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Abstract. This paper presents a terminal control problem with the separation of object’s state 

coordinates into two types: the slowly changing coordinates figuring in boundary conditions and 

the coordinates of the stabilization loop. A predictive model of the object is introduced to design 

the control action. A differential equation is derived for predicted mismatches in the boundary 

conditions. The original system is discretized in time based on this equation. This problem is 

solved step-by-step in the classes of piecewise constant and piecewise continuous control ac-

tions. As an illustrative example, the problem of controlling the fuel consumption of a stage of a 

liquid-propellant launch vehicle is considered. The class of control actions is extended from 

piecewise constant to piecewise continuous functions in order to cover additional requirements 

for the control process. The continuous functions on intervals between control jumps are chosen 

using the local boundary conditions obtained during the terminal control design in the class of 

piecewise constant functions. 
 

Keywords: terminal control, model predictive control (MPC), fuel consumption control for launch vehi-

cles. 
 

 
 

INTRODUCTION  

Terminal control problems arise in many areas of 

engineering. In rocket dynamics, some examples of 

such problems include insertion into Earth orbit, fuel 

consumption until complete exhaustion from the tanks, 

rendezvous of spacecraft, etc. In these examples, the 

control problem is to bring an object (often called a 

plant in control theory) to given final states under 

known initial conditions. Terminal conditions can be 

defined as the required values of the object’s state co-

ordinates or in a more complex form, e.g., as some 

functions of the state coordinates. 

The modern terminal control concept for the ob-

jects of rocket and space technology was thoroughly 

described in the monograph [1]. A fundamental ele-

ment of terminal control is predicting the object’s final 

state in the form of given boundary conditions. 

Predictive methods in the field of rocket dynamics 

were considered in [2–4]. The application of modern 

model predictive control (MPC) methods to nonlinear 

systems was discussed in detail in the book [5]. The 

general idea of the MPC approach consists in con-

structing a predictive model of the object in order to 

find the optimal control actions at the current and sub-

sequent time instants. Note that only the current con-

trol action is implemented and the optimization proce-

dure is repeated at the next time instant. In the paper 

[6], for a given control action in a predictive model, 

the derivative of the predicted coordinate values over 

time was determined. MPC methods also evolved to-

wards applying real-time optimization [7] and making 

the closed-loop system robust and adaptive [8, 12]. To 

reduce the computational burden, the prediction pro-

cedure is performed for a limited number of time in-

stants. 

In the rocket dynamics problems mentioned, ter-

minal control is formed as part of the general problem 

of controlling an object by separating its relatively 

slow physical processes that determine the motion to a 

given target. In this case, the general control action is 

decomposed into the terminal control action and the 
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problem of stabilizing the object with respect to its 

motion to a given target. One example is angular posi-

tion stabilization for a launch vehicle with respect to 

the pitch angle program during its orbital insertion 

control. Note that the control action is directly applied 

to the object’s dynamic part belonging to the stabiliza-

tion loop. Terminal control design is usually consid-

ered independently of the stabilization loop. The ob-

ject’s coordinates outputted by the stabilization loop 

are taken as the terminal control action.  

The authors [9] studied the terminal control prob-

lem with the decomposition of the general problem 

considering the formal description of the plant’s dy-

namics, including the stabilization loop. Such an ap-

proach takes into account the dynamics of the transient 

response of the stabilization loop to the control action 

instead of the operating errors of this loop. In this 

case, the idea of predicting the object’s final state is 

implemented for all dynamic channels of the system: 

from the application point of control actions to mis-

matches in the boundary conditions. The described 

approach was considered in [9–11] for control actions 

in the class of piecewise constant functions. The paper 

“On a Terminal Control Problem with Prediction of 

Mismatches in the Boundary Conditions” by D.D. 

Tabalin was mentioned in the conference chronicle 

[11]. This paper solves the terminal control problem in 

the class of piecewise continuous functions. This prob-

lem is closely related to the approach presented in [9]. 

Therefore, we provide the main control design results 

in the class of piecewise continuous functions. The 

class of control actions is extended from piecewise 

constant to piecewise continuous functions in order to 

cover additional requirements for the control process. 

The continuous functions on intervals between control 

jumps are chosen using the local boundary conditions 

obtained during the terminal control design in the class 

of piecewise constant functions. 

1. PROBLEM STATEMENT  

To understand the essence of control processes in a 

system bringing an object to a given final state, it is 

useful to separate two interconnected systems of ob-

ject’s equations differing in transients. 

We consider a dynamic system of the form 

1
1 1 2

2
2 2

0 0

( ( ), ( ), ),

( ( ), ( ), ),

( ) ,

dx
f x t x t t

dt

dx
f x t u t t

dt

x t x







                     (1) 

where 1

1
nx R , 2

2
nx R , 1 2( , )x x x , 

1 2

0 0
n nx X R   , u denotes the control action, 

mu U R  , and 0[ , ]t t T . 

Here, the first system of equations for the coordi-

nates 1( )x t  describes the object’s motion to a given 

target. The objects controlled by terminal systems are 

very inertial in terms of transients to a given final 

state. (As a rule, they are integrating links.)  

Their transients are controlled through other ob-

ject’s coordinates 2( )x t  with rapidly decaying transi-

ent dynamics. The essence of such control is to set the 

values of these coordinates. Control in the traditional 

sense (i.e., the position of different actuators such as 

drives, rudders, etc.) stabilizes the object’s coordinates 

with respect to the set values. The operation of the 

closed stabilization loop is described by a system of 

equations for the coordinates 2( )x t . The control action 

( )u t  on the right-hand side of these equations is the 

settings for the coordinates 2( )x t .  

One example is angular position stabilization for a 

launch vehicle with respect to the pitch angle program 

during its orbital insertion control. Thus, the terminal 

control action is directly applied to the dynamic part of 

the object belonging to the stabilization loop. In math-

ematical formulations of optimal control problems, 

terminal control design is usually considered inde-

pendently of the stabilization loop. 

Assume that there exists a unique solution of sys-

tem (1) under any initial conditions.  

The terminal control problem is to transfer the sys-

tem to a desired final state x that satisfies the follow-

ing boundary conditions at a time instant T: 

1 1( ) : ( ( )) 0i ix x T   , 1, ,i L   

where  is the number of these conditions. The bound-

ary conditions are imposed only on the coordinates x1, 

representing given condition vectors for individual 

components x1i. Let the function ψ be differentiable. 

Note that in some terminal control problems, boundary 

conditions may be imposed on part of the coordinates 

x2.  

The time instant T > t
0
 is either fixed or deter-

mined by the first instant of satisfying the pth bounda-

ry condition ψ
p
(x

1p
) = 0. 

The object’s coordinates x2 are outputted by the 

stabilizing loop of the control system. In this case, the 

operation of the loop is considered only in terms of the 

transient response to changing the control action. As-

sume that the transients terminate on an interval sig-

nificantly smaller than the terminal control horizon. 

This approach somewhat restricts generality since the 
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dynamics of the coordinates x2 and x1 are supposed 

mutually independent. 

With system (1) we associate a predictive model of 

the form 

1
1 1 2

2

ˆ
ˆ ˆ( ( ), ( ), ), [ , ],

ˆ
0,

ˆ( ) ( ).

dx
f x x t T

d

dx

d

x t x t

    







           (2) 

The function 

1̂( ) ( ( | ))z t x T t ,  

where the time instant T is calculated for system (2) by 

analogy with the original system (1), will be called the 

predicted mismatch in the boundary conditions due to 

the predictive model (2). Therefore, the time instant T 

for system (2) is either fixed or determined by the first 

instant of satisfying the boundary condition ψp. 

We denote by 1̂( | )x T t
 
the value of 1̂( )x T  due to 

the system of equations (2) that is predicted at a time 

instant t. 

Being a function of x(t) and t, z(t) satisfies the dif-

ferential equation 

1
2 2

1 2

1 1 2

ˆ ( | )( )
( ( ), ( ), )

ˆ ( | ) ( )

ˆ( ( | ), ( ), ) .

x T tdz t
f x t u t t

dt x T t x t

dT
f x T t x t T

dt


 
 


 



 

For details, see the paper [9]. 

From this point onwards, let T = const. In this case, 

1
2 2

1 2

ˆ ( | )( )
( ( ), ( ), ).

ˆ ( | ) ( )

x T tdz t
f x t u t t

dt x T t x t



 

     (3) 

We introduce the notation dz/dx2 for a matrix by 

which the function f2 is multiplied in the expression 

for dz/dt. Then formula (3) can be written as 

2 2

2

( ( ), ) ( ( ), ( ), ).
dz z

x t t f x t u t t
dt x





           (4) 

We will solve the terminal control action for object 

(1) by designing a feedback control action as a func-

tion of the predicted mismatches in the boundary con-

ditions described by the differential equation (3). The 

control action will be chosen in the class of piecewise 

continuous functions. 

The idea consists in a two-step control design. In 

the first step, the control action is constructed in the 

class of piecewise constant functions. Local boundary 

conditions are formed by solving this problem. Ful-

filling the local boundary conditions in aggregate al-

lows solving the original terminal control problem. In 

the second step, we extend the class of control actions: 

on the intervals between control jumps, the control 

action is assumed to be a continuous function. Such a 

control action will be designed considering the local 

boundary conditions obtained with piecewise constant 

control.  

2. LOCAL BOUNDARY CONDITIONS AT TERMINAL 

CONTROL JUMPS 

Assume that u(t) is a piecewise constant function 

and tj, j = 1, 2,..., k – 1, are the time instants of its 

jumps, kt T . In this case, z(tj) satisfies a difference 

equation, an analog of the differential equation (4). To 

obtain this equation, we use the results from [9]. 

Integrating equation (4) on a small interval [tj, tj + 

δt] yields 

2 2

2

2

2

( )

( ) ( ( ), ) ( ( ), ( ), )

( ) ( ( ), ) ( ).

j

j

j

t t

j

t

j j j

z t t

z
z t x f x u d

x

z
z t x t t x t

x



 


       




    



  

Here, t is the interval of the transient on the coordi-

nate x2 of the object (1) during a jump of the control 

action from u(tj) to u(tj+1) at the time instant tj. For 

1[ , ]j jt t t    , 2 2( ( ), ( ), ) 0f x u    . 

For small t, we pass to the discrete system 

1 2

2

( ) ( ) ( ( ), ) ( ),

0, 1, 2,..., 1, ( ) ( ),

j j j j j

k

z
z t z t x t t x t

x

j k z t z T




  



  

         (5) 

where  

2 2 2( ) ( ( ), ( ), )

j

j

t t

j

t

x t f x u d



      . 

Let us reformulate the original terminal control 

problem as follows. We will find a discrete sequence 

of the increments x2(tj) of the coordinate x2(t) at the 

time instants tj, j = 0, 1, 2,..., k – 1, instead of the con-

trol action u(t) in the class of piecewise constant func-

tions. 

We consider the case of no restrictions on ∆x2 and 

solve the terminal control problem 

 2( ) : ( ) 0.j kx t z t                        (6) 

Assume that 
2 2

( ( ), ) ( )j j j

z z
x t t t

x x

 


 
 in formula (5). 

For the system of equations (5), problem (6) is 

solved backwards from the time instant 1kt  . For ex-

ample, some condition is introduced for choosing 
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2 1( )kx t   uniquely for the time instant 1kt  ; simulta-

neously, a boundary condition is introduced for all 

control actions preceding 1kt  . These conditions are 

formulated by specifying linear operators with respect 

to the mismatches ( )kz t
 
and

 1( )kz t  . The resulting 

system of equations with respect to the mismatch 

( )kz t  has the unique trivial solution. When passing to 

2kt  , the solution for 2 1( )kx t   is taken into account.  

As a result, the original control problem (6) with 

the right-end boundary conditions is reduced to an 

equivalent set of local control problems for a finite 

number of discrete time instants: 

 

 

2 1

т

1

2

2 1 2 2 2 2 1

1 1

( ) :

( ) ( ) ( ) 0 , ,

( ), ( ),..., ( ), ( ) :

( ) ( ) 0.

j

j j j

j j

j j

x t

z
t K t z t j p k

x

x t x t x t K t

K t z t





 

 




  



  



        (7) 

Note that the first equation in (7) is intended to 

choose the current control action 2 1( )jx t  . Multipli-

cation by 
т

1

2

( )j

z
t

x





 gives the mismatches, whose 

number coincides with the dimension of the control 

vector. 

The second equation specifies the local boundary 

conditions for choosing control actions at the time in-

stants before 1jt .  

The matrix 1( )jK t   is given by the recurrence rela-

tion  

1
т

1

2 22

т

2

( ) ,

( ) ( ) ( )

( ) ( ), , ,

k

j j j

j j

K t

z z z
K t K t K t

x xx

z
K t K t j p k

x








 


         
    


 
   
 

     (8) 

where E is an identity matrix of compatible dimen-

sions and 

1

2 2

( )j

z z
t .

x x


 


 
 

We denote ( ) ( ) ( )j j j jz t K t z t . The vector ( )j jz t  

consists of the mismatches ( )kz t  under the control 

actions 2 1 2 2 1( ), ( ),..., ( )j j kx t x t x t     (7). 

Let the values 2 1( ) ,jx t j p k    be obtained from 

formula (7): 
1

т

2 1 1 1

2 2

т

1 1

2

( ) ( ) ( ) ( )

( ) ( ) ( ) , .

j j j j

j j j

z z
x t t K t t

x x

z
t K t z t j p k

x



  

 

  
   

  


  
  

    (9)  

We determine the corresponding mismatches ( )j jz t . 

In this case, ( ) ( )j j kz t z t , and the first equation in (7) 

can be written as the system of linear equations for 

( )kz t : 

т

1

2

т

1

2

( ) ( ) ( )

( ) ( ) 0   , .

j j j

j k

z
t K t z t

x

z
t z t j p k

x










   


           (10)  

According to [9], the system of equations (10) has 

the unique trivial solution ( ) 0kz t   if the rank of the 

matrix 1 2 1

2 2 2

( )  ( ) ... ( ) k k p

z z z
t t t

x x x
  

   
 
   

 is equal 

to the dimension of the vector ( )kz t . In this case, the 

control action (9) is a solution of the original terminal 

control problem. 

The control strategy corresponding to (7) imposes 

constraints on the object’s trajectory for the values of 

( )z t  at a finite number of control jump instants. On 

the intervals between these instants, control actions 

may vary for the coordinates 2x . These variations can 

be chosen considering desired performance criteria for 

the state and control coordinates. Thus, it is possible to 

extend the class of control actions (functions) in order 

to optimize nonterminal criteria.  

3. TERMINAL CONTROL DESIGN IN THE CLASS             

OF PIECEWISE CONTINUOUS FUNCTIONS 

We formulate the terminal control problem in the 

class of piecewise continuous functions by supple-

menting the problem statement from Section 1. 

As before, the controlled object is described by 

equation (1) and the predictive model by equation (2); 

the control action u(t) has jumps at discrete time in-

stants tj, j = 0, 1, 2,..., k – 1. On the intervals [tj, tj+1], 

u(t) is a continuous function. The predicted mismatch 

vector )(tz  satisfies the differential equation (4) with 

2 2

( ( ), ) ( )
z z

x t t t
x x

 


 
. We know the solution of the 
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local control problems (7) in the class of piecewise 

constant functions: 2 1( ) ,jx t j p k    for the differ-

ence equation (5). We choose the control action )(tu  

in the class of piecewise continuous functions under 

the following conditions on the intervals between time 

instants 
1  ,j jt ,t j p k   : 

т

1

2

1 1

( ) ( ) ( ) 0   , ,

( ) ( ) 0,

j j j

j j

z
t K t z t j p k

x

K t z t



 


  





 

where the matrix 1( )jK t   is given by (8). In this case,  

1

1 2 2
2

( ) ( ) ( ) ( ( ), ( ), )
k

k

t

k k

t

z
z t z t f x u d

x





      


 (11)  

for the piecewise continuous function ( )u  , 

1[ , ]k kt t .  

Assume that 
т

1

2

( ) ( ) 0k k

z
t z t

x






.                      (12) 

This condition narrows the class of piecewise con-

tinuous control actions under consideration. The new 

class, restricted by condition (12), is defined below. 

Let u() = const, 1( , )k kt t . Due to the jump of 

the function u() at the time instant 1kt , in this case, 

we can write  

1 1 2 1

2

( ) ( ) ( ) ( )k k k k

z
z t z t t x t

x
  


  


.       (13) 

The value 2 1( )kx t   is determined from condition 

(12) using the expression (9). 

Suppose that on the interval [tk–1, tk], the piecewise 

continuous function u() satisfies the relation 

1

2 2

2

1 2 1

2

( ) ( ( ), ( ), )

( ) ( ).

k

k

t

t

k k

z
f x u d

x

z
t x t

x



 


    




 



             (14)  

In this case, (11) is transformed to (13) and, there-

fore, condition (12) holds.  

Let the control actions at the time instants preced-

ing 1jt   be chosen so that 1 1( ) ( ) 0j jK t z t   . (In other 

words, the boundary conditions specified by the se-

cond equation in (7) are satisfied.) Subtracting 

1 1( ) ( )j jK t z t   from the right-hand side of (11) and 

performing trivial transformations, we obtain 

1

1
т т

1 1 1 1 1
2 2 2 2

2 2
2

( )

( ) ( ) ( ) ( ) ( )

( ) ( ( ), ( ), ) 0.
k

k

k

k k k k k

t

t

z t

z z z z
t t t t z t

x x x x

z
f x u d

x




    

    
  

     


      



 

The first term on the right-hand side of this expression 

is 
1 2 1

2

( ) ( )k k

z
t x t

x
 


 


; see formula (9) for j = k. Due 

to the relation (14), we finally arrive at ( ) 0kz t  .  

We now proceed to choosing the control action on 

the interval [tk–2, tk–1]. It is necessary to determine the 

new mismatch vector 1 1 1 1( ) ( ) ( )k k k kz t K t z t    . For 

the vector 1 1( )k kz t   and the piecewise continuous 

function u(),  [tk–2, tk–1], we write 

1

2

1 1 1 1 1

2 2 2
2

( ) ( ) ( ) ( )

( ) ( ) ( ( ), ( ), ) .
k

k

k k k k k

t

k

t

z t K t z t K t

z
z t f x u d

x





    



 

 
       

 
 


  (15) 

Let the condition 

т

1 1 1

2

( ) ( ) 0k k k

z
t z t

x
  





                   (16) 

hold for u(). 

The control action on the interval [tk–2, tk–1] is cho-

sen using the same considerations as on the interval 

[tk–1, tk]. For the constant control action u(),   (tk–2, 

tk–1), we write 

1
1 1 1 2 2 2 2

2

( ) ( ) ( ) ( ),k
k k k k k k

z
z t z t t x t

x


     


  


  (17) 

where  

1
2 1 2

2 2

( ) ( ) ( )k
k k k

z z
t K t t

x x


  

 


 
, 

1 2 1 2( ) ( ) ( )k k k kz t K t z t    . 

The value x2(tk–2) is determined from condition 

(16) using the expression (9). 

Suppose that on the interval [tk–2, tk–1], the piece-

wise continuous function u() satisfies the relation 

1

2

1 2 2
2

2 2 2
2

( )( ( ) ( ( ), ( ), )

( ) ( )) 0.

k

k

t

k

t

k k

z
K t f x u d

x

z
t x t

x







 


    




  



 

In this case, (15) is transformed to (17) and, there-

fore, condition (16) holds.  
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We define the new mismatch vector as 

2 2 2 2( ) ( ) ( )k k k kz t K t z t     under the condition 

2 2( ) ( ) 0k kK t z t   , transforming (15) similarly to (11) 

on the interval [tk–1, tk].  

The procedure can be continued for all time in-

stants preceding tk–1. 

As a result, for the time instant tj, we have 

1

1 2 2

2

( ) ( ) ( ) ( )

( ) ( ) ( ( ), ( ), ) ,

j

j

j j j j j

t

j

t

z t K t z t K t

z
z t f x u d

x




 

 
       

 
 


  (18) 

1

2 2
2

1 2 1
2

( )( ( ) ( ( ), ( ), )

( ) ( )) 0.

j

j

t

j

t

j j

z
K t f x u d

x

z
t x t

x



 


    




  




    

     (19) 

Here 1( )jK t   is given by (8) and 2 1( )jx t   by (9). 

Due to formulas (19) and (9), 

т

1

2

( ) ( ) ( ) 0   ,j j j

z
t K t z t j p k

x



  


.         (20) 

Thus, equation (19) and the expression (9) for 

x2(tj–1) define conditions equivalent to the initial con-

dition (20). 

Letting ( ) ( ) 0j jK t z t  , we employ simple trans-

formations of (18) to show that 

( ) ( ) ( ) 0.j j j jz t K t z t   

Thus, the control action chosen by (19), (9) in the 

class of piecewise continuous functions solves the 

terminal control problem: ( ) 0kz t  . Note that on the 

intervals between jumps, the control action can be 

chosen in a sufficiently wide class of functions.  

4. AN EXAMPLE  

As an example, we consider the problem of controlling 

the fuel consumption of a liquid-propellant rocket. We re-

strict the further analysis to the problem of synchronizing 

the depletion of oxidizer and propellant by the time of turn-

ing the rocket stage’s power unit off. This problem will be 

studied in the linear approximation. Due to the nonsynchro-

nous depletion, the unused remainders of propellant compo-

nents remain in the tanks, reducing the power characteristics 

of the rocket. The synchronization process is controlled by 

changing the ratio of component consumption in the power 

unit. In turn, a deviation of this parameter from the nominal 

optimal value causes losses of specific thrust. The losses 

become most tangible when approaching the end of the 

flight. All these considerations lead to qualitatively formu-

lated requirements for the control process and determine the 

type of boundary conditions.  

The controlled object is described by the equations  

1 2 2 2

0 0 2 0

1
( ) ( ), ( ) ( ( ) ( )),

[ , ], , ( ) 0.k k

x t x t x t k x t u t
T

t t t T t t x t

   

   

 

Here, 1( )x t  is the mismatch between the mass fractions of 

the propellant components and 2( )x t  is the relative devia-

tion of the ratio of component consumption from the nomi-

nal value. 

The boundary conditions are given by  

1 2( ) 0, ( ) 0k kx t x t  . 

We determine the vector of the predicted mismatches 

( )z t  and ( )z t : 

1 2

2

( ) ( )
( )

( )

kt t
x t x t

z t T

x t




 ,  

2
2

( )
( ) ( )

         1

kt t
x t

z t x tT



 . 

First, let us solve the problem in the class of piecewise 

constant functions. In this case, it suffices to have two 

jumps of the control action ( )u t
 

at time instants t0,           

t0 < t1 < T. We determine the vector of predicted mismatches 

in the boundary conditions at the time instant t1: 

1 1 1 2 1
1

2 1

( ) ( )
( )

( )

x t t x t
z t

x t


 , 

1
( )kt t t

T
   , 1 1

1
( )kt t t

T
   . 

Note that under jumps of the function ( )u t , the transient 

for the coordinate 2( )x t  terminates in a time significantly 

smaller than T. (The transient time is t  < 0.01T.) To re-

duce the system error due to the finite transient time t , the 

partial derivative 
2

( )
z

t
x




 in the example is taken at an in-

termediate time instant on the interval t . 

We have  
*
1

1 2 1

*
1 1 1

( ) ( ) ( ),
1

( , ),

k

t
z t z t x t

t
t t t

T

  


  

 

where 2 1 2 2 1( ) ( ) ( )kx t x t x t   . 

Under the jump of the function ( )u t  at the time instant 

t1, the condition 

*
1 ( ) 0

1
k

t
z t   implies  

*
1 1 1 2 1 1 2 1

2 1 *2
1

( ( ) ( )) ( )
( ) .

1

x t t x t t x t
x t

t

 
  


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The matrix 1( )K t  takes the form 

*
1

1 *2* *2
11 1

   1       1
( )

1      

t
K t

tt t





. 

The new mismatch vector for choosing the control ac-

tions 2 0 2 1 2 0( ) ( ) ( )x t x t x t    is written in the form 

1 1 1 1( ) ( ) ( )z t K t z t ,  

where 
*

*0
1 0 2 0 0 0 0( ) ( ) ( ), ,

1

t t
z t z t x t t t t

T

 
      

 
. 

After trivial transformations we obtain the following 

condition for determining the control action 2 0( )x t : 

* *
1 1 1 0 0 1 2 0* *2

1 1

1 1
( ) ( ( ) ( ) ( )) 0

1
z t x t t t x t

t t
    
 

. 

Hence, 1 0
2 0 * *

0 1

( )
( )

x t
x t

t t
  


. 

Note the possibility 1 1 1( ) 0, ( ) 0z t x t  . 

We now solve the terminal control problem in the class 

of piecewise continuous functions. On the interval [t1, tk] the 

control action ( )u   must satisfy the condition 

1

*
1

2 2 1( ) ( )
1

    1

kt k

t

t
t

x d x tT

 

    . 

What is important, the function ( )u   can have a jump at 

the time instant t1. 

When choosing the continuous control function ( )u  ,
 

0 1[ , ]t t , we must satisfy the condition 

1

0

*
0

1 2 1 2 0( ) ( ) ( ) ( )
1

t

k

t

t t
K t x d K t x t

T

  
    

  . 

After trivial transformations, it takes the form 

1

0

* * *
1 2 0 1 2 0( ) ( ) ( )

t

k

t

t
t x d t t x t

T

  
      

  . 

Using integration by parts for the left-hand side, we ob-

tain 

1

0

*
1 0 2 2 1 1 1

1
( ) ( ) ( )( )

t

t

x t x d x t t t
T

      . 

This expression can be written as the boundary condi-

tion *
1 1 2 1 1 1( ) ( )( )x t x t t t   .  

Under this condition, continuous control actions can be 

chosen in a sufficiently wide class of functions. Considering 

the requirement for 2( )x t  
(the deviation of the ratio of 

component consumption), 2( )x   and the control action 

( )u   on the interval 0 1[ , ]t t  
can be chosen as descend-

ing exponential functions. 

Letting 0 0t  , we set ( ) ru Be   ,
 0 1[ , ]t t . In this 

case, 2 ( ) ( )k rkB
x e e

k r

      


, where k r . The pa-

rameters B and r are determined based on the initial and 

final conditions 1 0( )x t
 
and

 2 0( )x t :
 

*
1 1 2 1 1 1( ) ( )( )x t x t t t   . 

On the interval 1[ , ]kt t , we can take ( ) 0u   . In this 

case, 2( ) 0x    
on the interval 1[ , ]kt t t  . We integrate 

the equation for 1( )x t  on the interval 1 1[ , ]t t t  to find 

1 1 1 2 1

1
( ) ( ) ( )kx t x t x t

kT
  . In view of the expression for 

1 1( )x t , we obtain *
1 2 1 1 1

1
( ) ( )( )kx t x t t t

kT
    . 

CONCLUSIONS 

This paper has considered a terminal control prob-

lem in two statements: in the classes of piecewise con-

stant and piecewise continuous functions. As has been 

shown, these statements are interconnected, and it is 

reasonable to consider them step-by-step. 

During the design of piecewise constant control 

actions (the first step), local conditions are obtained 

for choosing control actions on each interval between 

control jumps. Fulfilling the local boundary conditions 

allows solving the original terminal control problem.  

In the second step, control actions in the class of 

piecewise continuous functions are designed using the 

piecewise constant control actions constructed earlier. 

The local conditions yielded by the first step are used 

as boundary conditions for choosing control actions in 

the class of piecewise continuous functions on the in-

tervals between control jumps. Note that under the 

local conditions, the continuous control actions can be 

chosen in a sufficiently wide class of functions. 
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