set of admissible states (including faulty 

ones) is not specified for an NN, it will not distinguish 

between them or find an unforeseen state. 

The use of NNs allows performing self-diagnosis 

in practice, since a properly trained NN is robust to 

anomalies in data and recognizes a diagnostic event 

itself, even under inaccuracies in the source data.
1
 This 

will not happen when using “hard” diagnosis algo-

rithms. 

The formal objective of training is to minimize the 

loss function (residual) E  [14], which depends on the 

vector of weights w , and it can be implemented in two 

different modes: 

– the incremental mode (each input-target pair in-

dependently generates an update of the network 

weights); 

– the batch mode (all input data and the loss func-

tion are applied to the network simultaneously). 

Although the second training mode requires more 

memory than the first, it is characterized by faster 

convergence and results with smaller errors. 

Given a set of S patterns corresponding to both the 

absence and presence of various faults in the system, 

for each of 2 !/ 2( 2)!PP C S S    possible input-

output pairs, the error vector can be written as 

T

.1 .
ˆ

p p p p p Me y y e e      , 1,p P ,     (2) 

where M  is the number of outputs (i.e., the residuals 

of the system diagnosed). The total loss function, 

which depends on the choice of all weights 

                                                      
1 This statement belongs to one of the paper’s reviewers. We have 
accepted it with gratitude.  

1( ,..., )Nw w w  (see formula (1) and Fig. 1), takes the 

form: 

2 2

. . .

1 1 1 1

1 1
ˆ( ) ( ( )) ( ).

2 2

P M P M

p m p m p m

p m p m

E w y y w e w
   

     

Any standard numerical optimization algorithm 

[14–16] can be applied to update the values of the pa-

rameters iw  in order to minimize the residual ( )E w . 

Iterative algorithms are most widespread; they use 

such characteristics as:  

– the gradient of the loss function, 

T

1

grad ;
N

E E E
E

w w w

   
   
   

 

– the Hessian of the loss function,  

2 2 2

1 1

2 2 2

1

/ /

( ) ;

/ /

N

N N

E w E w w

H E

E w w E w

     
 

  
      

 

– the Jacobian of the estimation errors, 

1.1 1 1.1

1.2 1 1.2

. 1 .

/ /

/ /
( ) .

/ /

N

N

P M P M N

e w e w

e w e w
J e

e w e w

    
 
   

 
 
 
    

 

Sequential iterations of these algorithms consist of 

updating the parameter values and calculating the new 

value of the loss function until the stopping condition 

is satisfied.  

The achievable sensitivity of the diagnosis proce-

dure to individual faults is a complex issue that is un-

likely to have a generalized assessment. 

Note finally that NNs approximate any nonlinear 

and dynamic function under a suitable structure of 

weights. Moreover, online training makes it easy to 

modify the diagnosis system when changes are made 

to the physical process or control system. An NN can 

generalize when available input data are not present in 

the training data and make reasonable decisions in 

cases of noisy or corrupted data. NNs are also easily 

applicable to multiparameter systems and have a high 

level of structural parallelism. An NN can work with 

both qualitative and quantitative data simultaneously. 

In addition, an NN can be very useful in the absence 

of any mathematical model of the system (i.e., when 

analytical models cannot be applied for some reason). 

As expected, all these factors together may provide a 

higher degree of fault tolerance.  

On the other hand, a fundamental feature of NNs is 

that they operate as a “black box” without qualitative 

and quantitative information about the model they rep-

resent. This circumstance currently restrains develop-
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ers and customers from applying such solutions, espe-

cially for high-responsibility tasks (e.g., in civil avia-

tion, for safety-critical tasks). It is generally recog-

nized that there exists an ambiguity regarding the op-

eration of NNs in unforeseen situations [17]. 

The approach described above has a structural 

problem. It is practically impossible to preselect a 

combination of measurable parameters and network 

structure that would guarantee reliable discrimination 

of faults from a given list. This is usually achieved 

through trial and error. In addition, the set of training 

examples must be representative, i.e., contain a suffi-

cient number of combinations of conditions for the 

task tackled. 

2. DIAGNOSIS WITH FUZZY MODELS 

The fuzzy model approach also helps in dealing 

with the precise knowledge problem for the model of a 

system diagnosed. This approach can be applied at two 

levels: first, fuzzy descriptions are employed to gener-

ate residuals, and then faults are detected using fuzzy 

logic again [18–24].  

Fuzzy logic systems offer a linguistic model of 

system dynamics that can be easily understood using 

definite rules. They are also able to handle inaccurate 

or noisy data.  

 

2.1. Fuzzy Model Formation 

An effective approach to designing a fuzzy logic 

system begins with partitioning the available data into 

subsets (clusters) [19] characterized by simpler (linear 

or affine) behavior. A cluster can be defined as a 

group of data that are more similar to each other than 

to data from another cluster. Data similarity is usually 

expressed in terms of their distance to a given element 

within a cluster (used as the latter’s prototype). Fuzzy 

clustering is an effective data partition tool with 

smooth, rather than abrupt, transitions between sub-

sets, determined by the so-called membership func-

tions. 

In general, nonlinear MISO systems can be ap-

proximated using fuzzy inference [25, 26]. However, 

according to the approach proposed in [27], implica-

tions become crisp functions of the input data, and 

each fuzzy rule takes the form 

Tˆ: IF  THEN  ,i i i i iR x X y a x b    c1,i n ,     (3) 

where iR  is the ith rule; iX  is the ith cluster; cn  is the 

total number of clusters; ia  is the parameter vector; ib  

is a scalar bias; ˆ
iy  is the inference of the ith rule; fi-

nally, iy  is the output of the system diagnosed. Fig-

ure 4 illustrates the rule (3) for a one-dimensional var-

iable x  with c 5n  . 

 

 

 
Fig. 4. The graphical illustration of the rule (3). 

 

With the membership function ( )i x  considering 

the logic of cluster selection (IF … THEN …), the 

resulting formula for the entire set of rules (3) can be 

written as the weighted sum 
c

c

1

1

( )

ˆ

( )

n
i

i t t

i
t n

i t

i

x y

y

x















                         (4) 

with the following notation: 
tx  is a suitable combina-

tion of the input and output signals; i

ty  is the output 

signal of the local linear (or affine) ith model, defined 

as 
1

. .

1 0

,
n n

i

t i k t k i k t k i

k k

y a y b u c


 

 

                 (5) 

where 
.i ka , 

.i kb , and 
ic  are the parameters of the ith 

model in the subspace (cluster) 
iX . 

Formula (5) contains both the latest obtained 
tu , 

1ty 
 and the previous 

1tu 
, 

2ty 
,… samples of the in-

put and output data, which reflects the dynamic behav-

ior of the system. Therefore, the observation is treated 

as the linear autoregressive model with exogenous 

inputs (ARX) [9] of order s in which the regressor 

vector takes the form 

T

1 1

output sample input sample

,t t t s t t sx y y u u   

 
 
 
 

 

where t  is the current discrete time instant.  

Unlike the classical counterpart, fuzzy clustering 

[20, 28, 29] allows any element to belong to several 

clusters simultaneously. 

Another approach to fuzzy modeling is the fuzzy 

finite-state automaton model
2
, which is used to de-

scribe discrete-event systems [22].  

                                                      
2 In the below description of this approach, we have departed from 

the convention of part II of the survey to consider only dynamic 

systems with models (2) and (3) [30]: the symptom formation 
method is also applicable to the systems specified above. 
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2.2. Fault Diagnosis 

The difference between the system outputs meas-

ured and their values obtained using the implicit mod-

el (2) can be taken as the residual: 

ˆ .t t tr y y   

Figure 5 shows the simplified block diagram of the 

residual formation based on an adaptive fuzzy model. 

Here, a fuzzy prototype and a recursive computing 

unit that implements some identification algorithm for 

the parameters use the same input and output data in-

dependently.  

If several different faults have to be detected, the 

block diagram is reduced to another form with the 

multiplication of prototypes (models). Such a diagram 

will be discussed in part IV of the survey. 

 

 

 
Fig. 5. Residual computation based on a fuzzy model.  

 

A separate but very important problem is the fuzzy 

clustering of the system’s state space [31]. Most fuzzy 

clustering algorithms optimize the c-means objective 

function ( , , )J Z U V  as follows: 

 The data are represented in the matrix form 

11 1

1

,

N

n nN

z z

Z

z z

 
 


 
  

 

where n  and N  denote the data dimension (the num-

ber of measurements taken per observation) and the 

number of available observations, respectively. 

 The fuzzy partition matrix  ikU    is compiled 

from the values of the membership function, where i 

and k indicate the ith measurement and the kth cluster, 

respectively. 

 The centers of the so-called prototypes 

c1 nV v v     are determined, i.e., the points used 

to estimate the distance between the cluster and the 

current state of the system. 

The formula for minimizing the widespread c-

means objective function [32] is 

c

T

1 1

arg min ( , , )

arg min ( ) ( ) ( )

k

n N
m

ik i k i k

k i

v J Z U V

z v A z v
 



   
 

with a weight 1m , where the matrix A  specifies the 

shape of the cluster. 

To diagnose failures under measurement noises 

and modeling uncertainties, it is necessary to satisfy 

the noise separation principle: in this case, the residual 

generator is not affected by modeling uncertainty and 

input disturbances. This can be achieved using gener-

alized observation schemes, consistency conditions 

[33], or particular design approaches [34]. 

For discrete-event systems, which often behave 

randomly [35, 36] and are described by a fuzzy finite-

state automaton model, a fault diagnosis method based 

on the mathematical apparatus of fuzzy logic was pro-

posed in [22]. The key element therein is the use of the 

determinizer of a fuzzy finite-state automaton, i.e., a 

finite-state automaton that simultaneously describes 

both the normal and abnormal behavior of the original 

automaton. 

Compared to the algebraic approaches [37, 38] to 

the determinization of fuzzy finite-state automata, 

which preserve the dimension of the original automa-

ta, the approach under consideration involves addi-

tional useful information about the degree of confi-

dence in the implementation of each possible transi-

tion during diagnosis, which potentially increases (if 

necessary) the depth of the fault search. The price paid 

is a significant dimension of the determinizer’s transi-

tion table. 

The fault diagnosis scheme in [22] contains several 

channels (exceeding by one the number of possible 

system faults). Each channel includes an observer in 

the form of the determinizer of a fuzzy finite-state ma-

chine. A decision block based on a comparison of the 

outputs of the discrete-event system and observers 

decides on the (in)operability of the system. 

A distinctive feature of this method is that its im-

plementation does not require the preliminary for-

mation of a tabular description of diagnostic tools; all 

calculations are performed directly during the fault 

diagnosis process using compact analytical relation-

ships, which is very important for technical condition 

monitoring. 

The use of fuzzy logic for diagnosing a specific 

three-tank system was presented in [39]. Note that this 

system as a test object was taken in numerous publica-

tions, in particular, with consideration of various ob-
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servers [40–42] (see part II of the survey [30]), parity 

equations with neuro-fuzzy identification [43], residu-

als from physical nonlinear equations [44] (as in part 

II of the survey [30], albeit with nonlinear equations), 

estimation of physical parameters using fuzzy NNs 

[45], and a fuzzy model based on the B-spline
3
 of a 

network [46]. 

In [39], a fault isolation system (FIS) was defined  

as a quadruple 

FIS , , , ,F S V     

with the following notation: F  is the set of faults; S  

is the set of symptoms with the two-level {0, 1} or 

three-level{ 1, 0, 1}   scale; V  is the set of symptom 

values from the interval [0, 1] or  

[ 1... 1  ], respectively; finally,   is a function de-

fined as the Cartesian product of the sets F  and ,S  

i.e., the set of all pairs ( , )i jf s . Figure 6 illustrates the 

peculiarities of symptom computation with the follow-

ing notation: jr  is a residual; js S  is a symptom; 

ijv V  is the continuous value of the jth symptom for 

the ith fault; P  and N  , +N  are the positive and 

negative symptom assessment domains, respectively. 

 

 

 
Fig. 6. Three-level symptom assessment. 

 

Fault diagnosis is performed on such a set of 

symptoms using threshold elements and rules of the 

form (3) for each fault. For example, for three-digit 

symptoms, the rules for the number of faults are as 

follows: 

1 2

3

: IF 0, 1 or 1,

1 or 1, THEN fault .

i

i

R s s

s f

   

  
 

Thus, FIS is a table assigning a value or a subset of 

symptom values js  to each fault if .  

To isolate faults, the continuous values of symp-

toms ijv  are additionally calculated using formulas 

                                                      
3 Abbreviation for “basis spline,” i.e., a spline with the smallest 
carrier for specifying the degree. 

similar to (4), and the significance (grade of member-

ship) of symptoms is thereby taken into account. 

This interpretation of residuals allows considering 

the main uncertainty in the fault diagnosis process, 

i.e., the uncertainty of symptoms js . As claimed [40], 

this method provides much better robustness of the 

generated diagnoses to measurement noise compared 

to algorithms with threshold residual checking and 

logical inference. 

3. STRUCTURAL FAULT DIAGNOSIS METHODS 

Structural analysis involves a structural representa-

tion of a model, which is a rough description taking 

into account only the appearance of variables in each 

equation. Hence, large-scale problems can be analyzed 

efficiently and without numerical difficulties. Howev-

er, the price paid is the excessive generality of the re-

sults. A fault diagnosis approach based on structural 

analysis was proposed in numerous works [47–50].  

Structural analysis has good computer support, 

both in MATLAB and in Python.  

A graph-theoretical algorithm called the Dulmage–

Mendelsohn decomposition is fundamental to the 

analysis of the diagnostic properties of models [47, 

49]. It consists in permuting the rows and columns of 

the so-called structural matrix of the system, contain-

ing special symbols that reflect the appearance of vari-

ables in different equations of the mathematical model 

of this system.  

 

3.1. Structural Models 

Let E  be the set of constraints or equations in a 

model, and let V  be the set of its variables. Then the 

structural model can be represented by a bipartite 

graph ( , )G E V A , where A  denotes the set of 

edges between nodes in two node sets E  and V . An 

edge ( , )i je v A  if and only if the variable jv V  

appears in the model relation ie E . A common way 

to visualize a structural model is the so-called biadja-

cency matrix of the graph, i.e., a matrix with rows and 

columns corresponding to constraints and variables. 

An element ( , )i j  of the biadjacency matrix is empty 

if the variable jv  does not appear in the constraint 

(equation) 
ie . A biadjacency matrix representing the 

structure of a model is also simply called a structural 

matrix. 

The set of variables V  can be classified as un-

known X V , known Z V , or faulty F V  under 

the condition .V X Z F  For the purposes of 

analysis, the most important part of the structure is the 
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one related to unknown variables, and the subgraph 

containing only the constraints (equations) and un-

known variables is called the reduced structural graph. 

Structural analysis is often explained on a demon-

stration example. As such an example, we take the 

mathematical model of an electric motor from the 

monograph [49]. This model is described by the equa-

tions 

1

2

3

4 load

5

6

7

8

9

: ( ) ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

: ,

R a

m

a

m l

h h

T T

e U h R f Lh K h

T
e h

K

e J T b

e T T T f

e y h f

e y f

e y T f

dh
e h

dt

d
e

dt

 

    




   

  

 

 

 




 

  

           (6) 

with the following notation: U  is supply voltage; 
mT  

is torque; 
lT  is rated load torque; h  is the winding 

current of the motor;   is the angular speed of the 

motor; R  is the rated resistance of the motor winding; 

L  is the inductance of the motor winding; 
aK  is the 

electromechanical coupling coefficient; J  is the total 

rotational inertia of the rotor and load; finally, b  is the 

friction coefficient. 

The motor is equipped with sensors measuring the 

current hy , the shaft torque Ty , and the angular veloc-

ity y . Faults under consideration include the faults of 

all sensors, hf , f , and Tf , the winding resistance 

fault Rf , and the neglected additional motor load 

load .f  

In this case, with the above designations, the sets 

of variables V  include 

   
1,7

, , , , , ,


    m l i i
X h h T T T x , 

   
1, 4

, , , ,h T U j j
Z y y y y y 
   

   load 1,5
, , , , 

 R h T k k
F f f f f f f . 

In addition, the values of the following parameters 

are known: R , L , 
aK , b , and J . 

The structural matrix is represented as a table (
ie  

is the ith row, jv  is the jth column, here

1,7 1,4 1,5
{ , , }j k l m

v x y f
  

 ), and its entries are filled with 

the following symbols: “•” if the variable jv  directly 

appears in 
ie ; “ D ” if the variable jv  is represented by 

its derivative; “ I ” if the variable jv  is represented by 

its integral.  

Figure 7 shows the initial structural matrix corre-

sponding to model (6).  

The result of the Dulmage–Mendelsohn decompo-

sition is presented in Fig. 8: by permuting the con-

straints (equations) 
1e ,…,

5e  and the variables 
1x ,…,

4x , the biadjacency matrix of the reduced structural 

graph is transformed into a block triangular form. 

Three blocks are highlighted on the diagonal: the first 

two represent the well-defined part 
0M  (the number 

of “internal” variables is equal to the number of equa-

tions), and the third represents the overdefined part 

M 
 (the number of “internal” variables is less than 

the number of equations) of the system model. 

 
 

 

1e                       

e2                   

3e                     

4e                      

5e                     

6e                     

7e                     

8e  I  D  
              

9e    I  D  
            

 
1x  

2x  
3x  

4x  
5x  

6x  
7x  

1f  
2f  

3f  
4f  

5f  
1y  

2y  
3y  

4y  

 

 

 
Fig. 7. The structural matrix of system (6). 



 

 
 

 

 
 

SURVEYS  

9 CONTROL SCIENCES  No. 4 ● 2025 

 

4e            

2e           

1e            

8e    I  D      

3e            

9e      I  D   

7e          

5e          

6e          

 7x  6x  1x  2x  3x  4x  5x  
 

 
Fig. 8. The reduced structural matrix (diagnostic model) of system (6). 

 

According to Fig. 8, the model has no underde-

fined part M 
. The well-defined part is used to 

uniquely determine the input unknowns, and the over-

defined part forms the basis for fault diagnosis.  

 

3.2. Fault Diagnosability Analysis  

Fault diagnosability is understood as a combination 

of two properties: 

 fault detectability (the potential capability to 

establish the fact of its existence), 

 fault isolability
4
 (the potential capability to de-

termine the type, location, and time of occurrence of a 

detected fault). 

The set of detectable and isolable (mutually distin-

guishable) faults in a system depends on the physical 

properties of the system and its relationships as well as 

on the available measurements. Fault detectability and 

isolability are system properties limiting the diagnostic 

performance that can be achieved by any fault diagno-

sis system.  

Without loss of generality, by assumption, a single 

fault 
if  can violate a single equation je  of the model. 

If this is not the case, then additional equations are 

introduced to obtain an appropriate form. 

For a model M , let fO  and 
NFO  denote the set of 

all its observations during operation with a fault f  

and without any faults, respectively. Obviously, the 

fault f  in the model M  is detectable under the con-

dition
5
 NF\fO O  . 

                                                      
4
 The term “localizability” is occasionally used in the literature as 

well [51, 52]. 
5
 It reads: the set of observations minus those corresponding to 

normal (fault-free) operation is non-empty. 

Therefore, the structurally detectable fault f  af-

fects the equation fe  located in the overdefined part 

M 
 of the model: 

fe M  . 

As applied to model (6), the fragment of the Dul-

mage–Mendelsohn decomposition takes the form 

shown in Fig. 9: the overdefined part M 
 (highlighted 

in gray) of the model includes the faults 
1f ,…, 

4f , 

whereas the fault 
5f  (

loadf ) is not detectable  

(
5

0

fe M ). 

A fault 
if  is considered to be isolable (and distin-

guishable from a fault jf ) if there exists an observa-

tion corresponding to 
if  (allowing it to be detected) 

and simultaneously not associated with jf . This is 

expressed by the formula \i jO O   or 

 \ { }
i jf fe M e



 . 

Detection is a necessary condition for isolation, 

i.e., the isolability of a fault always implies its detect-

ability, and the converse is false:  

 \ { }
i jf f fe M e e M


   . 

To illustrate isolability using the example (6), we 

continue the Dulmage–Mendelsohn decomposition to 

the result shown in Fig. 10. 

According to  the analysis of Fig. 10, the detecta-

ble faults 
1f  and 

2f  (
Rf  and 

hf ) belong to one over-

defined block (denoted by 1M 
) whereas the faults 

3f  

and 
4f  ( f  and 

Tf ) to another overdefined block 

2M 
. Thus, the specified groups of faults are isolated 

from each other, but they are not isolated within the 

groups. 

In general, the isolability of a single fault can be 

calculated by analyzing ordered pairs of faults using 

the formula 

  ( , ) | \{ }





i jj
i j f ff F

f f e M e , 

with one Dulmage–Mendelsohn decomposition per-

formed for each fault in the model. Thus, for the entire 

model, it is necessary to perform as many Dulmage–

Mendelsohn decompositions as there are single system 

faults being analyzed. 

Appropriate observations are required to imple-

ment potential detectability and isolability. Structural 
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4e                  

2e                

1e                  

8e    I  D           

3e                 

9e      I  D        

7e                

5e                

6e                

 7x  
6x  

1x  
2x  

3x  
4x  

5x  
1f  

2f  
3f  

4f  
5f  

 

 
Fig. 9. The structural matrix (fault detectability) of system (6). 

 
 

4e                  

2e                

1e                  

5e                

8e    I  D          

3e                 

7e                

9e      D   I       

6e                

 7x  
6x  

1x  
2x  

4x  
5x  

3x  
1f  

2f  
3f  

4f  
5f  

 

 
Fig. 10. The structural matrix (fault isolability) of system (6). 

 
analysis methods allow handling available observa-

tions, such as those in model (6) and in Fig. 6. In addi-

tion, it is possible to place sensors for achieving a giv-

en or possible level of fault detectability and isolabil-

ity as well as to form recommendations for the devel-

opment of diagnostic tests. 
 

3.3. Fault Detection Based on Structural Analysis 

There exist various modifications of structural 

analysis [53] and descriptions of their implementation 

algorithms [54]. Basically, mechanisms for forming 

and analyzing structurally overdefined sets (SOSs) 

M 
 or, more precisely, the minimal SOS are used. 

(Any subset of this SOS is not an SOS.) The minimal 

SOS can be achieved by partitioning the set M  into 

equivalence classes [16] according to the appearing 

equations 
ie  to avoid searching for the same SOS in 

different ways. 

As a result, each SOS contains a set of equations 

where at least one equation can be used for analytical-

ly expressing the residual. A set of equations resolved 

for the unknowns is used to design a residual genera-

tor. 

As an illustrative example, we consider the SOS 

 1 3 5 7 8 9, , , , ,M e e e e e e  for an electric motor de-

scribed by model (6). This set has five variables in six 

equations, and any of the equations can be used to 

form the residual. Figure 11 shows the diagrams of 

computation flows when selecting e5, e1, or e3 as the 

redundant equation, respectively. For instance, 

Fig. 11a shows the computation flow from the differ-

entiated variable   to the undifferentiated variable   

(i.e., integration). Figure 11c presents the opposite 

case, from h  to h  (i.e., differentiation). Finally, Fig. 

11b demonstrates both cases, integration and differen-

tiation. 

The diagrams in Fig. 11 are organized as follows: 

the input variables are indicated on the left edge, and 

the vertical line means the resolution of an appropriate 

equation with respect to the subsequent variable. 

Each diagram mentioned has particular computa-

tional characteristics and sensitivity to faults. 
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(a)                                                                             (b)  

 

(c) 
 

 
Fig. 11. SOS diagrams with different residual formation methods: (a) integral, (b) mixed, and (c) differential. 

 

Now we derive the final computation formula for 

fault diagnosis based, e.g., on the diagram in Fig. 11c. 

This formula determines the content of any algorithm 

implemented. By making the corresponding substitu-

tions, introducing the differentiation operator 

/p d dt , and performing simple transformations, we 

arrive at the “exact” expression for the residual: 

 

However, by definition, the faults 
hf , 

Rf , and 
Tf  

are unavailable for direct measurement; thus, the for-

mula for the residual in the neighborhood of the point 

0hf , 0Rf  , 0Tf  , reduced to the signal of the 

motor shaft torque sensor, becomes 

( , , ) ln( )
 

    
 

h R T h T

a h

Jp b U
r f f f Lp y R y

K y
.  (7) 

According to this formula, the measurable signals U , 

hy , and Ty  are used to detect at least the separate 

faults hf , Rf , and Tf . In the absence of faults, equali-

ty (7) takes a zero value. The values of the system pa-

rameters J , b , aK , L , and the nominal (fault-free) 

value of R  must be known. 

The sensitivity to the “permanent” faults ( 0hpf , 

0Rpf  , 0Tpf  ) is characterized by the values 

2

1 1

h a h h

r Jp b
Lp U

f K y y

  
  

  
, 


 
 R a

r b

f K
, 1

T

r

f





. 

Hence, if the sensor’s signal 
hy  of the motor winding 

current changes in accordance with the nonlinear dif-

ferential equation 

2

2 2

1 1 1 1
0

h h h h

JLp bLp JUp bU
y y y y

    , 

the sufficient condition / 0  hr f  of the sensitivity 

(7) to the fault 
hf  will not hold. 

This circumstance suggests that, on certain phase 

trajectories of the system’s motion, fault diagnosis 

may not be performed.
6
 

4. FAULT DIAGNOSIS METHODS BASED ON SET THEORY 

When using dynamic system models for monitor-

ing purposes, there is always some deviation between 

the modeling results and the actual behavior of the 

systems. This phenomenon is due to both the neglect 

of some known “insignificant” relationships and the 

presence of unknown or inaccurately known relation-

ships in the object modeled. The resulting modeling 

errors introduce uncertainty, which most often lies 

within the estimated ranges. 

There are several ways to deal with model-related 

uncertainty, depending on whether it appears in the 

parameters (structured uncertainty) or in the model 

structure (unstructured uncertainty). The most devel-

oped group of approaches, known as active, is based 

on generating residuals insensitive to given uncertain-

                                                      
6 This applies not only to structural methods. 

ln( ) .h h R T T

a h h

Jp b U
r Lp y f R f y f

K y f

 
       

 
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ties but sensitive to system faults. At the same time, 

there is another family of approaches, known as pas-

sive, that increase the reliability of a fault detection 

system by extending uncertainty to the residual values 

with creating appropriate adaptive thresholds.
7
 The 

second approach was proposed in the fundamental 

works [55] (the time domain) and [27] (the frequency 

domain).  

 

4.1. Initial Conditions and Problem Statement 

The idea behind the set-membership approach is to 

use a geometric set to bind uncertain states. Well-

known geometric sets include intervals, ellipsoids, 

polyhedra, zonotopes, etc. Among all the set-based 

approaches, zonotopes are remarkable for the lowest 

computational complexity of their implementation.  

The approach under consideration involves the 

specific concept and notation of a zonotope—a math-

ematical construct
8
 of the form 

 , , 1Z c H c Hz z


    ,               (8) 

where c  and H  are the center and segment matrix of 

the zonotope. The expression (8) is used for the formal 

designation of an interval in a multidimensional space. 

On the plane, this is a rectangle with sides 
12h  and 

22h ; in the 3D space, a parallelepiped with edges 
12h , 

22h , 
32h , etc. 

Zonotopes are characterized by linearity in the 

sense of 

 1 1 2 2 1 2 1 2, , , ,c H c H c c H H   , 

, ,L c H Lc LH , 

where   denotes the Minkowski sum;
9
 L  is an arbi-

trary matrix of compatible dimensions. Here, 

 1 2,H H  means the formation of a new segment ma-

trix from the initial ones 1H  and 2H . As a rule, it 

leads to the “growth” of the zonotope limits. 

For a zonotope ,Z c H , the weighted reduction 

operator ,

H

q W  [56] satisfies the property  

,, ,H

q Wc c H  , 

where q n  indicates the maximum number of the 

                                                      
7 Although the approach uses traditional models of the form (1) 

[30] (see part II of the survey), they do not constitute its core. 
8 A polyhedron representing the Minkowski sum of a set of vec-

tors. 
9 The Minkowski sum of sets A and B of a linear space V is the set 

C consisting of the sums of all possible vectors from A and B: 

 | , ,C c c a b a A b B     , see the paper [57]. 

columns of ,

H

q W  and W is a weight matrix of compati-

ble dimensions. This operator reduces the segment 

matrix determining the “spread” of possible values in 

the neighborhood of the zonotope center.  

Consider a linear system with discrete time 

0, 1, 2,...t  : 

1t t t w tx Ax Bu D w    , t t v ty Cx D v  ,      (9) 

where xn

tx  , um

tu  , and yn

ty   are the system 

state vectors, known inputs, and outputs, respectively; 
wm

tw   and vm

tv   are the disturbance and meas-

urement noise vectors, respectively. 

The values of the vectors tw  and tv  and the initial 

state 0x  are bounded by the zonotopes
10

 

0 0 0 00, , 0, , ,
w vt m t mw I v I x X c H     (10) 

and are supposed to be unknown at each time instant.  

 

4.2. Zonotopic Observer 

In this subsection, we briefly present one fault di-

agnosis approach using zonotopes [16, 49]. 

For system (9), an observer with a gain 

( ) x yn n
G k


  is introduced: 

1
ˆ ˆ ˆ( )t t t w t t t t v tx Ax Bu D w G y Cx D v       . (11) 

As claimed [58], for any 1t N  , the observer 

(11) satisfies the inclusion 

1 1 1 1
ˆ ,t t t tx c H     ,                  (12) 

where the center and segment matrix are given by 

1

1 ,

( ) ,

( ) , , .

t t t t t t

H

t t q W w t v

c A G C c Bu G y

H A G C D G D





   

    
         (13) 

According to formulas (13), the inclusion (12) is 

expanded as follows: 

 

   

   

1 1 1

,

ˆ ,

( ) ,

, 0 , 0

0, 0, .
w v

t t t

H

t t q W

t t t

w m t v m

x c H

A G C c

B u C y

D I G D I

  

  

 

  

        (14) 

Formula (14) defines the temporal transformation 

of the zonotope limiting the subsequent values of the 

vector ˆ
tx  1t N   .  

                                                      
10 The first two zonotopes are called unitary. 

https://polytope.miraheze.org/wiki/Polytope
https://polytope.miraheze.org/wiki/Minkowski_sum?action=edit&redlink=1
https://polytope.miraheze.org/wiki/Minkowski_sum?action=edit&redlink=1
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4.3. Fault Detection 

Consider a system where formulas (9) are replaced 

by the equations  

1 ,

,

u u

t t t w t t

y y

t t v t t

x Ax Bu D w Q f

y Cx D v Q f

    

  
           (15) 

where fm

tf   and y fn m
Q


  are the fault effect 

vector and the fault effect matrix of the actuator (the 

superscript u) and sensor (the superscript y), respec-

tively. To detect faults in this system, the following 

actions are performed: 

 Input  t tU u  and output  t tY y  data are ac-

quired and stored. 

 The set of estimated states  t tY y  is calculated 

using equation (14) and the interval constraints (10) 

0 , , , , e

t t t t tX u y w v X . 

 The set of estimated outputs 
e

tY  is calculated us-

ing the second equation (9) and the interval constraints 

(10) 

, .e e

t t tX v Y  

 The intersection of the sets of estimated and 

measured outputs is calculated: 

0 .f e

t t tX Y Y                           (16) 

If for each t  the intersection (16) is non-empty, 

then the actual value of the system output is consid-

ered to coincide with its forecast; therefore, the ab-

sence of faults is concluded. The emptiness of this in-

tersection is a sign of system faults. 

In this case, the sensitivity condition of the test 

(16) to sensor faults in equations (15) is the non-strict 

inequality 

T 2 T

0 0

( )rf rf

t t s t t

t t

c c f f
 

 

                   (17) 

given the existence of matrices
11

 
0
xn

P S , x yn n
K


 , 

and y yn n
N


  as well as scalars 0   and 0   

such that
12

 

T T T T

T T T T T 2

0

fm

P

A P C K P C NC

Q K Q N C Q NQ I

   
 
     
  
 

. 

                                                      
11 The first matrix mentioned is positive definite and symmetric, 

0P . 
12 Here, asterisks serve to simplify the form of the symmetric ma-

trix. 

In (17), rf

tc  is the center of the zonotope 

,r r

t t tR c H , t N  , of the residual f

t t tr y Cx 

with the parameters  

( )r

t t tc M y Cc  ,  r

t t vH MCH MD , 

where y yn n
M


  is the gain matrix of the zonotope of 

the residual; as an option, the equalities 1G P K  and 
2M N  can be used. 

The corresponding proofs and examples of using 

zonotopes can be found in [51, 59].  

5. STATISTICAL FAULT DIAGNOSIS 

The pattern recognition-based diagnostic approach 

is based on the statistical decision method, which con-

sists in the following.  

Consider a system with a discrete feature space 

(measurements) of dimension k  with axes 
1 , 

2 ,..., 

k  and n  gradations along the axes 
1 , 

2 ,..., 
n , 

respectively. The gradations provide for both the oper-

able technical condition of the system and the pres-

ence of various faults. By assumption, there are suffi-

ciently many such systems,
13

 and depending on the 

relevant characteristics, they are divided into classes 

ij , 1,i k , 1,j n , including variants without 

faults 
no fault  or with different faults 

th faultm , where 

1m kn  . 

The main parameter is an empirical (statistical) es-

timate of the likelihood ratio. In a simplified version (a 

“local” estimate) of the method, it is calculated by the 

formula [60] 

( ) 1 2
( )

( ) 1 2

l l h

h h l

f r N
L

f r N

  
  

  
,              (18) 

where ( )lf   and ( )hf   are the Bayesian estimates of 

the probabilities that the system from the lth and hth 

class, respectively, will fall into a certain point   (or 

its neighborhood); lr  and hr  are the number of sys-

tems of the lth and hth classes falling into the point   

according to the a priori information; finally, lN  and 

hN  are the number of systems of the lth and hth clas-

ses, respectively, in the training sample. More accu-

rate, albeit complex, formulas with probability densi-

ties can be found in [60, 61]. 

                                                      
13

 Due to the ergodicity hypothesis of random processes [62], for a 

priori data, the matter concerns the number of systems used for 

training systems; for a posteriori data, the number of time-

separated observations of the system diagnosed.  
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To decide on the system’s belonging to a particular 

class, the following threshold rule is applied: 

- the system is operable if no fault( )L   ; 

- the system has mth fault if th fault( ) mL   . 

The training stage lies in memorizing the systems 

from the training sample, and the statistical estimate 

(18) is calculated during the current recognition (fault 

diagnosis).  

Formally, the solution of the fault diagnosis (pre-

diction) problem using the mathematical apparatus of 

statistical classification does not differ in principle 

from that of other technical problems requiring recog-

nition. However, there are several peculiarities that 

must be taken into account. The main stages of solving 

the problem include: 

 selection of a recognition model, which can be 

deterministic or probabilistic and depends on the de-

gree of mixing of the sets belonging to different clas-

ses; 

 description of the patterns R  of different classes  

(operable and different faults) based on a priori infor-

mation; evaluation of the informativeness of different 

parameters (their significance for recognition) allows 

optimizing the description of patterns; 

 comparison of current information about the sys-

tem monitored with a priori specified patterns R  of 

the classes; 

 deciding on the degree of operability of the sys-

tem or its parts based on the monitoring data. 

The main peculiarity of the statistical approach is 

that, for acceptable performance, it requires a signifi-

cant amount of both a priori data (training) and a pos-

teriori data (current monitoring measurements). Nev-

ertheless, the “local” estimate (18) allows solving 

problems with 50k   parameters (measurements) and 

π 8  gradations for each parameter (related to the 

number of possible faults). In other words, the matter 

concerns not too large samples, which is essential for 

monitoring tasks. 

Statistical fault diagnosis based on pattern recogni-

tion has become widespread and developed in Russian 

scientific literature and technology; for example, see 

[63–65].  

CONCLUSIONS 

The use of nonclassical representations or descrip-

tions for dynamic systems has significantly expanded 

the possibilities for their fault diagnosis, primarily in 

terms of overcoming the traditional difficulties for 

engineering applications: noise in real measurements 

and distortions inevitably introduced into formal mod-

els. As a result, diagnostic and monitoring systems 

with fundamentally new capabilities and areas of prac-

tical application have been created and widely adopt-

ed. 

At the same time, this path poses additional prob-

lems: besides complicating the apparatus used, the 

results obtained may be opaque, vague, ambiguous, or 

overly general. A lack of specifics can seriously re-

strict the application of the relevant approaches. 

Part IV of the survey will analyze new approaches 

to fault diagnosis and the integration of various mod-

els and methods. 
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