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Abstract. This paper considers the problem of constructing an interval observer for systems 

described by discrete-time linear models under uncertainties in the form of exogenous disturb-

ances and measurement noise (unknown bounded functions). Such an observer is designed us-

ing the minimal-dimension model of the original system invariant with respect to the disturb-

ances. The dynamic matrix of this model is defined in the identification canonical form. We 

present relations to design an interval observer of minimal complexity for estimating the set of 

admissible values of a given linear function of the state vector. If the observer invariant with 

respect to the disturbances does not exist, we suggest a method to construct an observer with 

minimal sensitivity to them based on the singular value decomposition of system matrices. The-

oretical results are illustrated by an example.  
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INTRODUCTION  

This paper is a logical continuation of the research 

work [1], which considered the design of interval ob-

servers for systems described by linear models with 

continuous time.  

In recent years, numerous studies have been devot-

ed to the design of interval observers; for a survey, see 

the publications [2, 3]. The papers [4–10] presented 

the solution of this problem for different classes of 

systems as well as practical applications. As a rule, the 

cited authors estimated the set of admissible values of 

the full state vector. However, in many cases, it is of 

interest to estimate only a given linear function of this 

vector. The corresponding interval observer turns out 

to be significantly simpler than the full-order counter-

part, and the class of systems for which such an ob-

server can be designed is wider. In addition, when es-

timating  a  given  linear  function,  the  observer  dynam- 
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ics can be represented in a canonical form, which sim-

plifies the solution procedure and extends the class of 

systems with interval observers. 

In what follows, we state and solve the interval ob-

server design problem for time-invariant systems de-

scribed by discrete linear dynamic models with exoge-

nous disturbances and measurement noise. The result-

ing interval observer estimates the set of admissible 

values for a given linear function of the system’s state 

vector. This paper therefore differs from [2–10], where 

interval observers were designed to estimate the full 

state vector.  

 

1.  BASIC MODELS AND PROBLEM STATEMENT 

We consider a system described by the discrete lin-

ear model 

( 1) ( ) ( ) ( ),

( ) ( ) ( ),

x t Fx t Gu t L t

y t Hx t v t

    

 
              (1) 

with the following notations: ( ) nx t R , ( ) mu t R , 

and ( ) ly t R  are the state, control, and output vectors, 
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respectively; ,   F G , and H  are constant matrices of 

dimensions n n , n m , and l n , respectively; L  is 

a known matrix of dimensions qn ; qRt  )(  is an 

unknown bounded time-varying function that de-

scribes the disturbances affecting the system, and 

*||)(||  t  for all 0t ; finally, lRtv )(  is an un-

known bounded time-varying function that describes 

measurement noise, and *||)(|| vtv   for all 0t . (The 

symbol   indicates the Euclidean norm.) 

According to (1), the uncertainties in the problem 

are represented by the measurement noise )(tv  and 

the exogenous disturbance )(t  with the upper bounds 

*v  and *  of their amplitudes, respectively, for all 

0t .  

It is required to design a minimal-order interval ob-

server producing the lower )(tz  and upper )(tz  esti-

mates of the linear function ( ) ( ) pz t Mx t R   of the 

state vector with a given matrix M  so that inequality 

)()()( tztztz   will hold componentwise for all 

0t .  

As was demonstrated in the paper [1], for continu-

ous-time systems, an interval observer can be designed 

based on the minimal-dimension model by two meth-

ods. In the first method, the matrices describing this 

model are found in the identification canonical form 

(ICF); the observer’s stability is ensured using feed-

back, and the observer is then reduced to the Jordan 

canonical form to provide the Metzler property of the 

matrix reflecting its dynamics. In the second method, 

this matrix is immediately found in the Jordan form, 

which considerably simplifies the problem: stability 

and the Metzler property directly follow from the Jor-

dan form.  

In the discrete-time case, the Metzler property is 

not required: the matrix under consideration has to be 

stable and nonnegative. The ICF satisfies these two 

requirements and is therefore is preferable here. In 

addition, the feedback may not be used for the observ-

er’s stability: the ICF has zero eigenvalues, ensuring 

stability in the discrete-time case.  

The solution is based on a minimal-dimension 

model insensitive to the disturbance: 

* * * * *

* 0

( 1) ( ) ( ) ( ),

( ) ( ) ( ).z

x t F x t J Hx t G u t

z t H x t Qy t

   

 
         (2) 

This model estimates the variable )(tz  and has the 

following notations: kRx *  is the observer’s state 

vector; k  is the model dimension; *F , *J , *G , zH , 

and Q  are matrices to be determined; finally, 

0 2( ) ( )y t N y t  for some matrix 2N  defined below. 

The vector )(tx  and the unknown vector )(* tx  are 

related by  

*( ) ( )x t x t , 

where the matrix   has to be determined. The term 

)(* tHxJ  in formula (2) can be explained as follows. 

Being a reduced part of system (1), model (2) does not 

include the output vector )(ty . Hence, this vector ap-

pears as the term )(* tyJ  in the observer (12). Such an 

approach allows considering the measurement noise.  

The solution of equation (2) insensitive to the dis-

turbance )(t  is the best in terms of the interval 

)()()( tztztz  . As is known [11], it satisfies the 

condition 0L . To make the estimated variable 

)(tz  in model (2) insensitive to the disturbance, the 

variable )(0 ty  in this equation must be formed as fol-

lows.  

Let us introduce a matrix 0L  of maximal rank such 

that 0 0L L  . Then 0NL  for some matrix N . 

Since the vector 0( ) ( )x t L x t   is insensitive to the 

disturbance, 0 1( ) ( )y t N x t  for some matrix 1N . On 

the other hand, 0 ( )y t  is part of the output vector ( )y t , 

i.e., 0 2( ) ( )y t N y t  for some matrix 2N . Then the 

matrices 1N  and 2N  satisfy the equation 

1 0 2N L N H . It has a nontrivial solution if 

)(rank)rank(rank 0
0

HL
L
H








 . 

Under this condition, the matrices 1N  and 2N  are de-

termined from the equation  

0)( 0
21 










H

L
NN  ,                   (3) 

where the symbol   separates two matrices. Other-

wise, we should use )(ty  instead of )(0 ty  in model 

(2). As a result, the interval ( ( ), ( ))z t z t  will be ex-

tended.  

According to [11, 12], the matrices describing the 

model satisfy the equations  

HJFF **  ,  GG * , 0L .    (4) 

An additional condition is due to the second equation 

in model (2). With )()( tMxtz  , we write it as  

2( ) ( ) ( )zMx t H x t QN Hx t   , 
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arriving at the equation 








 


HN
QHHQNHM zz

2
2 )(  .     (5) 

It has a solution if  













 








 

M

HN
HN 2

2
rankrank .                (6) 

Based on equations (4) and (5), we can obtain rela-

tions to analyze the existence of such a solution in 

several cases. The first of such conditions has the form 

[11] 

)rank(rankrank 0
0

0

0

FL
L
H

L
H

FL






















.        (7) 

To derive the second one, let us replace the matrix   

in equation (5) with 0NL . Then obvious transfor-

mations yield 











HN

L
QNHM z

2

0)(  . 

The resulting equation is resolvable if 
























M

HN

L

HN

L
2

0

2

0 rankrank .                 (8) 

An algorithm to check these conditions includes 

the following steps: 

1. Determine the matrix 0L  and find the matrix 

2N  from equation (3).  

2. Check conditions (7) and (8). If they are true, 

find the matrices zH  and Q  from equation (5) and 

construct the model and observer insensitive to the 

disturbance.  

3. If just condition (8) fails, examine each row iM , 

1, 2,...,i p , of the matrix M  by replacing M  in 

condition (8) with iM . Take the rows satisfying this 

condition to form the matrix 0M  and then design an 

interval observer insensitive to the disturbance to es-

timate the variable 0 0( ) ( )z t M x t . For the other rows 

of the matrix M , combined into the matrix *M , find 

the robust solution described in Section 4 and then 

design a second observer to estimate the variable 

* *( ) ( )z t M x t . This observer will have minimal sen-

sitivity to the disturbance.  

4. If just condition (7) fails, a robust solution is on-

ly possible. Find it by the methods described in Sec-

tion 4. In this case, the interval observer will be mini-

mally sensitive to the disturbance. 

5. If conditions (7) and (8) fail both, the robust so-

lution (see Section 4) is only possible as well. If the 

resulting matrix   satisfies condition (6), then the 

variable )(0 ty  (the undisturbed part of the vector 

)(ty ) can be found. Otherwise, it is impossible, and 

the interval ( ( ), ( ))z t z t  is further extended due to the 

term )(tQy  corrupted by the disturbance. 

2. MODEL CONSTRUCTION  

The matrix *F  is found in the ICF:  





















0000

0000
0100
0010

*








F . 

As is well known, the model is stable if the eigenval-

ues of the matrix *F  do not exceed 1 by magnitude. 

For the ICF under consideration, they equal 0.  

The problem is solved based on the equation [11] 

0)   )(( )()(
*1*1  kk
k LVJJ  ,   (9) 

where 






















H

HF

F

V
k

k

k



1)( ,  
























000

0 2

1

)(







LHFHL

LFFLL

L
k

k

k
   , ... ,2 ,1k  , 

and i  and *iJ  indicate the rows of the matrices   

and *J , respectively. Note that the matrix ( )kV  serves 

to construct model (2) whereas the matrix ( )kL  to en-

sure its insensitivity to the disturbances. Equation (9) 

has a nontrivial solution if 

.               (10) 

To design the model, we determine the minimum k 

from inequality (10) and the row 

1 *1 *( )kJ J    from equation (9). Then, 

based on the relations 

HJF iii *1   , 1,1  ki , HJF kk * , (11) 

nlkLV kk )   (rank )()( 
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obtained from equations (4) and the ICF [11], we con-

struct the matrix  . After that, condition (6) is veri-

fied. If it holds, the matrix M  can be expressed 

through T T T(   )H , and the designed linear model 

will estimate the desired variable )()( tMxtz  ; the 

matrices zH  and Q  are determined from the algebra-

ic equation (5) and the matrix *G  from equations (4). 

If condition (6) fails, another solution of equation (9) 

should be found for the same or increased dimension 

of the model. If it fails for all nk  , the robust solu-

tion should be used; see Section 4. 

3. INTERVAL OBSERVER DESIGN  

The observer is found in the form 

* * * * ** *

* * * * * * *

0*

* 0

* *0* *0

( 1) ( ) ( ) ( ) | | ,

( 1) ( ) ( ) ( ) | | ,

( ) ( ) ( ),

( ) ( ) ( ),

(0) ,     (0) ,

k

k

z

z

x t F x t J y t G u t J E v

x t F x t J y t G u t J E v

z t H x t Qy t

z t H x t Qy t

x x x x

    

    

 

 

   

 (12) 

where the matrix kE  of dimensions 1k  is composed 

of unities and the matrix || *J  is composed of the ab-

solute values of the corresponding elements of the ma-

trix *J . By assumption, ],[)0( 0*0** xxx   for some 

known vectors 
kRxx 0*0* , . 

Theorem. Let )0( )0()0( *** xxx  . Then the in-

terval observer (12) satisfies the relations 

)()()( *** txtxtx   and )()()( tztztz   

for all 0t , where  

0*

* 0

( ) ( ) ( ),

( ) ( ) ( )

z

z

z t H x t Qy t

z t H x t Qy t

 

 
                  (13) 

for 0zH   and  

* 0

0*

( ) ( ) ( ),

( ) ( ) ( )

z

z

z t H x t Qy t

z t H x t Qy t

 

 
                  (14) 

for 0zH  . 

P r o o f. By analogy with [2], we introduce the estima-

tion errors   

* * * ** *( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ), ( ) ( ) ( ).zz

e t x t x t e t x t x t

e t z t z t e t z t z t

   

   
       (15) 

In view of (2) and (12), it is possible to obtain the difference 

equations 

* * * ** *

* * * **

* * * * * *

* * * * *

( 1) ( ) ( ( ) ( )) | |

( ) ( ) | | ,

( 1) ( ) ( ( ) ( )) | |

( ) ( ) | | .

k

k

k

k

e t F e t J Hx t y t J E v

F e t J v t J E v

e t F e t J y t Hx t J E v

F e t J v t J E v

    

  

    

  

 (16) 

Since )0( )0()0( *** xxx  , formula (15) implies 

0)0(* e  and 0)0(* e . Note that in system (16), 

0)(|| ***  tvJvEJ k  for all 0t  and 0* F . Given 

0)0(* e  and 0)0(* e , its solutions will be elementwise 

nonnegative: 0)(* te  and 0)(* te  for all 0t  [2]. 

Due to )()()( 0* tQytxHtz z  , for 0zH , from (13) 

and (15) we have 

* 0 0* *

* 0 * 0 *

( ) ( ) ( )

( ) ( ) ( ( ) ( )) ( ),

( ) ( ) ( )

( ) ( ) ( ( ) ( )) ( ).

z

z z z

z

z z z

e t z t z t

H x t Qy t H x t Qy t H e t  

e t z t z t

H x t Qy t H x t Qy t H e t

 

    

 

    

 

Considering the inequalities 0)(* te , 0)(* te , and
 

0zH , we obtain ( ) 0ze t    and ( ) 0ze t  , which is 

equivalent to )()()( tztztz  . In the case 0zH , from 

(14) and (15) it follows that 

* 0 * 0 *

0 * 0* *

( ) ( ) ( )

( ) ( ) ( ( ) ( )) ( ),  

( ) ( ) ( )

( ) ( ) ( ( ) ( )) ( ).

z

z z z

z

z z z

e t z t z t

H x t Qy t H x t Qy t H e t

e t z t z t

H x t Qy t H x t Qy t H e t

 

     

 

     

 

In view of *( ) 0e t  , 0)(* te , and 0zH , we finally 

arrive at ( ) 0ze t   and ( ) 0ze t  . The proof of this theo-

rem is complete. ♦ 

Remark 1. If the matrix zH  is indefinite, the final 

result remains the same, but the formulas for calculat-

ing the upper and lower bounds become more compli-

cated. We consider two cases as follows.  

 Let zH  be a row; without loss of generality, 

assume that its first p  components are positive and 

the rest are negative: (   )z z zH H H  . We define 

( )
0*( ) *( ) ( ) ( ) ( )

k p
z zpz t H x t H x t Qy t

    , 

where *( )px  and 
( )
*

k p
x


 are the subvectors of the 
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state vectors *x  and *x  containing the first p  and the 

last ( )k p  components, respectively. Then 

( )
*( ) 0*

( )
0*( ) *

( )
*( ) *

( )

,  

k p
z p zz

k p
z zp

k p
z zp

e z z H x H x Qy

H x H x Qy

H e H e

 

 

 

    

  

 

 

and 0)( te z  due to 0
zH  and 0

zH . By analo-

gy, it is demonstrated that 0)( tez  for  

)()()()( 0
)(

*)(* tQytxHtxHtz
pk

zpz 
 . 

 Let the matrix zH  
have several rows: 




















z

z
z

H

H
H , where 


zH  and 


zH  are submatrices 

such that 0
zH  and 0

zH . We define 

)(
)(

)(
)( 0

*

* tQy
txH

txH
tz

z

z 



















; 

then, obviously, 

*
* 0 0

*

*

*

0.

z z
z

z z

z

z

H H x
e x Qy Qy

H H x

H e

H e

 

 





    
       

    
    

 
  
  

   

A more complex case is when zH  has several 

rows, each of the structure (  )z zH H 
. It reduces to a 

combination of the two cases considered.  

Remark 2. The condition )0( )0()0( *** xxx   is 

crucial in the theorem. For the positive system (14), it 

gives 0)(* te  and 0)(* te  for all 0t . Due to no 

feedback in the observer and the stability of the matrix 

*F , these inequalities will hold for some 0t  even 

without the condition )0( )0()0( *** xxx  : the ini-

tial conditions are “forgotten” for kt  .  

Indeed, let us denote 0 * *( ) | | kv t J E v * ( ) 0J v t   

and consider the first equation in system (14). Accord-

ing to [12], its solution can be represented as  

)()0()( 0

1

0

1
**** ivFeFte

t

i

itt





 .         (17) 

It is easy to check that 0
*
kF . Then, for kt  , the 

value )(* te  will be determined by the second term on 

the right-hand side of equality (17). By construction, 

this term is nonnegative, so 0)(* te  for all kt  . 

Similarly, we can show that 0)(* te  for all kt  .  

4. ROBUST SOLUTION  

If condition (10) does not hold for all nk  , we 

find a robust solution minimizing the contribution of 

the disturbance to the model. It is almost identical to 

the solution proposed in [1], except for minimizing the 

norm 
( )

1 1|| ( ... ) ||k
k FJ J L    subject to the 

condition 

0)...( )(
211  k

k VJJJ  .   (18) 

In other words, the matrix *R  from the paper [1] is 

replaced by 1 . We can say that the problem is to 

determine a solution )...( 11 kJJ    with 

“maximal orthogonality” to the columns of the matrix 
)(kL . 

Following [1], based on all linearly independent so-

lutions of equation (18), for some fixed dimension k 

we construct the matrix 






















)()(

2
)(

1
)(

1

)1()1(
2

)1(
1

)1(
1

...

...

N
k

NNN

k

JJJ

JJJ

W   

and find the singular value decomposition 

( )k
L L LWL U V  . We choose the first transposed col-

umn of the matrix LU  as the vector of weight coeffi-

cients 1( , , )Nw w w  and let 

1 1( ... )kJ J wW    . Finally, we determine 

the rows of the matrix   from formula (11) and the 

matrices *G G  and *L L  to design model (2) 

with minimal sensitivity to the disturbances. 

Due to the additional term * ( )L t  in model (2), the 

dynamics of the interval observer for 0v  are cor-

rected as follows:   

,* * * * k * * k ** *

* * * * * * k * * k *

x F x J y G u | J | E v | L | E

x F x J y G u | J | E v | L | E .





     

     
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The expressions (14) for the estimation errors are 

modified appropriately: 

.||||

,||||

*********

*********









kk

kk

ELLvEJvJeFe

ELLvEJvJeFe
 

Clearly, the desired result is immediate from the proof 

of the theorem and the obvious additional inequality 

( ) 0* k * *| L | E L t    .  

5. INTERVAL ESTIMATION OF THE FULL STATE VECTOR 

In several cases, this interval estimation approach 

for the variable )()( tMxtz   can be applied for the 

full state vector )(tx  as follows. Without loss of gen-

erality, assume that the matrix H  has the maximal 

rank and  

)0   ( 0HH  , )()()( )1(
0 tvtxHty  ,
















)(

)(
)(

)2(

)1(

tx

tx
tx , 

where 0H  is a nonsingular matrix. Let us define 

(1) 1 (1) 1

0 0

( ) ( ) , ( ) ( ) ,

( ) ( ), ( ) ( ).

l * l *y t y t E v y t y t E v

x t H y t x t H y t 

   

 
       (19) 

Then 

(1) (1)(1)

1 1 1
0 0 0 *

( ) ( ) ( )

( ( ) ( )) ( ) ( ( )),l

e t x t x t

H y t v t H y t H E v v t  

 

    
 

(1) (1) (1)

1 1 1
0 0 0 *

( ) ( ) ( )

( ) ( ( ) ( )) ( ( )).l

e t x t x t

H y t H y t v t H E v v t  

 

    
 

Under the assumption 01
0 H , from 

* ( ) 0lE v v t   we obtain 0)(
)1(

te  and 0)()1( te  

and, consequently, )()()( )1()1()1(
txtxtx  . Thus, 

the variable )()1( tx  given the condition 01
0 H  is 

estimated based on the expression (19), and the dis-

turbance )(t  has no effect on this estimate. 

Remark 3. The condition 01
0 H  obviously 

holds in application-relevant cases when the compo-

nents of the vector 
(1) ( )x t  are measured by separate 

sensors and lIHH  1
00 .  

The variable )()2( tx  can be assigned an interval 

estimate using the observer (12). Assuming 

)()()( )2()2( txMtxtz   for some matrix )2(M  and 

using the criterion (7) with the matrix )2(M  instead of 

M , we check the possibility of designing an observer 

insensitive to the disturbance. Then, depending on the 

check results, we design an observer of the form (12) 

or the robust one.  

Remark 4. The condition * **(0) (0) (0)x x x   of 

the theorem follows from )0( )0()0( xxx   only 

when 0 . Indeed, for 0  and 0)0()0(  xx , 

we obtain 0))0()0((  xx  and, consequently, 

* *(0) (0) (0) (0)x x x x   . The inequality 

)0( )0( ** xx   is established by analogy. According to 

Remark 1, however, this is not critical since the rela-

tion )()()( tztztz   will necessarily hold for kt  . 

6. AN ILLUSTRATIVE EXAMPLE 

We consider a discretized model of an electric drive 

1 1 2 1

2 2 3 2

3 3 2 4 3 5

1 1 1 2 3 2

( 1) ( ) ( ),

( 1) ( ) ( ) ( ),

( 1) ( ) ( ) ( ),

( ) ( ) ( ),   ( ) ( ) ( ),

x t k x t x t

x t k x t x t t

x t k x t k x t k u t

y t x t v t y t x t v t

  

   

   

   

        (20) 

with the following notations: the coefficients 1 5,...,k k  are 

some drive parameters depending on the sampling interval; 

the disturbance ( )t  is due to an external load torque ap-

plied to the motor shaft. The model under consideration is 

described by the matrices 

1

2

3 4

1 0

0 1

0

k

F k

k k

 
 

  
 
 

, 

5

0

0G

k

 
 

  
 
 

,  

1 0 0

0 0 1
H

 
  
 

, 

0

1

0

L

 
 

  
 
 

.  

Choosing (0 1 0)M  , we design an interval observ-

er for the variable 2( )x t . Since the disturbance enters the 

equation of this variable, the model will be sensitive to it. 

Therefore, we construct the model by letting 0L  . Equa-

tion (9) with 
( ) 0kL  , 1k  , takes the form 
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1

2

* 3 4

1 0

0 1

(    ) 00

1 0 0

0 0 1

k

k

J k k

 
 
 
   
 
 
 
 

. 

The solution is 1(1/ 1 0)k   and 

* 1 2(1/ )J k k  , yielding * 0G   and * 1L   . As is 

easily verified, condition (5) holds and 1zH    and 

)0/1( 1kQ  . The desired model has the form 

* 1 1 2 2

* 1 1

( 1) (1/ ) ( ) ( ) ( ),

( ) ( ) (1/ ) ( ). 

x t k H x t k H x t t

z t x t k y t

   

  
 

Based on this model, considering 1zH , we design the 

following interval observer for the variable )()( 2 txtz  : 

1 1 2 2*

1 *1 2 *2 *

* 1 1 2 2

1 *1 2 *2 *

* 1 1

1 1*

( 1) (1/ ) ( ) ( )

(1/ ) ,

( 1) (1/ ) ( ) ( )

(1/ ) ,

( ) ( ) (1/ ) ( ),

( ) ( ) (1/ ) ( ).

x t k y t k y t

k v k v

x t k y t k y t

k v k v

z t x t k y t

z t x t k y t

  

  

  

  

  

  

              (21) 

The variables 1( )x t  and 3( )x t  can be estimated using 

the expression (19): 

1 *11( ) ( )x t y t v  , 2 *23( ) ( )x t y t v  , 

 ,
 3 2 *2( ) ( )x t y t v  . 

Comparing these estimates with those from [2] and similar 

papers, we can conclude the following: the proposed ap-

proach provides a simpler observer and smaller intervals 

because, in particular, the intervals for the variables 1( )x t  

and 3( )x t  do not contain the disturbance ( )t .  

For numerical simulation, we selected system (20) and 

the observer (21) with ( ) 0.2sin( /100)u t t  and the noises 

1( )v t , 2( )v t , and ( )t  described by random processes with 

a variance of 0.5. For simplicity, we assumed that 

1 2 5 1k k k    and 3 4 1k k   . The simulation results 

are shown in Figs. 1 and 2, i.e., the variable 2( )x t  and its 

lower and upper bounds *( )x t  and *( )x t  for the initial con-

ditions (0) 0x  , (0) 0.05x   , and (0) 0.05x   and 

(0) 0x  , (0) 0.05x  , and (0) 0.05x   , respectively. As 

has been emphasized in Remark 1, the initial conditions 

affect only the estimates at the initial time instants. 

 

 

 

Fig. 1. The variable x t1( )  and its lower x t1( )  and upper x t1( )  

bounds for the initial conditions x(0) = 0, (0) = 0.05x , and 

(0) = 0.05.x
 

 

 

 

Fig. 2. The variable x t1( )  and its lower x t1( )  and upper 1( )x t  

bounds for the initial conditions x(0) = 0, (0) = 0.05x , and 

(0) = 0.05.x  

 

CONCLUSIONS 

In this paper, we have designed interval observers 

for linear dynamic systems described by discrete-time 

models under exogenous disturbances and measure-

ment noise. The relations based on the identification 

canonical form have been obtained to design a mini-

mal-order interval observer estimating the set of ad-

missible values for a given linear function of the sys-

tem’s state vector. A robust approach to solving the 

design problem has been considered as well. It has 

been demonstrated that the proposed solution can be 

used to estimate the full state vector. The theoretical 

results have been illustrated by a numerical example. 
 

1 1 *1( ) ( )x t y t v 
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