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Abstract. This paper considers a linear discrete time-invariant system with multiplicative noise 

and a control input under an external disturbance from a special class. The plant’s dynamics are 

described in the state space. The class of external disturbances contains a set of stationary Gaussi-

an sequences with a bounded mean anisotropy. The anisotropic norm of the closed-loop control 

system is chosen as the performance criterion. It is required to design a dynamic link-based con-

trol scheme under which the anisotropic norm of the closed-loop control system will be bounded 

by the minimum possible threshold. At the first stage of solving this problem, the controller’s 

dynamics are written out and the plant under consideration is augmented. The boundedness crite-

rion of the anisotropic norm in terms of matrix inequalities is used to derive sufficient conditions 

for the existence of a solution of a convex optimization problem to minimize the upper bound of 

the anisotropic norm. A special change of variables is performed in the resulting inequalities to 

eliminate the nonlinear dependence on the unknown controller matrices. After a linearizing in-

versible change of variables, the optimization problem is solved numerically using standard 

methods. At the last stage, the desired controller matrices are calculated in the state space to en-

sure the bounded anisotropic norm of the closed-loop control system. 
 

Keywords: linear discrete time-invariant systems, anisotropy-based theory, dynamic control, LMI, convex 

optimization. 
 

 

 

INTRODUCTION 

The active development of automatic control theo-

ry in the 20th century caused the creation of tools for 

attenuating external disturbances, which has become 

one of the most important problems in this theory. 

Since the approach to attenuating Gaussian disturb-

ances with the linear quadratic performance criterion 

had been pioneered [1], many methods for dealing 

with external disturbances were proposed. Some of 

them are tuned to the case of known stochastic charac-

teristics of input signals. On the other hand, the  -

optimization approach [2] offers a way to parry the 

“worst-case” disturbance. However,   control has 

excessive conservatism, and optimal 2  controllers 

are sensitive to small parameter variations. Therefore, 

they turn out non-robust, and control optimality is vio-

lated accordingly. Despite the fundamental differences 

between 2 - and  -theories, some studies combin-

ing the two methods were published [3–6]. 

One branch of control theory, investigating ways to 

attenuate external disturbances, was developed by 

I.G. Vladimirov about thirty years ago [7, 8]; it covers 

both the 2 - and  -optimal control theories as lim-

iting cases. This theory, called the anisotropy-based 

(control) theory by the author, offers a stochastic ap-

proach to   control and, at the same time, has a 

close terminological connection to information theory. 

The central concept of the anisotropy-based theory is 

the anisotropy of a random vector, which originally 

corresponded to the relative entropy of the normalized 

distribution function of a random vector on the unit 

sphere with respect to the uniform distribution. Thus, 

for the uniform distribution, the anisotropy value is 

zero, and the denser the distribution becomes along 

certain axes, the higher the anisotropy value will be, 
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up to infinity. This concept was later modified [9]. 

Recently, the anisotropy of a random vector is under-

stood as the Kullback–Leibler divergence between two 

probability density functions (PDFs), one belonging to 

a fixed random vector and the other to a Gaussian 

family of random vectors with zero mean and a scalar 

covariance matrix. With this definition, one can give a 

simple geometric interpretation of anisotropy: it 

measures the difference (distance) between a random 

vector and a set of centered Gaussian vectors with a 

scalar covariance matrix. The performance criterion in 

the anisotropy-based theory is related to the aniso-

tropic norm, a stochastic analog of the   norm of a 

dynamic system. 

Within the theoretical framework based on the ani-

sotropy of random vectors, many analysis and design 

problems were solved for both time-varying [9] and 

time-invariant systems [10]. However, until recently, 

only linear and deterministic plants were considered. 

The first attempt to study stochastic plants from the 

anisotropic point of view was undertaken in [11]. The 

analysis therein replaced the approach proposed in 

[12, 13], which involved the majorants of norms for 

systems with multiplicative noise. 

Systems with multiplicative noise are an important 

example of stochastic systems. They describe mechan-

ical, hybrid, and biological systems, financial models, 

and many other objects and processes [14, 15]. An 

anisotropy-based robust performance analysis of time-

varying systems was presented in [16], and time-

invariant systems were considered in [17]. The prob-

lem of constructing an output estimator for a time-

varying system was successfully solved in [18], and 

the adjacency matrix of a sensor network with drop-

outs was tuned in [19]. In view of the results obtained 

within the framework of anisotropic analysis for time-

invariant systems [17], the control design problem can 

also be posed and solved. Below, we consider a dy-

namic controller and formulate a convex optimization 

problem to calculate its gain matrices in the state 

space. The matrix inequalities are linearized using the 

procedure described in [20]. The developed controller 

can be applied to the automatic control of any moving 

objects. Section 1 provides a summary of the anisotro-

py-based theory. In Section 2, we describe the system 

and problem statement; in Section 3, the solution of 

this problem. The results of numerical simulation are 

demonstrated in Section 4. 

1. THEORETICAL BACKGROUND 

This section recalls the basic concepts of the 

anisotropy-based theory for time-invariant systems. 

More detailed information can be found in [10, 21–

23]. 

The anisotropy of a random vector W from the 

space 
m

 with a PDF f is given by 

0
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represents the relative entropy (or the Kullback–

Leibler information divergence) with respect to a 

reference PDF of the form 

2
/2( ) (2 ) exp ,

2

m || x ||
p x 



 
   

 
 

which is chosen Gaussian with zero mean and a scalar 

covariance matrix λ mI , where mI  denotes an identity 

matrix of order m . From this point onwards, the nota-

tion  E  corresponds to the expectation operator and 

  is the Euclidean vector norm. The anisotropy of a 

random vector is not a norm due to violating the axi-

oms of norms. At the same time, anisotropy is a meas-

ure of the closeness of a random vector to vectors 

obeying the standard Gaussian distribution. 

Consider the extended vector composed of ele-

ments of a random vector sequence  kw : 
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is called the mean anisotropy of the sequence  kw  

[10]. The anisotropy-based theory introduces a par-

ticular performance criterion, known as the anisotropic 

norm. First, we consider the mean-square gain  
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where Z  and W  are the output and input of a linear 

system with a transfer matrix 
p mF  , respectively. 

The expression 
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is the definition of the   norm, where 2
m  corre-

sponds to square summable signals and λk  is the k th 

eigenvalue. If the input signal of the system F  has 

mean anisotropy with an upper bound a , the aniso-

tropic norm can be defined as 

( )

sup ( , ) ||| ||| .a
W a

Q Z W F
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For a nonspherical system (i.e., the one whose 

scaled 2  norm is smaller than the   norm), the 

anisotropic norm has a remarkable property: either the 

scaled 2   or   norm can be obtained as the limit-

ing cases: 

2

1
|| || ||| ||| || || .aF F F

m
   

Note that the left bound is reached under zero mean 

anisotropy; the right bound, as mean anisotropy tends 

to infinity (when the sequence loses randomness). 

2. PROBLEM STATEMENT 

In this paper, we describe dynamic objects (both 

the controlled plant and the controller) in the time 

domain using the state-space representation. Consider 

a linear discrete time-invariant system with 

multiplicative noise of the form  

1 2( 1) ( ) ( ) ( ),x k Ax k B w k B u k     

1 12( ) ( ) ( ),z k C x k D u k                       (1) 

2 21( ) ( ) ( )y k C x k D w k   

with the zero initial condition (0) 0.x   Here, 

( ) xn
x k   is the state vector;  

0
( )

k
w k


, ( ) wm

w k  , 

is a colored sequence with a known upper bound a  on 

mean anisotropy; ( ) um
u k   is the control input; 

( ) zpz k   is the controlled output; ( ) yp
y k   is the 

observed output. All matrices in system (1) have 

compatible dimensions. By assumption, system (1) is 

controllable. Unlike the system considered in [13], 

where multiplicative noises were included in the 

control coefficient, the system matrix A  in the current 

problem statement is represented as 

0

1

( ) ,
n

i i

i

A A k A


    

where the matrices iA  are known and have appropriate 

dimensions. The random variables ( )i k , 1, ,  ,i n   

obey the standard Gaussian distribution with zero 

mean and unit covariance, are mutually independent of 

each other and of the external disturbance vectors 

( )w t  for all time instants k  and t . 

The problem is to find matrices , ,c c cA B C , and 

cD  of the state-space realization of a full-order 

dynamic controller 

( 1) ( ) ( ),

( ) ( ) ( ),

c c

c c

k A k B y k

u k C k D y k

    

  
                  (2) 

where ( ) xn
i k   stands for the controller’s internal 

state, under which the anisotropic norm of the closed-

loop control system would not exceed a number γ 0 . 

3. THE MAIN RESULT 

Before proceeding to the main result, we consider 

a linear discrete time-invariant system F  with 

multiplicative noise of the following form: 

0

1

( 1) ( ( ) ) ( ) ( ),

( ) ( ) ( ),

n

i i

i

x k A k A x k Bw k

z k Cx k Dw k



    

 


      (3) 

where ( ) xn
x k   denotes the state vector, ( ) wm

w k   

is a disturbance, and ( ) zpz k   means the system 

output. Real matrices have compatible dimensions. By 

assumption, the input sequence is random with a given 

upper bound a  on its mean anisotropy. A 

boundedness condition of the anisotropy norm was 

derived in [17] in terms of a special system of 

equations and inequalities. The analysis of systems 
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with multiplicative noise was reduced to a convex 

optimization problem in [24].  

For system (3), the anisotropic norm will be 

bounded under the following conditions. 

Theorem 1 [24]. Consider system (3) and let the 

mean anisotropy of the external disturbance be 

bounded above by a given number 0a  . The 

anisotropic norm of the system will not exceed a given 

threshold  , 

||| |||aF   , 

if the system of inequalities 

T T

0

T T T T
0

*
0,

w

n

i i

i

m

A RA R C C

B RA D C I D D B RB
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                 (5) 

2ln det 2 ln( )wS a m     

has solutions ,, 0 0R S  and 2   . 

In inequalities (4) and (5) and further, the 

expression   0  should be understood in the sense of 

the negative definiteness of an appropriate matrix, and 

the asterisk (* ) denotes a block symmetric with 

respect to the principal diagonal. 

The original system (1) closed with the controller 

(2) takes the form 

0

0

( 1) ( ( ) ) ( ) ( ),

( ) ( ) ( ),

n
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i

k A k A k Bw k

z k C k Dw k
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where 
2

( ) xn
k   is the augmented state vector 

( )
( ) ,

( )

x k
k
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and the matrices 
2 2x xn

i
n
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 , 0,…,i n , 

2 x wn m
B


 , 2z xp n

C


 , and z wp m
D


  have the 

following block structure: 

0 2 2 2

0

2

,
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0
, ,

0 0
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i

c
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 1 12 2 12 12 21, .c c cC C D D C D C D D D D    

For the closed-loop control system (6), based on 

the results of [20, 25], we now formulate the following 

statement regarding the boundedness of the 

anisotropic norm as a convex optimization problem. 

Theorem 2. Consider system (3) with multiplica-

tive noise and let the mean anisotropy of the external 

disturbance be bounded above by a given number 

0a  . For a fixed number 0  , the dynamic control-

ler (2) ensures the boundedness of the anisotropic 

norm, ||| |||aF   , if the system of inequalities 
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is solvable with respect to the variables 0,

TΨ Ψ , T
11 11Φ Φ , T

11 11Π Π , T
22 22Π Π , 12Π ,

,  ,  ,A B C  and D . Moreover, the controller’s gain 

matrices are related to the solution of inequalities (8)-

(11) as follows: 

1
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      (12) 

where 
T

12 11 11 12( ) ,
xnI

      

the matrices 12Φ  and 12Π  are nonsingular, and

Т Т 1
12 12П =(П )  . 

The proof of this theorem is given in the Appendix. 

Remark 1. An important requirement is the 

coincident dimensions of the state vectors of the plant 

( )x k  and the dynamic controller ( )k . In this case, 

the gain matrices of the controller (2) can be found 

unambiguously. According to [25], under the full 

column rank of the matrices 12  and 12 , the 

controller’s gain matrices ,  , c c cA B C , and cD  exist 

but are not unique. ♦ 

Based on Theorem 2, it is easy to formulate 

another statement, which has already become classical 

for anisotropic problems in convex optimization terms. 

Theorem 3. The anisotropic norm of system (6) is 

bounded above by the minimum threshold   if the 

convex optimization problem 

2

(8) (11)
min


   

is solvable with respect to the variables 2 , ,

TΨ Ψ 0 , T
11 11Φ Φ 0 , , 

T
22 22Π Π 0 , 12Π ,  ,  , A B C , and D . The gain 

matrices of the dynamic controller (2) are given by 

formulas (12). 

Remark 2. Due to multiplicative noise in system 

(1), the convex optimization problem contains the 

matrix Π . This allows one not to check the existence 

of two matrices satisfying the equation 
T

12 12 11 11Φ Π Φ Π
xnI  , a necessary condition in the 

case of systems without multiplicative noise [23]. ♦ 

4. NUMERICAL SIMULATION 

In this section, we analyze the numerical 

experiment carried out on the aircraft takeoff-landing 

model [26]. The control is implemented by changing 

the angle of the aircraft’s rear nozzle, thrust through 

the rear nozzle, and thrust through the front nozzle, 

which has a fixed position; the aircraft’s pitch and 

position of the center of mass, as well as the rates of 

their change, are chosen as the state variables. The 

linear discrete-time model in the state space is 

described by the matrices 

0

1.0000 0.0004 0.0536 0.0976

0.0007 0.9966 0.4938 0.0100

0.0000 0.0001 0.9980 0.0000

0.0000 0.0000 0.0100 1.0000

A

  
 
 
 
 
 
 

, 

1

0.0003 0.0000 0.0001

0.0002 0.0005 0.0008

0.0006 0.0000 0.0034

0.0000 0.0000 0.0001

B

 
 

 
 
 
 

, 

2

0.0021 0.0000 0.0003

0.0000 0.0020 0.0004

0.0000 0.0000 0.0012

0.0000 0.0000 0.0000

B

 
 
 
 
 
 

, 

 1 0.7071 0 0 0 ,C   12 [0 0 0.7071],D   

2

0 0 57.2958 0

0 0 0 57.2958

0.1045 0.9945 0.1375 51.5791

0.0002 0.0045 0 0

C

 
 
 
 
 
 

,    

21

0 0 0

0 0 0
.

0 0 0

0.0212 0 0

D

 
 
 
 
 
 

 

Multiplicative noise as a single term enters the 

dynamics equation with the matrix coefficient 
2

1 0 10A A   . Mean anisotropy is chosen to be 5. The 

T
11 11Π Π 0
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following gain matrices of the dynamic anisotropy-

based controller were obtained during the calculations: 

1.9773 2.3361 7.8981 49.2172

0.0232 1.7152 1.1628 4.7785
,

0.0368 0.6143 0.1482 0.1708

0.1262 0.4600 0.2936 2.2690

cA

  
 
 
 
  
 
  

 

0.0078 0.5486 1.0382 0.0013

0.0024 0.8364 0.08879 0.0003
,

0.0115 0.2878 0.3202 0.0187

0.0017 0.1795 0.2283 0.0028

cB

  
 


 
  
 

  

 

4

0.0640 1.9133 1.2458 5.1640

10 0.0311 0.0188 0.1100 0.6393 ,

0.0000 0.0068 0.0039 0.0149

cC 

   
 

    
 
     

3

0.0250 9.3135 9.8997 0.0111

10 0.0067 0.2866 0.3740 0.0037 .

0.0001 0.0329 0.0353 0.000

cD 

   
 

   
 
   

 

The convex optimization problem was numerically 

solved using standard MATLAB tools with additional 

packages for semidefinite programming problems [27, 

28]. 

Figure 1 shows the Bode diagram for two 

anisotropy values, 1 (Fig. 1a) and 5 (Fig. 1b). Note 

that for any mean anisotropy exceeding 10, the 

simulation gives approximately the same results 

characteristic of   control.  

 
 

 

(a) 
 

 

(b) 

 
Fig. 1. The Bode diagrams of closed-loop control systems. 

The table below presents the upper bounds of the 

anisotropic norm of the closed-loop control system 

calculated under different values of mean anisotropy. 

 

The bounds of the anisotropic norm 

a  0 1 5 10 15 
  0.0012 0.2197 0.3087 0.3142 0.3142 

 

Also, it seems interesting to compare the controlled 

outputs under anisotropy-based control and standard 

2  control. Let mean anisotropy be equal to 5. We 

calculate the Euclidean norm for the controlled output, 

plotted in Fig. 2, where the application of anisotropy-

based control is indicated by AB. As it turns out, for 

anisotropy-based control, this norm takes a value of 

0.0158; for 2  approach, a value of 0.0856. In other 

words, with anisotropy-based control, the quadratic 

performance criterion can be improved by 72%.  

 

 
 

Fig. 2. The controlled outputs of the system with different control. 

 

CONCLUSIONS 

This paper has considered an algorithm for calcu-

lating the gain matrices of a dynamic anisotropy-based 

controller in the state space. The bounded real lemma 

for time-invariant systems has been used as the main 

tool. By assumption, the dynamic controller has full 

dimension, which ensures its uniqueness. Sufficient 

conditions for the existence of a dynamic anisotropy-

based controller for the closed-loop system have been 

established in terms of a special system of nonlinear 

matrix inequalities. A linearizing inversible change of 

variables has been applied to reduce the boundedness 

conditions of the anisotropic norm of the closed-loop 

system to the solvability condition of the special sys-
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tem of inequalities. A threshold for the upper bound of 

the anisotropic norm of the closed-loop system has 

been obtained by solving a convex optimization prob-

lem. 
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APPENDIX 

P r o o f   of Theorem 2. According to Theorem 1, 

system (6) closed by the dynamic controller (2) has a 

bounded anisotropic norm if the inequalities 

T T
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2lndet 2 ln ( )wa m                     (A3) 

have solutions 0,  TΨ Ψ , and 
TΦ Φ . The system of 

inequalities (A1)–(A3) is nonlinear with respect to the 

system matrices that depend on the controller’s matrices (7). 

To correct this, we apply the Schur complement lemma [29] 

to inequality (A1): 

1
0
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(A4) 

Let Π  = 
1Φ
 be the new matrix variable. Obviously, 

2ΦΠ
xnI , and the matrices Φ  and Π  have a block 

structure: 

11 12

T
12 22

,
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T
12 22
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.

 
  
 

 

We introduce the matrices 
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,
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.

 
  
  

 

It is easy to show that 
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Applying a congruent transformation with the matrix 

T T
1 1block diag ( , , , ,..., , )

w x x zm n n pI I I I   

to inequality (A4) yields the new inequality 

T
1 1

T T T
1 0 1 1 1 1

1 1

1

1

0

00 0
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I * * ... * *

A B * ... * *
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Inequality (A6) is still nonlinear in some matrix 

variables. The blocks 
T
1 1Π ΦΠ  and 

T
1 1Φ ΠΦ  can be 

written according to the notation (A5). Consider the third 

block in the first column; it also has a block structure: 

0 11 2 2 2T
1 0 1

11 0 2

,
A B A B C

A
A C

   
    

  

C D

A B
 

where 
T

12 12 12 2 11

T
11 2 12 11 0 2 2 11

12 11 2

T
12 2 11

( ) ,

,

,

c c

c c

c c

c c

c

A B C

B C A B D C

B B D

= C D C

D

   

    

  

  



A

B

C

D

 

is a linearizing change of variables similar to the one 

proposed in [20, 30]. The blocks 
T
1Φ B  and 1ΠC  can be 

represented as follows: 

1 2 21T
1

11 1 21

1 1 11 12 12 21

,

[ ].

B B D
B

B D

C C D D D

 
   

   

   

D

B

D D

 

Thus, we have arrived at inequality (8). Next, the Schur 

complement lemma can be applied to inequality (A2) to 

obtain  

0

0

w

z

m

p

I * *

B * .

D I

  
 

  
 
 

 

Now we perform a congruent transformation of the last 

inequality using the matrix 

T
1block diag( , , )

w zm pI I .  

Clearly, this transformation brings to inequality (9). 

Note that the special inequality (11) remains unchanged. 
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The inverse change of variables (12) is uniquely defined 

under the nonsingularity of the matrices 12Φ  and 12Π . 
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