УДК 621.452.3-52

ЛИНЕЙНАЯ МОДЕЛЬ С НЕОПРЕДЕЛЕННЫМИ ЭЛЕМЕНТАМИ МАТРИЦ

Р. Л. Лейбов

Московский государственный строительный университет

Представлен метод оценивания неопределенных параметров модели авиационного газотурбинного двигателя во временной области. Рассмотрена многомерная линейная модель с неопределенными элементами матриц. Неопределенность элементов матриц позволяет описать возможное расхождение между линейной и нелинейной моделями. Минимальные и максимальные значения неопределенных элементов матриц линейной модели определяются по переходным процессам нелинейной модели с помощью решения задач квадратичного или линейного программирования. Приведены результаты применения предлагаемого метода для оценивания неопределенных элементов матриц линейной модели современного авиационного двухконтурного газотурбинного двигателя.

ВВЕДЕНИЕ

Оценивание неопределенных матричных параметров многомерной линейной модели такого нелинейного объекта управления, как авиационный газотурбинный двигатель (ГТД), необходимо для разработки алгоритмов управления с учетом ограничений переменных управления и переменных состояния. Поэтому в настоящее время оцениваются не только параметры номинальной линейной модели объекта управления, но и границы неопределенности этих параметров [1]. Можно применить, например, модифицированный метод наименьших квадратов, позволяющий осуществлять оценивание во временной области при наличии неопределенности [2]. Для уточнения модели можно применить алгоритм заданного размещения ее собственных значений [3].

Оценивание матричных параметров многомерной линейной модели современного авиационного ГТД и оценивание границ неопределенных элементов соответствующих матриц с помощью методов нелинейного программирования были описаны автором в работах [4, 5].

Цель данной работы состоит в модификации метода оценивания неопределенных элементов матриц с помощью методов квадратичного и линейного программирования. На численном примере показано, что расхождение между линейной и нелинейной моделями авиационного ГТД можно описать, пользуясь матрицами линейной модели с неопределенными элементами.

1. ПОСТАНОВКА ЗАДАЧИ ОЦЕНИВАНИЯ

Будем считать, что в небольшой окрестности установившегося режима двигатель можно приближенно описать линейной моделью с неопределенными матричными параметрами

$$\dot{\mathbf{x}} = (\mathbf{A} \pm \Delta \mathbf{A})\mathbf{x} + (\mathbf{B} \pm \Delta \mathbf{B})\mathbf{u}.$$

Здесь $\mathbf{x} - n$ -мерный нормированный вектор состояния, а $\mathbf{u} - m$ -мерный нормированный вектор управления. Компоненты векторов состояния и управления представляют собой отклонения от установившихся значений, соответствующих выбранной рабочей точке

$$x_{i} = \frac{x_{i}^{a} - s x_{a}^{i}}{\max_{s} x_{a}^{i}}, i = 1, ..., n, u_{i} = \frac{u_{i}^{a} - s u_{a}^{i}}{\max_{s} u_{a}^{i}}, i = 1, ..., m.$$

Компоненты векторов $_{s}\mathbf{x}^{a}$ и $_{s}\mathbf{u}^{a}$ представляют собой установившиеся (s-static) значения различных ненормированных (a-absolute) физических величин, соответствующих выбранной рабочей точке, которая определяется установившимися значениями управляющего воздействия и внешних условий.

Неопределенность матричных параметров, т. е. элементов матриц, может быть описана следующим образом:

$$0 \leq \Delta a_{ij} \leq \Delta a_{ij}^{\max}, \ i=1, \, ..., \, n, j=1, \, ..., \, n, \eqno(1)$$

$$0 \leq \Delta b_{ij} \leq \Delta b_{ij}^{\max}, \ i=1, \ ..., \ n,j=1, \ ..., \ m. \eqno(2)$$

Если шаг дискретности достаточно мал, то в дискретные моменты времени можно приближенно считать, что

$$\mathbf{x}(t_{k+1}) = \mathbf{x}(t_k) + \Delta t(\mathbf{A} \pm \Delta \mathbf{A})\mathbf{x}(t_k) + \Delta t(\mathbf{B} \pm \Delta \mathbf{B})\mathbf{u}(t_k).$$
 (3)

Здесь k=0,...,N соответствуют моментам времени $t_0,...,t_N$, причем $t_{k+1}=t_k+\Delta t$, где Δt — шаг дискретности.

Для оценивания границ неопределенных элементов матриц линейной модели можно использовать переходные процессы нелинейной (НЛ) модели двигателя в разомкнутой системе управления — наборы значений нормированного вектора состояния в отклонениях от установившихся значений $^{\rm HЛ}{\bf x}(t_k),\ k=0,...,\ N$ и нормированного вектора управления в отклонениях от установившихся значений $^{\rm HЛ}{\bf u}(t_k),\ k=0,...,\ N$. Неопределенность матриц линейной модели описывает ее расхождение с нелинейной моделью ГТД в небольшой окрестности установившегося режима, соответствующего выбранной рабочей точке.

Расхождение между линейной и нелинейной моделями можно оценивать следующим образом:

$$\sum_{k=1}^{N} [\mathbf{x}(t_k) - {}^{\mathrm{H}\boldsymbol{\Pi}}\mathbf{x}(t_k)]^T \mathbf{W}(t_k) [\mathbf{x}(t_k) - {}^{\mathrm{H}\boldsymbol{\Pi}}\mathbf{x}(t_k)], \tag{4}$$

или, по-другому, отдельно для каждого i = 1, ..., n:

$$\max_{k=1} \sqrt{w_{ii}(t_k)} |x_i(t_k)| - {}^{HJI}x_i(t_k)|,$$
 (5)

где $\mathbf{W}(t_k)$, k=1,...,N— симметрические положительно определенные весовые матрицы с положительными диагональными элементами $w_{ii}(t_k)$, i=1,...,n, k=1,...,N, а переходные процессы линейной модели $\mathbf{x}(t_k)$, k=1,...,N соответствуют $^{\mathrm{HJ}}\mathbf{u}(t_k)$, k=0,...,N-1.

Ставится задача: определить минимальные и максимальные значения неопределенных элементов матриц линейной модели

$$a_{ij} \mp \Delta a_{ij}^{\text{max}}, i = 1, ..., n, j = 1, ..., n,$$

$$b_{ij} \mp \Delta b_{ij}^{\text{max}}, i = 1, ..., n, j = 1, ..., m,$$

используя для этого переходные процессы нелинейной модели двигателя $^{\rm HJ}{\bf u}(t_k), \ ^{\rm HJ}{\bf x}(t_k), \ k=0, ..., \ N.$

2. ОЦЕНИВАНИЕ С ПОМОЩЬЮ КВАДРАТИЧНОГО И ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Пусть в момент времени t_0 вектор $\mathbf{x}(t_0) = {}^{\mathrm{HJ}}\mathbf{x}(t_0)$. Тогда для каждого i=1, ..., n в силу выражения (3)

$$x_{i}(t_{i}) = {}^{\mathrm{HJ}}x_{i}(t_{0}) + \Delta t \sum_{j=1}^{n} a_{ij}{}^{\mathrm{HJ}}x_{j}(t_{0}) + \Delta t \sum_{j=1}^{m} b_{ij}{}^{\mathrm{HJ}}u_{j}(t_{0}) \pm \Delta t \sum_{j=1}^{n} \Delta a_{ij}{}^{\mathrm{HJ}}x_{j}(t_{0}) \pm \Delta t \sum_{j=1}^{m} \Delta b_{ij}{}^{\mathrm{HJ}}u_{j}(t_{0}).$$

Очевидно, что для этой линейной модели с неопределенными элементами матриц

$$x_i(t_i) \ge x_i^{\min}(t_i) = {}^{\mathrm{HJ}}x_i(t_0) + \Delta t \sum_{i=1}^n a_{ij}{}^{\mathrm{HJ}}x_j(t_0) +$$
 (6)

$$+ \Delta t \sum_{i=1}^{m} b_{ij}^{H\Pi} u_{j}(t_{0}) - \Delta t \sum_{i=1}^{n} \Delta a_{ij}^{H\Pi} x_{j}(t_{0}) | - \Delta t \sum_{i=1}^{m} \Delta b_{ij}^{H\Pi} u_{j}(t_{0})|,$$

$$x_i(t_i) \le x_i^{\max}(t_i) = {}^{\mathrm{HJ}}x_i(t_0) + \Delta t \sum_{i=1}^n a_{ij}{}^{\mathrm{HJ}}x_j(t_0) +$$
 (7)

$$+ \Delta t \sum_{i=1}^{m} b_{ij}^{\text{HJ}} u_{j}(t_{0}) + \Delta t \sum_{i=1}^{n} \Delta a_{ij}^{\text{HJ}} x_{j}(t_{0}) | + \Delta t \sum_{i=1}^{m} \Delta b_{ij}^{\text{HJ}} u_{j}(t_{0})|.$$

Поэтому, если для нелинейной модели для всех i = 1,...,n выполняются условия

$$x_i^{\text{HJI}}(t_1) \ge x_i^{\text{min}}(t_1),$$
 (8)

$$^{\mathrm{HJ}}x_{i}(t_{1}) \leqslant x_{i}^{\mathrm{max}}(t_{1}), \tag{9}$$

то для линейной модели с неопределенными элементами матриц и в момент времени t_1 можно задать $\mathbf{x}(t_1) = {}^{\mathrm{HJ}}\mathbf{x}(t_1)$. Аналогично можно сделать так, чтобы и в моменты времени $t_2, ..., t_{N-1}$ задавать $\mathbf{x}(t_2) = {}^{\mathrm{HJ}}\mathbf{x}(t_2), ..., \mathbf{x}(t_{N-1}) = {}^{\mathrm{HJ}}\mathbf{x}(t_{N-1})$.

Таким образом, с учетом выражений (1)—(4), (6)—(9) оценивание матриц **A**, Δ **A**^{max}, **B**, Δ **B**^{max} сводится к решению задачи квадратичного программирования:

$$\begin{aligned} \mathbf{A}, \ \Delta \mathbf{A}^{\max}, \ \mathbf{B}, \ \Delta \mathbf{B}^{\max}: \min \left\{ \sum_{k=1}^{N} [\mathbf{x}^{\max}(t_k) - \mathbf{x}^{\min}(t_k)]^T \mathbf{W}(t_k) [\mathbf{x}^{\max}(t_k) - \mathbf{x}^{\min}(t_k)] \right\} \\ x_i^{\min}(t_k) &= {}^{\mathrm{HJ}} x_j(t_{k-1}) + \Delta t \sum_{j=1}^{n} a_{ij}^{\mathrm{HJ}} x_j(t_{k-1}) + \\ &+ \Delta t \sum_{j=1}^{m} b_{ij}^{\mathrm{HJ}} u_j(t_{k-1}) - \Delta t \sum_{j=1}^{n} \Delta a_{ij}^{\mathrm{max}} |{}^{\mathrm{HJ}} x_j(t_{k-1})| - \\ &- \Delta t \sum_{j=1}^{m} \Delta b_{ij}^{\mathrm{max}} |{}^{\mathrm{HJ}} u_j(t_{k-1})|, \ i = 1, \ ..., \ n, \ k = 1, \ ..., \ N, \\ x_i^{\max}(t_k) &= {}^{\mathrm{HJ}} x_j(t_{k-1}) + \Delta t \sum_{j=1}^{n} a_{ij}^{\mathrm{HJ}} x_j(t_{k-1}) + \\ &+ \Delta t \sum_{j=1}^{m} b_{ij}^{\mathrm{HJ}} u_j(t_{k-1}) + \Delta t \sum_{j=1}^{n} \Delta a_{ij}^{\mathrm{max}} |{}^{\mathrm{HJ}} x_j(t_{k-1})| + \\ &+ \Delta t \sum_{j=1}^{m} \Delta b_{ij}^{\mathrm{max}} |{}^{\mathrm{HJ}} u_j(t_{k-1})|, \ i = 1, \ ..., \ n, \ k = 1, \ ..., \ N, \\ x_i^{\min}(t_k) \leqslant {}^{\mathrm{HJ}} x_j(t_k) \leqslant x_i^{\max}(t_k), \ i = 1, \ ..., \ n, \ k = 1, \ ..., \ N, \end{aligned}$$

$$\Delta a_{ij}^{\max} \ge 0, \ i = 1, ..., \ n, j = 1, ..., \ n, \Delta b_{ij}^{\max} \ge 0,$$
$$i = 1, ..., \ n, j = 1, ..., \ m \right\}. \tag{10}$$

По-другому, с учетом выражений (1)—(3), (5)—(9) оценивание матриц **A**, $\Delta \mathbf{A}^{\text{max}}$, **B**, $\Delta \mathbf{B}^{\text{max}}$ по строкам сводится к решению задачи линейного программирования [6] для каждого i=1,...,n:

$$\begin{split} a_{ij},\, \Delta a_{ij}^{\max},\, j &= 1,\, ...,\, n,\, b_{ij},\, \Delta b_{ij}^{\max},\, j = 1,\, ...,\, m;\, \min\left\{\delta|\delta>0,\, x_i^{\max}\left(t_k\right) - x_i^{\min}\left(t_k\right) \leqslant \frac{\delta}{\sqrt{w_{ii}(t_k)}},\, k = 1,\, ...,\, N, \\ x_i^{\min}\left(t_k\right) &= {}^{\mathrm{H}\Pi}x_j(t_{k-1}) + \Delta t\, \sum\limits_{j=1}^n a_{ij}{}^{\mathrm{H}\Pi}x_j(t_{k-1}) + \\ &+ \Delta t\, \sum\limits_{j=1}^m b_{ij}{}^{\mathrm{H}\Pi}u_j(t_{k-1}) - \Delta t\, \sum\limits_{j=1}^n \Delta a_{ij}^{\max}|{}^{\mathrm{H}\Pi}x_j(t_{k-1})| - \\ &- \Delta t\, \sum\limits_{j=1}^m \Delta b_{ij}^{\max}|{}^{\mathrm{H}\Pi}u_j(t_{k-1})|,\, k = 1,\, ...,\, N, \\ x_i^{\max}\left(t_k\right) &= {}^{\mathrm{H}\Pi}x_j(t_{k-1}) + \Delta t\, \sum\limits_{j=1}^n a_{ij}{}^{\mathrm{H}\Pi}x_j(t_{k-1}) + \\ &+ \Delta t\, \sum\limits_{j=1}^m b_{ij}{}^{\mathrm{H}\Pi}u_j(t_{k-1}) + \Delta t\, \sum\limits_{j=1}^n \Delta a_{ij}^{\max}|{}^{\mathrm{H}\Pi}x_j(t_{k-1})| + \\ &+ \Delta t\, \sum\limits_{j=1}^m \Delta b_{ij}^{\max}|{}^{\mathrm{H}\Pi}u_j(t_{k-1})|,\, k = 1,\, ...,\, N, \\ x_i^{\min}\left(t_k\right) &\leqslant {}^{\mathrm{H}\Pi}x_j(t_k) \leqslant x_i^{\max}\left(t_k\right),\, k = 1,\, ...,\, N, \\ \Delta a_{ij}^{\max} &\geqslant 0,\, j = 1,\, ...,\, n,\, \Delta b_{ij}^{\max} \geqslant 0,\, j = 1,\, ...,\, m\}. \,\, (11) \end{split}$$

Задача (10) приближенно решается методом прямого поиска [7], а при одномерном поиске по каждому из направлений методом золотого сечения [7]. Задача (11) может быть решена с помощью симплекс-метода [7].

3. ЧИСЛЕННЫЙ ПРИМЕР ОЦЕНИВАНИЯ МИНИМАЛЬНЫХ И МАКСИМАЛЬНЫХ ЗНАЧЕНИЙ НЕОПРЕДЕЛЕННЫХ ЭЛЕМЕНТОВ МАТРИЦ ЛИНЕЙНОЙ МОДЕЛИ

Разработанный метод применяется для оценивания минимальных и максимальных значений неопределенных элементов матриц линейной модели. Используются переходные процессы поэлементной нелинейной модели двухвального двухконтурного авиационного ГТД. Угол отклонения рычага управления двигателем (PLA) представляет собой управляющее воздействие, а высота и скорость полета (ALT и MN) соответствуют внешним условиям. В рассматриваемом примере высота и скорость полета летательного аппарата равны нулю (ALT = 0, MN = 0), а угол отклонения рычага управления двигателем соответствует максимальному режиму работы

 $(PLA = 68^{\circ})$. Четыре переменных управления (m = 4) соответствуют: расходу топлива в основном контуре, площади критического сечения реактивного сопла, углу поворота входных направляющих аппаратов вентилятора и углу поворота выходных направляющих аппаратов компрессора. Пять переменных состояния (n = 5) соответствуют: частоте вращения вентилятора двигателя, частоте вращения компрессора двигателя, давлению торможения за компрессором, давлению торможения за турбиной, и температуре торможения за турбиной. В разомкнутой системе переходный процесс для вектора управления состоит из разнесенных по времени прямоугольных импульсов шириной 3,75 с по каждой из компонент вектора, шаг дискретности $\Delta t = 0.025$ c, а число точек каждого из переходных процессов N = 1201. При проверке результатов оценивания рассматриваются переходные процессы, соответствующие ступенчатому изменению угла *PLA* от 68 до 60° в замкнутой системе, число точек переходных процессов N = 101. Отметим, что при этом используются нормированные значения всех пере-

Матрицы линейной модели для максимального режима работы, полученные с помощью решения задачи квадратичного программирования (10) по переходным процессам нелинейной модели двигателя в разомкнутой системе управления, имеют вид

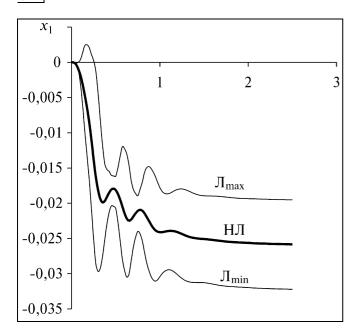
$$\mathbf{A} = \begin{bmatrix} -1,9263 & 1,0458 & 0 & 0 & 0 \\ 0,0219 & -1,6761 & 0 & 0 & 0 \\ -3,5986 & -9,4275 & -12,4146 & 25,3147 & -11,6271 \\ 3,8615 & 22,6271 & -17,9761 & -22,5793 & -8,3868 \\ 3,2147 & -0,1121 & -2,6981 & -11,1214 & -10,5325 \end{bmatrix}$$

$$B = \begin{bmatrix} 0,6967 & 1,2749 & -0,1520 & 0,1605 \\ 0,572 & 0,7900 & -0,0426 & -2277 \\ 3,380 & 46,1329 & -1,8065 & -1,3298 \\ 18,4630 & -59,9282 & 2,4135 & 3,2000 \\ 10,1047 & -19,2173 & 0,5266 & -0,0666 \end{bmatrix},$$

$$\Delta A^{max} = \begin{bmatrix} 0,9777 & 1,0448 & 1,3164 & 0,8094 & 6,4799 \\ 0,0622 & 0,5662 & 0,6201 & 0,4914 & 6,3801 \\ 0,6205 & 0,8180 & 0,3682 & 2,5592 & 8,2238 \\ 0,4289 & 0,4120 & 0,2101 & 0,7250 & 1,8658 \\ 1,8111 & 2,8964 & 0,6244 & 0,9795 & 1,5782 \end{bmatrix},$$

$$\Delta B^{max} = \begin{bmatrix} 0,0338 & 2,5045 & 1,0822 & 1,0904 \\ 1,0143 & 1,0606 & 1,7892 & 1,4354 \\ 4,3056 & 1,0245 & 2,8215 & 0,2413 \\ 4,6479 & 5,1514 & 1,1038 & 0,0140 \\ 5,8730 & 2,3413 & 0,5503 & 2,1585 \end{bmatrix}$$

На рисунке сравниваются переходные процессы в отклонениях исходной нелинейной модели $H\!J$ с минимальными и максимальными значениями переменных, соответствующих переходным процессам линейной модели $J\!J$ с неопределенными матричными параметрами, другими словами с неопределенными элементами мат-



Переходные процессы нормированной переменной состояния в отклонениях x_1 нелинейной модели и минимальные и максимальные значения переменных, соответствующих переходным процессам линейной модели с неопределеными элементами матриц

риц, в замкнутой системе управления. Нормированная переменная состояния в отклонениях x_1 соответствует частоте вращения вентилятора двигателя. Видно, что возможное расхождение с нелинейной моделью практически полностью описывается с помощью неопределенных элементов матриц.

ЗАКЛЮЧЕНИЕ

Разработан метод оценивания границ возможных изменений элементов матриц линейной модели. В качестве исходных данных для оценивания используются переходные процессы нелинейной модели авиационного газотурбинного двигателя в разомкнутой системе управления. Метод основан на применении вычислительных алгоритмов квадратичного и линейного программирова-

ния — метода прямого поиска, метода золотого сечения и симплекс-метода.

Показано, что благодаря использованию неопределенных элементов матриц линейной модели можно описать возможное расхождение между линейной и нелинейной моделями в небольшой окрестности выбранного установившегося режима.

Результаты данной работы могут быть полезны при разработке современных систем автоматического управления газотурбинными двигателями, летательными аппаратами, а также другими нелинейными объектами, которые в широком диапазоне режимов работы могут быть приближенно описаны кусочно-линейными моделями с неопределенными элементами матриц.

ЛИТЕРАТУРА

- Identification of Model Parameters and Associated Uncertainties for Robust Control Design / V. I. Karlov, D. M. Miller, W. E. Van der Velde, E. F. Crawley // Journal of Guidance, Control, and Dynamics. 1994. Vol. 17. № 3. P. 495—504.
- 2. *Er-Wei Bai, Nagpal K. M.* Least square type algorithms for identification in the presence of modeling uncertainty // IEEE Trans. on Automatic Control. 1995. Vol. 40. № 4. P. 756—761.
- 3. *Maghami P. G.* Model Refinement Using Eigensystem Assignment // Journal of Guidance, Control, and Dynamics. 2000. Vol. 23. № 4. P. 683—692.
- 4. *Leibov R*. Identification of Linear Model Parameters and Uncertainties for an Aircraft Turbofan Engine // Journal of Guidance, Control, and Dynamics. 1997. Vol. 20. № 6. P. 1274—1275.
- 5. Лейбов Р. Л. Линейная модель авиационного газотурбинного двигателя с неопределенными матричными параметрами // Вопросы прикладной математики и вычислительной механики: Сб. науч. тр. М.: МГСУ, 1999. № 2. С. 135—140.
- 6. *Зуховицкий С. И., Авдеева Л. И.* Линейное и выпуклое программирование. М.: Наука, 1964. 348 с.
- 7. *Химмельблау Д*. Прикладное нелинейное программирование. М.: Мир, 1975. 534 с.

(495) 413-98-29

e-mail: r leibov@mtu-net.ru

Учитель Ю.Г., Терновой А.И., Терновой К.И. Разработка управленческих решений: Учебник. 2-е изд. существенно перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. — 385 с.

Процесс разработки управленческих решений как сердцевина менеджмента, рассматривается в учебнике в рамках системно-целевого подхода — фундаментального методологического основания менеджмента. Впервые рассмотрены не только вопросы теории разработки управленческих решений, но и система методов. Теоретический и практический материал взаимно дополняют друг друга и дают целостное представление о предмете исследования.

Предназначена студентам и аспирантам экономических вузов и факультетов, изучающих теоретические и практические проблемы менеджмента, теории организации, разработки управленческих решений, а также практическим работникам.

CONTROL SCIENCES Nº 5 · 2006