
 

 
 

 

 
 

13 CONTROL SCIENCES   No. 5 ● 2022  

ANALYSIS AND DESIGN OF CONTROL SYSTEMS 

 DOI: http://doi.org/10.25728/cs.2022.5.2   

AN ANISOTROPY-BASED BOUNDEDNESS CRITERION  

FOR TIME-INVARIANT SYSTEMS WITH MULTIPLICATIVE NOISES   

 
A. V. Yurchenkov 

 
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia 

 
 alexander.yurchenkov@yandex.ru 

 
 

Abstract. This paper presents an anisotropy-based analysis of linear time-invariant systems 

with multiplicative noises. The system dynamics are described in the state space. The external 

disturbance belongs to the set of stationary sequences of random vectors with bounded mean 

anisotropy. The multiplicative noises are centered and have unit variance; the external disturb-

ance and noises are mutually independent. We derive a boundedness criterion for the aniso-

tropic norm in terms of Riccati-like inequalities using the bounded real lemma of the anisotro-

py-based theory. With a special change of variables, we reduce the analysis problem to a con-

vex optimization problem with additional constraints. The existence of the latter’s solution im-

plies the bounded anisotropic norm of the system with multiplicative noises, and the minimal 

upper bound of the anisotropic norm can be obtained by solving this convex optimization prob-

lem. 
 

Keywords: anisotropy-based theory, anisotropic norm, multiplicative noises, time-invariant systems, 

bounded real lemma.  
 

 

 

INTRODUCTION  

The attenuation of external disturbances is still one 

of the most topical problems in control theory [1, 2]. 

First appeared in the 1950s, when the growing com-

plexity of technical systems required high accuracy as 

one priority, this research area has gradually formed 

an entire branch in modern control theory with many 

applications for different systems; for example, see 

[3–5]. In the problems of motion along a given trajec-

tory, the control object is often subjected to disturb-

ances whose stochastic characteristics significantly 

affect the choice of the control law. Some ways to re-

ject external disturbances of bounded energy were 

considered in [6, 7]. Ensuring optimal control, the ap-

proach presented therein still suffers from a drawback: 

the resulting controllers have a high dimension. The 

technical implementation peculiarities of optimal con-

trol laws for continuous-time systems with bounded 

disturbances were analyzed in [8]. 

Note that such control problems were solved not 

only in the case of bounded disturbances. For exam-

ple, in 2  
control theory, random disturbances with 

known stochastic characteristics were considered; for

  
control laws, square integrable and square sum-

mable disturbances were selected for continuous-time 

and discrete-time systems, respectively, [9]. The 

choice of an appropriate optimality criterion largely 

depends on the type of disturbances: 


-optimal con-

trollers have an increased conservatism due to the as-

sumption on the worst-case input of the system and 

give far from optimal results under weakly colored 

disturbances; in contrast, 2 -optimal control laws are 

oriented to no uncertainty in the stochastic parameters 

of Gaussian disturbances.  

Despite the mixed 2 /   
control statement pro-

posed to eliminate the drawbacks of each disturbance 

control method mentioned, where different types of 

impacts on the system are separated by channels [10, 

11], a stochastic approach to  -optimization was 

also developed in [12–14]. This approach was intro-

duced by I.G. Vladimirov and was called the anisotro-

py-based (control) theory of stochastic filtering and 
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control. The anisotropy of a random vector is a meas-

ure of uncertainty for the distribution function of this 

vector. Due to this concept, the conservatism inherent 

in   
control theory was reduced. Mean anisotropy 

was defined for stationary Gaussian sequences of ran-

dom vectors. A performance criterion––the aniso-

tropic norm––was chosen as a stochastic   
norm of 

the system. Within the anisotropy-based theory, filter-

ing and control problems (analysis and design) were 

solved for linear time-invariant and time-varying de-

terministic models. The analysis problem with random 

matrices in the object’s state-space description was 

first posed in [15]; subsequently, systems with multi-

plicative noises were considered. Such descriptions of 

dynamics are typical of mechanical systems, financial 

models, chemical reactions [16, 17], and network sys-

tems [18, 19], arising interest in studying systems with 

multiplicative noises. 

Within the anisotropy-based theory, the first works 

on control design for a system with multiplicative 

noises were estimative in nature: the anisotropic norm 

was majorized (an upper bound was constructed), and 

a control method for the upper bound was proposed 

[20]. The paper [21] considered the analysis problem, 

but an exact method for calculating the anisotropic 

norm was developed in [22] based on the approach 

presented in [15]. With the analysis problem solved, it 

became possible to construct an estimate in the case of 

measurement dropout correction [23] and an estimate 

based on a sensor network [24]. In the case of using a 

sensor network, one possible way to improve the effi-

ciency of estimation is to adjust the information ex-

change scheme of the sensors; for details, see [25]. 

The above results refer to time-varying systems; for 

the class of time-invariant systems, the analysis prob-

lem was solved in [26]. Based on those results, below 

we reduce the anisotropy-based analysis problem to 

systems of matrix inequalities with convex constraints. 

The remainder of this paper is organized as fol-

lows. Section 1 gives a brief introduction to the anisot-

ropy-based theory. The problem under consideration is 

stated in Section 2. We present the main result of the 

paper in Section 3. Section 4 is devoted to numerical 

simulation. 

1. PRELIMINARIES 

This section provides only the basic definitions of 

the anisotropy-based theory for discrete time-varying 

systems. A more complete description can be found in 

[27, 28]. 

1.1. Mean Anisotropy and Anisotropic Norm 

The mean anisotropy of a sequence of random vec-

tors was defined in [13]. The anisotropy of a random 

m-dimensional vector mw  with a probability den-

sity function (PDF)  f x  is given by 

 
0

min ( || )w f p


 λ
λ

, 

where the reference probability distribution  p x  is 

centered Gaussian with the scalar covariance matrix 

λ mI , i.e., 

   
2

/2
2 exp ,

2

m x
p x





 
   
 
 

 

and λ( || )f p  denotes the Kullback–Leibler diver-

gence (differential entropy) of the PDF f  with respect 

to λp , i.e., 

( | | ) ln ,
f

f p E
p





 
  

 
 

where  E   stands for the expectation operator. 

The mean anisotropy of a sequence of random vec-

tors  kW w  is the time-averaged anisotropy of an 

infinitely growing fragment of the sequence 

 
 0: 1

lim
N

N

W
W

N




 , 

where  
T

T T
0: 1 0 1, ,N NW w w    is the extended vector. 

The definition and properties of mean anisotropy were 

discussed in detail in [28]. 

Consider a linear system F with input 2

mW   and 

output 2

pZ  sequences. If the sequence W  is ob-

tained by a linear filter G from a white-noise Gaussian 

sequence V, then each random vector jw  of the former 

sequence can be written as 

0

,     ,j k j k

k

w g v j






   

where ,  0m m
kg k  , denotes the impulse func-

tion. The generating filter G and its transfer function

( )G z  have the relation 

0

( ) k

k

k

G z g z




  
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for 1z  , z . The finite 2 -norm 
2

G  of the 

transfer function ( )G z  can be calculated as 

 
1/2

T

2
0

tr .k k

k

G g g




 
   
 
  

We denote by ( )F z  the transfer function of a line-

ar system F with a finite  -norm 

   
1

sup ( ) ess sup ( ) ,ˆ
z

F F z F


 

      

where σ( )  is the maximum singular value of a corre-

sponding matrix and  
1

( )  limˆ iF F e 

 
   . 

In the anisotropy-based theory, the set of linear fil-

ters that generate sequences with a bounded mean ani-

sotropy is denoted by 

  2 :    ,     ,m m
a G W GV W a     

where 2
m m

 stands for the Hardy space of complex-

valued matrix functions analytic inside the unit circle 

and  k k
V v


  is a centered Gaussian sequence with 

the unit covariance matrix [12]. The anisotropic norm 

of a linear time-invariant system F  with the input W  

generated by a filter G  has the form 

2

2

||| ||| sup : .a a

FG
F G

G

  
  

  

 

For a causal system 
p mF 
  satisfying the con-

dition 2
F

F
m


 , the anisotropic norm always takes 

an intermediate value: 

2 0
||| |||

1
lim ||| ||| lim .||| |||a aa
a a

F FF F
m

F
 

     

Due to this property, the anisotropy-based theory 

generalizes 2  and   control theories: in the limit-

ing cases (when mean anisotropy is zero or tends to 

infinity), we obtain either the scaled 2  norm or   

norm of the linear time-invariant system. If mean ani-

sotropy takes intermediate values, the anisotropic 

norm can be called a compromise between these 

norms.  

For disturbing sequences with nonzero mean ani-

sotropy, the anisotropic norm is a stochastic analog of 

the   norm; hence, an information criterion on the 

non-uniform distribution of the external disturbance 

can be used to reduce the conservatism of the classical 

  norm calculated for the “worst” case. 

 

1.2. Calculation of the Anisotropic Norm 

Consider the state-space description of the system: 

1 ,
:

,

k k k

k k k

x Ax Bw
F

z Cx Dw

  


 
                    (1) 

where xn
kx  , wm

kw  , and zp
kz   are the state 

vector, the external disturbance, and the system out-

put, respectively. The system matrices ,  ,  , A B C  and 

D  are constant and have compatible dimensions. The 

system is stable if the spectral radius of the matrix A 

satisfies the inequality ( ) 1A  . The external disturb-

ance is a colored sequence obtained by a generating 

filter from a white-noise sequence V. The state kw  of 

the filter G  is a linear combination of the state vector 

of system (1) and the corresponding element of the 

Gaussian sequence V : 

1/2Σ ,k k kw Lx v   

where Σ w wm m
  is a symmetric positive definite 

matrix and w xm n
L


  is a matrix ensuring the asymp-

totic stability of ( A BL ). There exists a parameter

2
0,q F







 that relates via a special equation the 

mean anisotropy a  and the anisotropic norm of the 

linear time-invariant system to the solutions of the 

Riccati and Lyapunov equations expressed through the 

state-space matrices [14]: 

 

2

T

1
||| ||| 1 .

tr Σ

w
a

m
F

q LPL

  
   
  

  

 

Moreover, the generating filter G  ensures the mean 

anisotropy 

 T

Σ1
lndet ,

2 tr Σ

wm
a

LPL

 
  
 
 

               (2) 

where Σ  is the covariance matrix, x xn n
P


  is the 

solution of the Lyapunov equation 

   
T TΣ ,P A BL P A BL B B              (3) 
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and the parameters , ,q L  and Σ  parameters are related 

to the solution of the Riccati equation: 

 

 

T T T 1

1
T T

T T

Σ ,

Σ ,

Σ .

wm

R A RA qC C L L

I qD D B RB

L B RA qD C





  

  

 

               (4) 

Analysis issues in the anisotropy-based theory were 

described in detail in [13, 14]. The concepts men-

tioned above refer to linear time-invariant systems 

only, just one class of models considered in this theo-

ry. 

 

1.3. The Suboptimal Problem 

The system of coupled matrix equations (2)–(4) is 

nonlinear, which complicates numerical solution. In 

the anisotropy-based theory, optimal problems are 

therefore often replaced by suboptimal ones, for which 

an efficient numerical solution method has been de-

veloped. This method involves convex optimization to 

find an upper bound   on the anisotropic norm 

||| |||aF  of system (1). See the papers [29, 30] for nu-

merical methods for solving suboptimal problems in 

the anisotropy-based theory. 

The anisotropic norm of the linear system (1) is 

bounded above by a given threshold   if the inequali-

ties   

  
1/ 2exp 2 detΞ ,

wm
a                   (5) 

Ξ * *

Θ * 0,

0

w

z

m

p

I

B

D I

 
 

 
 
 

                (6) 

 Θ * * *

0 * *
0

Θ *

0

w

z

m

p

I

A B

IC D

 
 


 
 
 

  

              (7) 

have positive definite solutions Ξ w wm m
  and 

Θ z zp p  with a parameter 0 . (The symbol *  

indicates symmetric blocks with respect to the main 

diagonal.) The sufficient conditions (5)–(7) of aniso-

tropic norm boundedness can be obtained from equa-

tions (2)–(4) by passing to inequalities using the Schur 

complement lemma, the appropriate changes of varia-

bles, and the properties of solutions of the Riccati 

equations and inequalities [29]. Note that inequalities 

like (6) and (7) are understood in the sense of positive 

or negative definiteness.  

The linear matrix inequalities (LMIs) (6) and (7) 

are obtained by congruent transformations: after ap-

plying the Schur complement lemma, these inequali-

ties should be multiplied by the matrices 

 blockdiag ,  Θ,
w zm pI I  and  blockdiag ,  ,  Θ,

z w zp m pI I I  

on the left and right, respectively.  

Remark 1. This method of passing to matrix ine-

qualities is not the only way to obtain a suboptimal 

solution based on the original optimal problem. Using 

the change of variables 1  , we can introduce the 

inequality 

0
 

z

z

p

p

I

I

 
 

  

                          (8) 

to eliminate the nonlinearity in inequalities (6) and (7) 

and use the algorithm for calculating the mutually in-

verse (reciprocal) matrices   and   [31, 32].  

The corresponding optimization problem has the 

form 

2

2

Θ,Ξ,  ,
  min
 

   

subject to the constraints (5)–(8). The minimum value 
2  can be found using standard optimization proce-

dures in applied software packages. 

2. PROBLEM STATEMENT 

Consider a linear discrete time-invariant system F  

with the state-space realization (1), where wm
kw   is 

a disturbance with a given upper bound a  on its mean 

anisotropy. Let the free dynamics matrix A be repre-

sented as a linear combination of known matrices with 

random coefficients: 

0 ,

1

,
n

i k i

i

A A A


                          (9) 

where the random variables  , ,  1, ,i k i n   , have 

zero mean and unit covariance. The existence of the 

first two moments of these variables is sufficient to 

apply the anisotropy-based theory methods. The ma-

trices  ,  0, , ,  ,  , iA i n B C   and D  are known and 

have compatible dimensions. An additional condition, 

an analog of the Hurwitz property in the classical case 

of discrete time-invariant systems, has the form 
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 
1

lim 1,k k

k
E A



 
     

 

                 (10) 

where ( )   is the spectral radius. 

The problem is to find a condition on matrices of 

system (1), (9) under which its anisotropic norm will 

not exceed a given threshold  : 

||| ||| .aF    

3. THE MAIN RESULT 

In the general case, all matrices of system (1) may 

contain multiplicative noises, but we will focus on the 

problem statement above: for such models, one appli-

cation is sensor systems with random dropouts in 

which the closed loop system contains multiplicative 

noises only in the matrix A .  

The following lemma will serve for deriving a 

boundedness condition for the anisotropic norm of 

system (1) with the free dynamics matrix (9). 

Lemma [26]. The anisotropic norm ||| |||aF  of sys-

tem (1) with the additional conditions (9) and (10) is 

bounded above by a positive number   if there exist 

positive definite matrices 1 2,  x xn n
R R


  and a pa-

rameter 2
0,q F







 satisfying the system of modi-

fied Riccati-like equations 

 

 

T T
1 1

0

T T 1
2 0 2 0

1
T T T

1 2

T T T
1 0 2 0

,

,

,
w

n

i i

i

m

R A R A qC C

R A R A L S L

S I qD D B R B B R B

L S qD C B R A B R A







 

 

   

  



       (11) 

and the special inequality 

  21
lndet 1 ,

2
q S a                      (12) 

where a  > 0 is the mean anisotropy bound for the 

input sequence of random vectors  kw .  

This lemma is a modified analog of the bounded 

real lemma for time-invariant systems within the ani-

sotropy-based theory [33]. Formulas (11) and (12) 

contain nonlinearities, which may complicate finding 

the solution. Therefore, it is necessary to reduce the 

equations to LMIs with an additional convex con-

straint. Before formulating this result as a theorem, we 

prove another assertion. 

Theorem 1. Let the mean anisotropy of the dis-

turbance  kw  of system (1) with the additional con-

dition (10) be bounded above by a number 0a  . If the 

inequality 

 

 

T T T 1

0

1
T T

T T
0

,

,

,

w

n

i i

i

m

R A RA qC C L S L

S I qD D B RB

L S B RA qD C







 

  

 



           (13) 

jointly with the special inequality 

  21
lndet 1

2
q S a     

has a solution 0R , 0S , 2
0,q F







, then the 

anisotropic norm of system (1) with (9) is bounded 

above by 0  . 

P r o o f of Theorem 1. We introduce a new matrix vari-

able of the form 

1 2.R R R   

It satisfies an equation similar to the Riccati equation 

 

 

T T T 1 T
2

0 1

1
T T

T T
0

,

,

,

w

n n

i i i i

i i

m

R A RA qC C L S L A R A

S I qD D B RB

L S qD C B RA



 



   

  

 

 

 

obtained using formula (11) and the variable R . According 

to the properties of the solutions of Riccati equations and 

inequalities [34], there exists a matrix 
T 0R R  satisfy-

ing inequality (13). ♦  

Theorem 1 provides sufficient boundedness condi-

tions for the anisotropic norm of the system with mul-

tiplicative noises. However, their verification is diffi-

cult due to the nonlinearity contained in formulas (12) 

and (13). The next result expresses a boundedness 

condition for the anisotropic norm in terms of LMIs 

with a convex constraint. 

Theorem 2. Consider the system with multiplica-

tive noises (1) and the additional conditions (9) and 

(10) and let the mean anisotropy of the external dis-

turbance be bounded above by a given number 0a  . 

The anisotropic norm of the system will not exceed a 

given threshold ,  

||| ||| ,aF    
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if the inequalities 

T T

0

T T T T
0

*
0,

w

n

i i

i

m

A RA R C C

B RA D C I D D B RB



 
  

 
     


(14) 

TΨ *
0,wmI D D

RB R

   
 
  

                (15) 

 2lndetΨ 2 lna                      (16) 

have solutions T 0R R , TΨ Ψ 0 , and 0  . 

P r o o f of Theorem 2. We choose 
1q   as a new 

variable. With the change 
1R q R , inequality (14) can be 

obtained from inequality (13) by applying the Schur com-

plement lemma. Next, we introduce a matrix Θ  satisfying 

the relation 10 Θ S . Then the matrix 
1Ψ Θq  will 

satisfy inequality (15) after applying the Schur complement 

lemma. The convex constraint (16) is the special inequality 

(14) written in terms of the new variables. ♦ 

Obviously, system (14)–(16) is convex in the vari-

able 
2 . Hence, we can formulate the convex optimi-

zation problem 

2

2

,Ψ,  ,
  min

R  
   

under the existence of solutions of the LMIs (14) and 

(15) with the convex constraint (16). This convex op-

timization problem can be solved using standard sem-

idefinite programming tools. 

4. NUMERICAL SIMULATION 

As an illustrative example, we consider a two-mass 

oscillating system described in [35]. The system was 

closed by a standard linear-quadratic controller and 

discretized. Its state-space implementation has the 

form 

 1 0 1 1 2 2 ,

,

k k k

k k k

x A A A x Bw

z Cx Dw

      

 
 

where the mean anisotropy of the external disturbance 

(a sequence of random vectors  kw ) is bounded 

above by a given number a and the random variables 

1 2,    are centered and have unit variance. The nu-

merical matrices are known: 

0

0.9918 0.0444 0.0031 0.0043

0.3177 0.7829 0.1190 0.1651
,

0.0012 0.0000 0.9988 0.0500

0.0498 0.0012 0.0499 0.9987

A

 
 
 
 
 
 

 

 

1

0.0992 0.0044 0.0003 0.0004

0.0000 0.0000 0.0000 0.0000
, 

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

A

 
 
 
 
 
 

 
2

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000
,

0.0001 0.0000 0.1492 0.0075

0.0000 0.0000 0.0000 0.0000

A

 
 
 
 
 
 

 

1.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000
, 

0.0000 0.0000 1.0000 0.0000

6.0545 4.7020 1.5823 2.7857

C

 
 
 
 
 
   

 
0.0001

0.0043
,     0.

0.0012

0.0507

B D

 
 

  
 
 
 

 

The table below combines the upper bounds 

(thresholds)   of the anisotropic norm ||| |||aF  calcu-

lated for different mean anisotropies a of the external 

disturbance.  

Note that the   
norm of the system is 3.3244, 

i.e., the anisotropic estimator provides a much better 

quality of estimation in terms of the root-mean-square 

gain. 

 
The anisotropic norm threshold depending on the mean anisotropy 

The mean anisotropy a  0.0 0.01 0.05 0.10 0.20 0.50 1.00 1.50 2.00 3.00 

The anisotropic norm 

threshold γ  
0.3035 0.3048 0.3124 0.3211 0.3363 0.3655 0.3737 0.4299 0.9739 2.9180 
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5. CONCLUSIONS 

This paper has presented an anisotropy-based anal-

ysis of linear discrete time-invariant systems with mul-

tiplicative noises. The bounded real lemma and a spe-

cial change of variables have been adopted to establish 

a boundedness condition for the anisotropic norm of 

the system in terms of state-space matrices. Moreover, 

the upper bound on the anisotropic norm can be nu-

merically minimized by standard semidefinite pro-

gramming tools. As an illustrative example, the upper 

bound has been calculated for the anisotropic norm of 

an oscillating system. As demonstrated above, anisot-

ropy-based estimation can significantly improve the 

quality of estimation under a priori information (the 

bounded mean anisotropy of the external disturbance), 

especially in the cases of weakly colored disturbances. 
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