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Abstract. In the stability analysis of linear systems depending on several parameters, the D-
partition method is often used, also known as the D-decomposition method in the literature. This
method describes the stability region of a characteristic polynomial via the equation of its bound-
ary. A constructive D-partition method proposed below identifies individual parts of curves and
straight lines on the parameter plane that form the boundaries of the D-partition regions and, in
particular, the stability region. A characteristic polynomial linearly dependent on two parameters
and a stability region with a piecewise rational parametric boundary are considered. In this case,
the boundary of each D-partition region is a finite set of arcs of rational curves and segments,
rays, or straight lines that can be found explicitly. The rational curve arcs are parameterized on
intervals whose limits are found by calculating the real roots of auxiliary polynomials. A D-
partition, bounded (localized) on a compact set, consists of a finite number of segments and arcs
of rational curves parameterized on the segments.

Keywords: constructive D-partition, D-decomposition, root localization, root clustering, rational curves,
localized D-partition.

continuous-time systems lie in the left complex half-

INTRODUCTION

plane:
Controller design for linear control systems is

D= C:Res <0}. 2
closely related to the analysis of the characteristic pol- tse es<0; @

ynomial. This applies both for systems written in the
input—output form using transfer functions and for sys-
tems with the state-space representation.' In this case,
the stability of a system is determined by the roots of
its characteristic polynomial. Consider a characteristic
polynomial of degree n that depends on two real pa-
rameters:

G(s, k. ky). (1)

Here, k, and k, are parameters representing, e.g.,

controller coefficients (gains) or some uncertainty. All
roots of the polynomial (1) of asymptotically stable

! If the system is not decomposed into several independent sys-
tems, i.e., its matrix can be reduced to the Frobenius (Brunovsky
canonical) form.

(Such polynomials are called Hurwitz polynomials.)
For stable discrete-time systems, all roots of the
characteristic polynomial lie inside the unit circle

D={se (C:|s| <1}); such polynomials are called

Schur polynomials. This case can be reduced to the
analysis of a continuous polynomial using a linear-
fractional (Mdbius) transformation with denominator

cancellation: a polynomial G, (z) is Schur if and only

if the polynomial G(s) = (1 - s)n G, G-’_—SJ is Hurwitz

and G,(-1)#0 [1]. The last condition describes a
special case in which the degree of the polynomial
G(s) may be less than that of G,(z); this occurs if

G, hasaroot —1.
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In general, the required localization set of the roots
of a polynomial D — C can be any subset of the com-
plex plane, selected based on the requirements for the
system. The behavior of a system is determined not
only by the roots of its characteristic polynomial but
also by its structure and initial conditions. Despite this,
several important properties (besides stability) can be
analyzed based on the location of the roots. For in-
stance, it is possible to limit the degree of stability, the
damping ratio, and other engineering performance cri-
teria [2—4].

If all n roots of a polynomial lie in a set D, it is
called D-stable. For the sake of convenience, we will
simply call it stable. By analogy, the roots of a poly-
nomial lying in a set D will be called stable, and
those lying outside D unstable. Without loss of gen-
erality, we will demonstrate the stability analysis of a
continuous-time system; in this case, D is the open
left complex half-plane, and D-stability means that the
polynomial is Hurwitz. General requirements for the
set D are provided in Section 1.

The roots of the polynomial (1) depend on the pa-
rameters k, and k,, and the problem is to determine

the parameter values under which the polynomial is
stable (i.e., all its roots are stable). The results are used
both to analyze the system stability with respect to
these parameters (e.g., the physical parameters of the
system included in the characteristic polynomial) and
to design low-order controllers, such as PI, PD, or PID
controllers with one fixed gain. If a system is stabiliz-
able, then the set of such parameters is non-emptys; it is
called the stability region of the system in the parame-
ter space. Let us denote the stability region by D,,

where the subscript corresponds to the number of sta-
ble roots.

To construct the stability region, we apply the D-
partition method, originally proposed by Yu.L
Neimark. This method serves to describe a stability
region using its boundary [5-9]. The idea behind the
method can be outlined as follows. The boundary oD
of a root localization region (the imaginary axis for
continuous-time systems, the unit circle for discrete —
time systems, etc.) is mapped onto the parameter
plane, implicitly or explicitly. The resulting boundary
divides the parameter plane into connected compo-
nents, which we will call D-partition regions. Within
each component mentioned, the number of stable roots
does not change. The set of D-partition regions in
which all roots are stable forms the stability region.
The number of the components can be estimated for
Hurwitz and Schur polynomials [10]. Thus, the
boundary 0D, of a stability region satisfies the condi-

tion

oD, <{(k, k,) :G(s, ky, ky) =0, s€dD}.  (3)

The zero symbol 0, in formula (3) emphasizes

that the equation is complex. Let the boundary of a
root localization region be parameterized by a real pa-

rameter w:@Dz{s(w):weWcR}. Then the D-

partition is given by the so-called main equation
G(s(w), k., ky)=0g, weW, (4)

and the degree drop condition of the polynomial im-
posed on the coefficient at s" :

G, (kv k2):0<c- (5

Equation (5) describes the change of the total number
of roots. It corresponds to a structural change in the
system and can be interpreted as follows: in this case,
at least one of the roots is “infinite” and unstable (by
the number of consecutive leading terms equal to 0).

The features of solving the main equation are pre-
sented in Section 1. The advantage of D-partition is its
simplicity and clarity. The drawbacks of the D-
partition method are obvious:

e the dependence on a small number of parameters
(one, two, or three; some exceptions for special poly-
nomial structures were investigated in [11]);

¢ nontrivial application to polynomials that depend
on parameters nonlinearly: equation (4) must be re-
solved with respect to the parameters;

¢ redundancy in the construction of boundaries, in
particular, that of a stability region.

The last point is due to the fact that the mapping of
the imaginary axis onto the parameter plane limits the
connected components of a stability region and, in
addition, separates all other regions with different
numbers of stable roots. Moreover, the image of the
imaginary axis can separate regions with the same
number of stable roots. As a consequence of this prob-
lem, the boundary of a stability region is typically de-
fined and analyzed in graphical and numerical form.

In this paper, we address the latter problem using
an explicit and constructive description of the arcs of
the stability region boundary and the algorithmization
of its construction. This is achieved using a combina-
tion of algebraic and computational algorithms. The
method is suitable for polynomials with the linear de-
pendence on the parameters and arbitrary root locali-
zation regions whose boundary oD is parameterized
by a piecewise rational function. The D-partition
method is used in many practical problems of design-
ing controllers with such a structure [5]. Therefore, the
explicit identification (detection) of a stability region
is topical.

34
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This study further develops the results presented in
[12]. The parameterization of the stability region
boundary obtained below can be used for subsequent
optimization within the stability region and for other
tasks related to the analysis and design of controllers
with desired characteristics specified by a root locali-
zation region. (These issues will be discussed in part I1
of the paper.)

Alternative approaches

We outline the main approaches to describing a
stability region and its boundaries; in the general case,
they are applicable to a larger number of parameters.
Let us divide them into four groups.

The simplest and most obvious method is the brute
force exploration over the parameters &, e.g., using a
regular grid. At each grid node, the roots of a polyno-
mial are calculated, and their number in a root locali-
zation region D is counted. Based on this parameter,
the node’s belonging to the corresponding region of
the D-partition is determined. To implement this ap-
proach, at least an approximate localization of the sta-
bility region is required. As a rule, it is available in the
form of a parallelepiped K = K, xK, x...xK,

:[kl, lgl]x[l_cz, ];2:|X...><|:]_€[, l;J;The ranges of all /¢
parameters, K, =[l_<i,l;,}, i=1,..., £, are taken from

the “physical” constraints of the analyzed system or
based on other considerations. However, the number
of trial points (grid nodes) is inversely proportional to

the /th degree of grid (mesh) fineness, and the stability
region boundary will be described approximately. For
example, small stability or instability regions, as com-
pared to the grid fineness, may be missed. This simple
method quickly evaluates or localizes a stability re-
gion. Some examples of direct parameter enumeration
are shown in Fig.1. Clearly, the stability region on the
left includes only seven trial points; with a sparser
grid, it would not have been detected.

Within the second approach, the parameter plane is
divided into sets (often rectangles), and their belong-
ing to a stability region is determined, e.g., using suf-
ficient criteria for robust stability [13]. The algorithm
has a complexity estimate with respect to the degree of
the polynomial and surely yields an internal approxi-
mation of a stability set. The same approach is appli-
cable to the analysis of systems with uncertainty [14].

The third approach is to describe a stability region
implicitly as a system of equations and inequalities,
e.g., matrix ones. This allows solving “higher-level”
problems, such as obtaining an optimal controller in
some sense, or designing a controller or observer that

satisfies additional constraints, such as the H_ norm

of transfer functions, etc., among stable controllers.
The third approach is convenient due to its organic
integration of the specified D-stability constraints into
an optimization problem. For instance, the parameter
constraints written in terms of the positive (negative)
definiteness of certain matrices are well consistent
with control problems in the semidefinite program-
ming formulation [15]. Such formulations are natural

k 9 « No stable roots

- « 1 stable root

2 stable roots

1.5 4 3 stable roots

» 4 stable roots
1.0 4
0.5 4
0.0 4
0.5 4
-1.0 4
-1.5 1
2.0 1

|
e -

-3.0 25 -20-15 -1.0 =05 0.0 05 K
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Sl e HIIEI =20 e No stable roots
7 4 s : S e ] stable root
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4 stable roots
» 5 stable roots

Fig.1 . Direct parameter enumeration: (a) Example 1 and (b) Example 2; see Section 5.
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when the system is represented in the state space (as
an ODE) using matrices where the parameters enter
linearly, and they will enter the characteristic polyno-
mial polynomially. Despite the convenience of speci-
fying a region by formulas, in fact, a stability region
can have a complex structure, be nonconvex, multiply
connected, or even disconnected. As a result, the op-
timization problem on this set is complex in itself.
Note a similar approach where the boundary of a sta-
bility region or, more generally, a region of parameters
satisfying problem requirements (not necessarily in
terms of polynomial’s roots) is described using a cer-
tain boundary equation (guardian map) [16, 17]. This
group also includes other approaches in which the
boundary of a stability region is used implicitly. For
example, in the direct search for an optimal controller,
the numerical method “stays inside” a stability region
due to a barrier-type function that tends to infinity
when approaching the region boundary [18].

Finally, the fourth group of approaches is algebraic
analysis of equation (4) as a system of two equations
for a set of real parameters w, k,, k,,... As arule, the

main equation is polynomial, and its solution can be
analyzed using algebraic methods [4, 20]. In particu-
lar, it is possible to eliminate the variable w, obtain
the equation of the D-partition boundary, and then ex-
tract its parts corresponding to the stability region
boundary. A set of points selected simultaneously al-
lows identifying not only the arcs of the stability re-
gion boundary but also the region itself. The algorithm
includes the construction of a Grobner basis and its
ideal, or a similar exclusion of the variables (which is
essentially equivalent to writing the solution of the
main equation (4) in analytical form) and cylindrical
algebraic decomposition (CAD) for a system of poly-
nomial equations [19, 20]. However, this method re-
quires special software, and its numerical implementa-
tion can be time-consuming and memory-intensive;
moreover, the result is very sensitive to the coeffi-
cients of the polynomial and the way they are defined.
Technically, all listed methods are reduced to ana-
lyzing a certain curve (curves, or straight lines, further
called lines for brevity) on the plane that is the solu-
tion of a certain equation defining the boundaries of
D-partition regions. The formulations of the corre-
sponding problems depend on the method used to de-
scribe the curve. In this paper, we specify the process
of constructing the D-partition for one and two param-
eters by combining algebraic and numerical methods.
For this purpose, we use elementary auxiliary con-
structs to calculate the real roots of some polynomials.
The result is an analytical description of the stability
region boundary as a set of parameterized curves and
lines with definite parameterization intervals. For this

description of the boundary in the form of a set of
curves and lines, we propose several numerical ap-
proximation methods for a stability region and/or its
boundary with a desired accuracy. The methods help
to solve a number of stability region-related problems
easily, such as the localization of a stability region,
robustness analysis, etc.

1. CONSTRUCTIVE D-PARTITION

1.1. D-Partition for Polynomials Linearly Dependent on
Parameters

Consider a characteristic polynomial linearly de-
pendent on two parameters k, and k, :

G(s.k;, ky)=kP(s)+k,0(s)+R(s). (6)

Let DcC be a regular open® localization region
for the roots. Further, assume that the polynomials

P(s), Q(s), and R(s) have no common roots.’

When varying the parameters k, and k, , the roots

of the polynomial change and may enter the region D

or, conversely, leave it. Let the boundary 0D of the
root localization region have a real-valued parameteri-
zation by polynomials, or rational functions, or a set of
such polynomials and functions.

Consider D-partition using the example of Hurwitz
polynomials. Without loss of generality, we take the
boundary of the asymptotic stability region (2) with
the simply connected boundary I'= { seC :Res= 0}

and the parameterization
s(w)= jw, we (-, ). (7

In the general case, assume that the boundary is
described by a set of simple curves, each representing

% Or a regular closed region; in this case, the belonging of each arc
of the boundary of the stability region to the stability region itself
must be checked separately, in particular, by separately consider-
ing the intersection points and junction of the boundary arcs, while
the methodology for constructing the D-partition remains the
same. This technical issue also occurs for closed but irregular root
localization regions, e.g., with D={s :Res <0, Ims =0} , during
aperiodicity analysis. The results of this paper are valid for open
sets as well, where “internal” and “hanging” parts of the boundary
of the root localization region and similar arcs of the stability re-
gion boundary are possible.

? Otherwise, the common root lying in the region D can be isolat-
ed as a common factor, which leads to a polynomial of degree
n—1. If the common root does not belong to the region D, then
the polynomial is unstable for any values of the parameters.
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a piecewise rational® function; see Section 2. Note that
if the set D is symmetric with respect to the real axis
and the coefficients of the polynomials are real, then it
suffices to study only the “upper” part of the boundary
with Ims >0, particularly during asymptotic stability

analysis, we [O, OO) . In this case, the intersection
points of the boundary I' with the real axis will be
treated as the junction points of the boundary arcs.

The parameters k on the stability region boundary
must satisfy the main equation (4) or the degree drop
equation (5). We specify them for the polynomial (6).
The leading coefficient of the polynomial G, (kl, ky)
is linear in the parameters k, and k, , and equation (5)
connects the coefficients of the polynomials
P(s),Q(s), and R(s) at s", denoted by P, =a,,
0, =b,, and R, =c,, respectively. Some (but not all)
of them can be zero:

G, (kl, k, ) =ayk, +byk, +¢, =0. (8)

The main equation (4) of the D-partition for the
boundary (7) takes the form G( w, k., k2)= Oc. Tt is

polynomial with respect to all parameters and is
equivalent to the system of two real linear equations

Re G(jw, k;, k) =kRe P( jw)
+k,Re Q(jw)+Re R(jw)=0

Im G( jw, k;, k, )=k Im P( jw)
+k,dm Q(jw)+Im R(jw)=0.

)

This is a linear vector equation with respect to the
variables k, and k, with the coefficients polynomially

dependent on w. Its solution can be written in explicit
form. For this purpose, consider singular (or critical)
frequencies nullifying the determinant of the matrix

T(w)= ReP(j:w) ReQ(J:w) ‘
ImP(]w) ImQ(jw)
The critical frequencies are determined by a poly-
nomial equation compiled for (10):
detT(w) =Re P(jw) Im Q(jw)
—Re Q(jw) Im P( jw)=0.

(10)

(11)

* When substituting the rational function S(W) , the main equation
(4) reduces to a polynomial equation with respect to w; and one
should separately consider the cases where the denominator of
s(w) is zero. If the root localization set is multiply connected, it
may be necessary to analyze not only the stability region D, but
also other regions D,, d =1,..., n [3, 21]. Within the approach

proposed, such situations can be considered uniformly, describing
a region with an arbitrary number of stable roots.

Let it have M different real roots w,, and let at

most n of them be on the interval [O, oo) for the case

of asymptotic stability with the boundary (7), includ-
ing the zero root (in the general case, at most 2n
roots). For each root, the solution set of (9) is either a
line, called a singular line, or an empty set. In addi-
tion, the rows of the augmented matrix composed of
T(w,) and (-ReR(jw,), ~ImR( jwl.))T are either
linearly dependent or linearly independent. In the lat-
ter case, no solution exists, and the corresponding root
w; is ignored. The augmented matrix itself is nonzero
by the assumption of no common roots of the polyno-
mials P, O, and R. Assuming the existence of a solu-
tion, we denote by a, and b,, the elements of the non-
zero row of the matrix T(wl.) and by ¢, the free term.

Then the solution of system (9) at w=w; is described
by the line equations

ak +bk,+c =0, i=1,..., M. (12)

The linear dependence of the rows of the augmented
matrix covers the case when one row is zero; for ex-
ample, for the boundary (7), this occurs when nullify-
ing the imaginary part for w=0, which corresponds
to a singular line.

(w1 =0, wz),

(W, Wy ), oos (Was—s Wiy )5 (Wyy» ), the solutions of

On the remaining intervals

equation (9) define a rational curve on the plane con-
sisting of at most M +1 connected arcs, according to

the number of intervals where the functions &, (w) and

k, (w) are continuous:

ki (w) zm(lmle(fw) Re 0(jw)
~Im R( jw) Re Q(jw)), (13)
()= G gy (Re RUw) Tm P ()

~Im R( jw) Re P( jw)).

Thus, the D-partition is described by the curve
(13), further referred to as the main curve, and K +1
line equations (8) and (12).

In general, the boundary of the root localization
region I' is piecewise continuous, with different arcs
having their own parameterization; as a result, the D-
partition is defined by several main curves and a set of
lines. Moreover, the root localization boundary may
consist of several connected components [3]. A con-
structive D-partition algorithm in the general case is
presented below. Its idea is to identify the boundaries
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of individual D-partition regions and, in particular, the
stability region, using the one-dimensional parameter-
ization of the boundary arcs.

1.2. Constructive D-Partition for Two Real Parameters

We propose a numerical-algebraic algorithm for
describing individual D-partition regions by calculat-
ing their boundaries. Some transformations are per-
formed analytically whereas the others numerically.
All nontrivial numerical operations can be reduced to
calculating the real roots of certain polynomials. The
approach proposed copes with the difficulties inherent
in the alternative methods, see the Introduction. In par-
ticular, it requires no special software and can be ef-
fectively implemented. On the other hand, it explicitly
describes the boundaries of D-partition regions in the
form of rational curve arcs and segments. Only the
intervals of the parameters of these curves and seg-
ments are obtained numerically.

Algorithm 1. Constructive D-partition.

Input: a polynomial of degree 7 that linearly de-
pends on the parameters, of the form (6); a root locali-
zation region D with a parameterized boundary

=t I, :{S[(W)G(CIWE‘/V[},
f=1,...,L

and 0<d <n as the number of stable roots sought for.

(14)

Step 1. For all arcs of the boundary I',, compile

the D-partition equations in the form of a system of
two equations, e.g.,

Re G(s; (w), ki, ky)=kRe P(s,(w))
+k2ReQ(s[ )+ReR(sC(w)) 0
ImG(s[( w), kl,k) kImP(sC(w)) (15)
+kyIm Q(s,(w))+Im R(s, (w))=0,

weW,.

Step 2. Obtain the solution of (15) as a set of par-
ametric curves (km(w), k,, (w)), weW,, and singu-
lar lines; add to this set the line from the degree reduc-
tion equation (8) if its solution set is non-empty. In
this case, the intervals W, can be divided into inter-

vals, half-intervals, or segments corresponding to the
continuous curve arcs and separated by critical fre-
quencies.

Step 3. Find all intersection points of the curves
and lines obtained in the previous step, and the points

of self-intersection of the curves (k,,(w), k,,(w))

within the intervals W, on the intervals with a contin-
uous dependence on the parameter w. When calculat-

ing the intersection points, consider the finite limit
points as belonging to the corresponding curves (see
Section 3).

As a result, the intervals W, will be divided into

the subintervals W, corresponding to continuous

curve arcs from one intersection to another (or infinite
arcs without intersections). The lines are splitted into

segments parameterized by the intervals te7, c R .

Step 4. Determine which D-partition regions lie on
each side of each curve arc and segment. Sequentially
group the curve arcs and segments that bound the part
of the D-partition region with d roots.

Output: an ordered set of curve arcs and segments

(or intervals) parameterized by the intervals W;; and

T, that forms the boundaries of the region D, .

In Step 3, it is essential to consider the finite limit
points of the curves in order to calculate the division
of singular lines into segments representing the
boundaries of different D-partition regions.

The algorithm is mainly applied to find the stabil-
ity region D, , i.e., for d =n. Other D-partition re-
gions may be needed when analyzing a multiply con-
nected root localization region or if the initial root lo-
calization set is described by the union of sets (see
footnote 4 on p. 5)

Algorithm 1 can be generalized to the case of a
nonlinear dependence on the parameters: it is neces-
sary to obtain an explicit solution of the main D-

partition equation G (s, (w), k;, k,)=0, with respect

no

to the parameters, depending on the value of the pa-
rameter w then. This may require re-parameterization
or the introduction of extra parameters to describe the
branches of curves or additional lines. Moreover, it is
necessary to provide algorithms for finding intersec-
tion points of the resulting curves and lines. Apparent-
ly, to obtain such a solution even in the case of a poly-
nomial dependence on k, and k, is a nontrivial prob-

lem. The identification of solvable cases is an interest-
ing area of further research.

Next, we characterize the boundaries of D-partition
regions for piecewise rational boundaries of the root
localization region in a bounded set.

2. CONSTRUCTIVE D-PARTITION FOR A ROOT
LOCALIZATION REGION WITH A RATIONAL BOUNDARY

Consider the implementation features of Algorithm
1 and its applicability. We begin with the boundary I"
(14) of the root localization set consisting of a single

curve: I'={s(w)eC:we W}. In the general case, the

38
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results obtained are valid for each boundary arc I,.
Without loss of generality, we will consider the stabil-

ity region D, as the desired D-partition region.
First of all, it is necessary to solve equations (15)
with respect to w. If s(w) can be represented as a

rational complex function,
S(W) = sreal ( )+ -1 Slmag (W)
with rational functions s, (w) and s

functions P (s ( w)) ,

1mg( w), then the
Q(s(w)), and R(s(w)) (hence,
ReP(s(w)), etc.) are also rational. By multiplying the
denominators of the ReP(s(w)),
ReQ(s(w)), and ReR(s(w)) (or ImP(s(w)),
IrnQ(s(w)), and ImR(s(w)) for the second equa-

tion) by the least common multiple, the system of
equations (15) can be reduced to the form (9), where

the degrees of the polynomials B, P, Q,, 0,, R,,
and R, depend both on the degree of the original pol-

functions

ynomial G and on the degrees of the numerator and
denominator of the function s(w) :
kP (w) +k,0, (w) +R, (w) =0
ki Py (w)+ky 0, (W) + Ry (w) = 0.
The conversion of equation (15) to a polynomial

system of two equations is not unique. Similar to the
conversion from Schur polynomials to Hurwitz ones,

(16)

with the substitution of the rational function s(w) ,
one can first multiply the polynomial G(s(w), k,, kz)

by the denominator of the function s(w) risen to
power n. Thus, the denominators will be eliminated
from equations (15) since the function s(w) describes
the parameterization of the curve and its denominator
does not vanish on the interval W. Only after this

transform should the resulting polynomial equation be
divided into the real and imaginary parts. In both cas-
es, the coefficients of the polynomials F,P,, etc. are
calculated analytically by substituting the function
s(w) and separating the real and imaginary parts. This
method seems preferable: in the above operation of
separating the real and imaginary parts of a complex
polynomial (see the previous method), it is necessary
to multiply the numerator by the complex conjugate
denominator, which doubles the degree of the poly-
nomials. In turn, the degree of the numerator and de-

nominator of the complex function G(s(w), k., k, ) is

a multiple of the degree of the original system and

those of the numerator and denominator of the func-
tion s(w).

The main solution of system (16), like the solution
of system (9) in the case s(w)z— Jw, is described by a
single rational function (on the intervals of its continu-
ity) and, possibly, by singular lines. The singular lines
correspond to the parameters w, called critical fre-
quencies’ by analogy to Section 1. They are deter-
mined by the equation similar to (11):

detT (w)=PR(w)0,(w)-0,(w)P(w)=0. (17)
The general solution k (w)=(k, (w), k,(w)), simi-

lar to formulas (13), is expressed by the rational func-
tions

kl(w):deT()( > (w) 0 (w)

1 ,num W)

Ky ()
b
l den (W

(w) B, (w)

—R (w) QZ(W))
(18)

=

k(W)= det?l"( (
k

2,num (W)
k2 ,den (W)
weW.

Here, the subscripts “num” and “den” indicate the pol-
ynomials in the numerator and denominator, respec-
tively.

Depending on the context, it is convenient to con-
sider k(w) without singular frequencies either as a

single curve defined by a general expression or as a set
of continuous curves defined on open intervals.

2.1, Straight Lines and Intersections with Them

Similar to equation (9) for asymptotic stability
analysis, the system of equations (16) is polynomial,
and its solutions may include singular lines; we denote
them by analogy with the lines (12), with the coeffi-

cients a;, b, ¢;, i=0,..., M . They are supplemented
by the singular line with the subscript i=0, corre-
sponding to the degree drop condition (8). The total
number of roots depends on the particular functions

G() and s(w) and the degrees of the polynomials

forming them. The critical frequencies w, are deter-
mined numerically from equation (17); only the real

® Sometimes, critical frequencies are not the roots w; themselves
but the function values s(w;), also termed generalized critical

frequencies.
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roots belonging to the interval W are needed here.
The list of critical frequencies consists of only those
w, for which the solution set of system (16) is non-
empty.

The intersection of these lines with the main curve
of the D-partition (18) is given by the equation

a; (R2 (W)Q] (w) -R (w)Q2 (w))
+5, (R () P, (w) = Ry (w) B (w))
6 (R(w)0, (w) =0, (w) B (w)) =0,
i=0,..., K.
This equation is polynomial with respect to w, and

(19)

its real roots (denoted by w,,, m=1,...) can be calcu-
lated explicitly. These roots, together with the critical
frequencies w;,, divide the interval W into segments
and intervals corresponding to the simple, continuous
parts of the D-partition boundaries, the arcs of the
main curve. These arcs form the main, non-trivial part
of the D-partition. The intersection points are deter-
mined from equation (18) as
k(w,)=(k (w,). ky(w,,)). They divide the funda-

mental curve into arcs and, moreover, divide the sin-
gular lines into segments or infinite intervals (rays).

2.2, Selection of Segments on a Straight Line

On the plane of parameters, the intersection points
of singular lines with each other and with the main
curve determine the segments and intervals of each
singular line. Consider a line on the plane given by
equation (12), where the numbers a and b are not
simultaneously zero:

ak, +bk, +c=0. (20)

We describe the relationship between the algebraic
and parametric representations of a line:

k()= td+p, —oo<t<+oo,

p,deR?, d=0.
Equation (20) with
a=dy, b=~d,, c=d\p,~d,p, (22)
yields the expression (21). The above representation is
unique up to a (nonzero) multiplier.
Conversely, the form (20) can be obtained from
formula (21). This form is associated with any pair of
a direction vector d and an origin point p satisfying

21

the independent system of equations
{ad1 +bd, =0

(23)
ap, +bp, +c=0.

The direction vector can be taken as d =(—b, a)T;
it is defined up to a nonzero multiplier. The second

equation in system (23) coincides with equation (20),
and any point on the line satisfying (20) is selected as
p . (This condition is also obvious from the fact that

the point k(O) = p belongs to the line.) For example,
one can take the intersection point of the straight line
with the X axis, (—c/a, 0), if a#0, or with the Y ax-

is, (0, —c/b), if b#0. It is possible to take the point

closest to the origin:
ac bc

S A
If the point k& on the straight line is known, we can
immediately select p =k . For instance, if all intersec-
tion points of the straight line (20) with other lines or
with the main curve (curves) of the D-partition are
known, then the point (24) can be replaced by the one
with the minimum (or maximum) abscissa or ordinate,
and the direction vector d can be selected so that all
segments and intervals of interest correspond to the
intervals with a nonnegative value ¢. In this case, the
direction vector d can be normalized so that the pa-
rameters of all segments of interest fall within the in-

terval te[O, 1]. This is convenient under the a priori

localization of the stability region described in Sec-
tion 3.

For the parameterization (21), it is of interest to de-
termine the parameter ¢ by a point on the line, the so-
called inversion problem. In particular, for Algorithm
1, it is necessary to determine the line segments be-
tween the intersection points with other lines or with
the main curve of the D-partition. Let a point

k=(k,, k,)" lie on the straight line (21). The parame-
ter value can be obtained from the equation for one of
the coordinates: 1t =(k,—p,)/d, if d #0, or

*

t =(k2 - pz)/d2 if d, #0; or from the expression

*_(kl_Pl)d1+(k2_P2)d2 _(k_P)Td
r= LT B2l L (os)
dy +d, ||

If the point k is obtained numerically and does not
lie on the line, formula (25) will correspond to the
point closest to k on the line (its Euclidean projec-
tion):

k*=t*d+p=wd+p
ld]
dd" dd" dd"
= k—p)=|1- k (26
p+de( ) [ dej d'd (26)

40
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where I stands for an identity matrix of dimension
T

2x2,and T is the projector onto the line.

It remains to consider the intersection points of two
lines. Let the first be given algebraically, by equation
(20), and the second parametrically by formula (21). If
the lines intersect and do not coincide with each other,

then they are not parallel, and (a, b)d =ad, +bd, #0.
Here, (a,b)d denotes the matrix product of the row

vector (a, b) and the column vector d, ie., the

standard inner product of the vectors (a, b)T and d .

Then the intersection point k is found by substituting
formula (21) into equation (20) as follows:

+__c+ap +bp, __c+(a, b)p

" ad +bd,  (a, b)d ’ o
F=td+ Z_M d+
2 P (a’ b)d p-

Here, t, refers to the parameterization of the second

line. To find the value of the parameter tl* correspond-

ing to the first line, we need to consider its parameteri-
zation (21), substituted into the second line equation
(20).

3. LOCALIZED D-PARTITION
AND LIMIT POINTS

In practice, D-partition is performed in a bounded
closed region (a compact set), e.g., in a rectangle

Kz[k], I;l]x[lgz,lgz} We will call it an (a priori)

localization region and the D-partition in this region a
localized D-partition. Of course, localized D-partition
yields part of the stability region within the corre-
sponding localization region. However, in many cases,
the chosen localization region contains the entire sta-
bility region since the latter is often bounded and
small. Sometimes it can be determined in advance that
a polynomial is unstable outside a region K, e.g., us-
ing necessary stability criteria. For instance, for a pol-
ynomial to be Hurwitz, all its coefficients must have
the same sign (Stodola’s criterion), etc. [22].

The boundaries of a rectangle K are vertical and
horizontal segments; for such segments, equation (19)
becomes simpler, cf. the equation for one of the com-
ponents (18):

R, (w)Qi (w) =R (w)Q, (w)
:x([}(w)Qz (w)—%(w)}’z(w)), (28)

x=k,k,

R (w) Py (w) =Ry (w) B (w)
=y(ﬁ(w)Qz(w>—gl<w)Iz(w)), (29)

y=ky, k.

When solving each of these equations, it is neces-
sary to check whether the other coordinate falls within
the desired interval (i.e., whether the main curve inter-
sects the segment on the line). If the roots of the first

equation are w,,, one should select only those for
which kz(wm)e[l_cz, 122] , and vice versa. Basically,

such a check has not been required to find the intersec-
tions of the main curve with singular lines.

The intersection of singular lines with the bounda-
ries of a region K is done considering their parame-
terization

ko8] (R k%)

0 kL)L o k, )
A A SR
k, =k, k, ky =k k,

te [O, 1].

When calculating the intersection of the segments
(30) with the singular lines (20) using formula (27),
one additionally checks the inclusion t; e[O, 1]; if it
fails, there is no intersection of the singular line with
the segment.

The D-partition localized in a bounded set is con-
venient because it simplifies the analysis of limit
points. In what follows, except for Lemma 4, we con-

sider a single main curve k(w)=(k, (w), k, (w)). Let

adjacent critical frequencies w; and w;,,,; be found on
an interval W . The curve is continuous on the open
interval (w;, w,,,) between the critical frequencies.
Consider the limit points of the curve on this interval

and any endpoint w, of the segment. The left endpoint
w, =w; corresponds to the right-sided limit whereas

the right one w, =w,,, to the left-sided limit. There
are two possible cases.

Lemma 1. If the right-sided (left-sided) limit
lim k(w) =k

. exists, then the [limit point
WIW,

k.= (kcﬁl, kc’z) lies on the singular line corresponding

to the critical frequency w,.
P ro o f. Let us directly substitute the solution (18) into
system (16); within the interval (w;,w,,;), both equations

turn into the identity & (w)P(w)+k,(w)Q(w)+R(w)

_R(w) detT (w)

-R(w)=0 i
a7 () (w)=0,w=w,, since detT (w) 0.
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As w—>w,, the identity remains valid due to continuous
dependence of (11) on k; in particular, all the terms
kc,lp(wc)7 kc,ZQ(Wc) , and R(w,) depending continu-
ously on w will satisfy the corresponding equality. Thus,
the point k, satisfies equation (11), i.e., the solution set is
non-empty at w=w, , and the rank of the augmented matrix
does not exceed that of the matrix T(wc) . By assumption,
the polynomials P, O, and R have no common roots;
therefore, the polynomials R, B, O,, O,, R, and R, also
have no common roots, i.e., the matrix T(wc) iS nonzero.

In addition, detT(wc):O, meaning that the rank of the

matrix 7'(w,) and, consequently, the rank of the augment-
ed matrix, is 1. As a result, the solution of system (16) at
w=w, is a singular line containing k. ¢

According to Lemma 1, the curve can be further
defined at the point w, by the value k_, keeping the

continuity of the curve and closing its definitional in-
terval at the corresponding endpoint.

For the sake of definiteness, consider the left end-
point of the segment, w— w;, and the corresponding

limit on the right as w — w;, +. The following lemma
characterizes the infinite arcs of curves outside the
region K .

Lemma 2. If the right-sided limit lim k(w) does

wow;+
not exist and k(wy)eK for some wy,e€(w;, wy,,),
then there exists w, €(w;, wo] such that k(w,)eK

and k(w)eE K forall we (Wi, wc) .
P roo f. It follows from continuity. By construction, the

sign of the determinant detT(w) is constant within the
interval (w;, w,,,). Let us find all intersection points of the

curve k (W), we(w,-, w; +1), with the boundaries of the
region K, e.g., from equations (28) and (29); among them,
we select the minimum value of the parameter, denoting it
by w, . The existence of a minimum is ensured by the com-
pactness of the region K and the continuity of the function
k(w). The point k(w,) does indeed exist since

c

k(wy)e K and k(w) has no limit as w—> w; +. The func-

tion k(w) is rational; therefore,

k (w)” increases infinitely

as w—ow,+, and k(w, )e K for a value w,, <w, suffi-

ciently close to w;. On the interval (w;,, w,.), the function

+
k(w) is continuous and does not intersect the boundary of
the region K, so the arc of the curve k(w) also lies outside
). ¢

Obviously, Lemma 2 is valid for both endpoints of
the segment or interval (w;, w,,,). Note that with

the region K forall we(w;, w,

Lemmas 1 and 2, for the D-partition inside the region
K, it suffices to consider the segment
[w., w,]= (w;, w,,;), where w, and w, are deter-
mined algorithmically. To check the intersection of the
boundary’s arc with the rectangle K , it suffices to find
the roots of the four polynomials (28), (29).

For completeness, we should study infinite param-
eterization intervals and their limit points. Assume that
after the division by critical frequencies, the interval
W includes the infinite one (w;, ).

Lemma 3. If the limit lim k(w) does not exist,

then the order of the rational function’s numerator is
greater than the order of its denominator,

||k(w)|| — o, and an analog of Lemma 2 is valid.

That is, if k(w,)eK for some w,€(w;, ©), then
there exists w,2w, such that k(WC) eK and

k(w)e K forall w>w,.

The proof of Lemma 3 repeats that of Lemma 2.

Finally, the case of the existence of a limit on an
infinite interval of the parameter is characterized by
the following lemma. It considers the arc of the curve

r,={s(w),weW,} on the unbounded section

().

Lemma 4. If the limit lim k;(w) =k, for the arc

of the curve T exists, then either the limit lim s, (w)

w—>0

exists and belongs to the curve I or the limit
lim s, (w) does not exist and the point k,, lies on the

W—>00
singular line satisfying the degree reduction condition

(8).

P ro o f. According to this lemma, consider two cases.
1. If the limit s, = lim s; (w) exists, then it belongs to
W—>00

the closure of T'; since s;(w)eT;. In turn, the closure of

I'; is a subset of the entire boundary I'" because the bound-

ary is closed.

2. If the limit lim s;(w) does not exist, then
Ww—>0

r(w) -0 in the polar representation s; (w)=r(w) /)

W00

In this case, s(w) is a root of the polynomial (6). Let us

divide the polynomial by s”. As a result, the coefficients of
the functions P(s)/ s", etc., at the parameters k, and k,
and in the free term tend to those of the polynomials P, Q,

and R at s", and the remaining coefficients tend to zero.

For each weW, s;(w) is a root of the equation

P(s)/ s" =0, and the limit point k, satisfies the degree

42
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drop equation (8). In other words, k, lies on the corre-

sponding singular line. ¢

The limit point s, = lim 5;(w) (if exists) is the

junction point of the arcs of the root localization
boundary, i.e., it either belongs to the curve I',,, m#1,
or is the other endpoint of the same arc of the curve
I';. In addition, the limit point matches a finite value
of the parameter W (possibly from another arc of the
curve I', and s, =35, (w)) since all boundary points

are parameterized by definition.

Lemmas 1 and 4 characterize the finite limit points
of the curve arcs. They are considered in Step 3 of Al-
gorithm 1 when searching for the intersection points.
Strictly speaking, in such cases, the curve is further
defined at the finite limit point w, (the boundary of the

interval); for infinite limit points as w—>0, the pa-
rameterization is changed, see the proof of Theorem 1
below. When checking the belonging of a limit point
k to a singular line, according to formula (26), one
can use the distance from the point to the line

(I_dde(p_k)

d'd
the specified accuracy, then the limit point can be con-
sidered an intersection point. This point splits the line
into two parts by the parameter ¢, calculated using
formula (25). To check the belonging of the limit point
to another main curve defined by a rational function,
the algebraic form of this curve is used, together with
inversion (the recovery of the parameter by a point on
the curve, see [23]). The split can be obtained in an-
other way, using the fact that the curve is defined by a
system of equations. For this purpose, the values of the
components of the limit point k (of the first main
curve) are substituted into one of the equations (16) of
the second main curve; the resulting equation is solved
with respect to w. Then the roots found are substitut-
ed into the second equation of the second main curve;
those are selected for which the equality holds for the
same components of k . For the limit point (of the first
main curve) being on the second main curve, this pro-
cedure yields the latter’s parameter matching this
point.

The above lemmas completely characterize the
boundaries of the localized D-partition regions of the
polynomial (6) with a piecewise rational boundary of
the root localization region. By assumption, the
boundary of the localization region K consists of a
finite number of rational curve arcs.

Theorem 1. The boundaries of the D-partition re-
gions localized in a compact set K consist of a finite
number of segments, arcs of the boundary oK of the

. If this distance does not exceed

localization region, and arcs of rational curves de-
fined on finite closed intervals of parameters.

Proof Foralinear dependence of a polynomial on pa-
rameters, the D-partition is described by singular lines and
rational curves of the form (13) defined on open (if the end-
point of the interval corresponds to a critical frequency or is
unbounded) or closed (if the curve corresponds to an arc of
the boundary defined on a closed interval) numerical inter-
vals. Each endpoint of the interval is considered inde-
pendently, so the interval can be closed on one side and
open on the other. Due to the compactness of the set K, the
parts of the singular lines belonging to K are segments, and
their number is finite by the assumption of a rational bound-
ary of K. If an arc of the boundary of the root localization
region consists of a single point, it is mapped either to a
singular line or to a point on the parameter plane (a degen-
erate segment). If the simply connected component ; of

the region D; (denoted by D, ;) of the original non-
localized D-partition does not lie entirely inside or outside
K, the localized D-partition will include the region
D, ; NK , and part of the latter’s boundary will, in general,
be the boundary of K . In this case, the number of arcs of
each main curve outside and inside K is finite by the as-
sumption of a rational boundary of K . As for the remaining

parts of the boundary (i.e., the fractional curve arcs defined
on intervals with at least one open or unbounded endpoint),

Lemma 2 or Lemma 3 will be valid for unbounded k(w) :

the corresponding endpoint of the subinterval is closed.
Consider a rational curve arc defined on the interval W

with a finite open endpoint w, and an existing limit k (w).
For the sake of definiteness, we take the right endpoint of
the interval W=(wp,w,) and the limit lim k(w)=k,.

Wy —
There are two possible cases. If k, € K, then (Lemma 1)
the rational curve (13) can be further defined at the point
w, by the value k,. If k, ¢ K, then (following the proof
of Lemma 2), due to the compactness of the set K, a subin-
terval (wp, w;] with a closed right endpoint is selected

within the interval such that k(w )€K and k(w)eK,

we(wl, wz). Thus, the interval’s right endpoint corre-

sponding to the arc of the curve (the boundary k(w)) lying

in the region K is closed. The same is valid for the left
open endpoint of the interval.
Finally, we need to consider the case with an unbounded

interval, e.g.,
lim k(w)=k,,.
Jim k(o) =k
changed; for example, see [24]. Without limiting generality,
the left endpoint is closed since one of the above cases is
valid. An interval unbounded from below is considered by

[W,©), and an existing limit

In this case, the parameterization can be

analogy. The interval (—oo, +c0), which is unbounded on
both sides, is divided into three intervals, e.g.,
(—oo, —1], [-L 1], [1, ). If k, ¢ K , then, similar to the
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previous case with an open endpoint of the interval, the re-
gion K contains an arc of the curve k(w) with a subinter-

val [wl, wz] whose right endpoint is closed. If k, €K,
then we choose w, <w;, e.g., w, =w; —1. With the param-
eter u=1/(w—wy), ue(0,1] introduced, the fractional
curve k(w) has the fractional parameterization
k, («)=k(wy +1/u), which can be defined at u=0 as well

by the limit value k_ . Thus, all arcs of the boundaries of the
localized D-partition defined by the curve (13) are actually
defined on finite closed intervals. ¢

Under the assumption of a rational boundary of the
localization region K, the boundaries of the localized
D-partition regions are either segments or rational
curve arcs defined on finite closed intervals (seg-
ments), and their number is finite.

4. CONSTRUCTIVE D-PARTITION IMPLEMENTATION

4.1. Intersection of Two Main Curves

If the boundary I" of a root localization region is
described by several functions s[(w)e(C:weW“
{=1,2,..., then it is necessary to find all points of

their pairwise intersections. Consider the two main
curves and the corresponding functions, denoted by

k“(w), weW ,and k" (u), ueU :

ki ky
kla (W) — l;num (W) , kza (W) — 2;num (W)
kl,den (W) kZ,den (W)
and (31

klljden (u) ké},den (I/l) .

Their intersection is described by a system of two
rational equations, which can be reduced to the system
of polynomial equations

{ kltjnum (W) kl}jden (M) = klfjnum (M) k][fden (W)
kél,num (W) k;,den (M) = kg,num (l/l) k;,den (W)’
weW,uelU.

One uses only the solutions not corresponding to sin-
gular lines, i.e., kg, (w)=0 and k/y, (u)=0. This

kK ky
klb (M) _ "l,num (M) , ké) (I/l) _ "¥2,num (M)

system of two polynomial equations can be solved
numerically, e.g., by Newton’s method started near the
solution, or by decomposing the parameter plane
(k;, k,) [25] or the argument space [24], or by alge-
braic methods, e.g., by resultant approach. We empha-
size that, as in the case of the intersection of the main
curve and lines, only the values of the parameters w
and u corresponding to the intersections are deter-
mined numerically.

Recall the idea behind application of resultants us-
ing an example of solving a system of two polynomi-
als

p(w,u)zO, q(w, u)zO (32)
depending on two parameters; details can be found in
the monograph [21]. The first parameter is taken out
into monomials, and the second one remains in the
coefficients of the polynomial of the first parameter.
Let the maximum degree of these polynomials in u be
m. In other words, at least one of the polynomials

P, (w) and g, (w) is not identically equal to zero:

m—1

p(w, u)z P (w)u’" + Py (w)u +...
+p, (w)u + Py (w) =0,

q(w,u) =q, (w)u'" +q,., (W)u
+q, (w)u +4, (w) =0.

Next, the coefficients pi(w) and q,-(w) are used

(33)

m—1

(34)

to construct a matrix R(w) of dimensions nxn,
called the resultant. There are different ways to con-
struct it; the most famous ones are the Bézout and
Sylvester resultants. The key property is that the two
polynomials (31) have common roots (in «) if and

only if the determinant of the matrix R( w) is vanish-
ing, i.e., the coefficients of the polynomials pi(w)

and ¢; (W) satisfy a certain condition. A common root

of the polynomials means the existence of a value u
for which equalities (32) and (33) are satisfied. In this
case, the coefficients of the polynomials correspond to
a particular value of w, i.e., a solution of the system
of equations is obtained. Thus, one should first solve
the equation

det R(w)=0 (35)

ie., find the roots w; of this polynomial, excluding

the roots of the polynomial &, (w) among them.
Next, it is necessary to substitute each of the roots
found into the coefficients of the polynomials (33),
(34), calculate their roots ”p,i(Wj) and uq’i(wj), and

then select only those matching roots that are not roots
of the polynomial &y, (u). The resulting pairs

J
struction, they are the solutions of equations (31);
thus, the parameters of the curves corresponding to the
intersection points have been obtained. With alterna-
tive methods used to find the intersection points (e.g.,
on the plane k), one faces the inversion problem—

(up’i, W.) give the solution of system (32). By con-

restoring the parameters w and u by the point
( )22 q). This can also be done using resultants [23].

44
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The above procedure allows finding all solutions
of system (31). This approach has two features as fol-
lows. The first is an increase in complexity since the

polynomial (35) has a degree of order m”. To calcu-
late its coefficients, it is desirable to use accurate alge-
braic computations. The procedure can be supple-
mented with the refining solution of system (31) or
(32) by Newton’s method, using the obtained pair

(u, w) as the starting point.

The second feature is that, in order to apply result-
ants, the polynomials must be independent. In particu-
lar, they must have no common factors, their coeffi-
cients must be linearly independent, etc. Such cases
correspond to the degeneration of the resultant due to
the structure of the polynomials p() and ¢() and the
dependence of their coefficients on W. In these cases,
for any values of w, equation (35) becomes an identi-
ty and cannot be used to find individual w. Algebrai-
cally, this situation corresponds to an infinite number
of solutions of system (32), i.e., the overlapping of the

rational curves k“(w) and k”(u) on each other, or to
a set of solutions independent of one parameter, e.g.,
(w, 0) for any w. The latter case corresponds to the
common root of the numerator and denominator
k{'(w), k5 (w), which must be reduced when writing

the curves. As a rule, D-partition results in the main
curves of general position, and the approach involving
resultants is successful. An important exception here is
the problem of finding the self-intersection of the main
curve: this problem is solved using different parame-
terizations of the same curve.

4.2. Self-Intersection of a Main Curve

The last component for describing the arcs of the
D-partition boundary is the points of the self-
intersection of a main curve. The rational curve (18)
can intersect itself, dividing the plane into additional
regions. The points of self-intersection satisfy the sys-
tem of equations

{kl(w)zkl(“)
ky (w) =k, (u),

This system reduces to the system of polynomial
equations

{ kl,num (W) kl,den (M) :kl,num (u)kl,den (W)
k2,num (W) k2,den (M) :kZ,num (u)kZ,den (W)’

wW#U.

A challenge arises due to the inequality condition
of the parameters since the system has the trivial solu-
tion w=u . Hence, it is impossible to use the result-
ants described in subsection 4.1: they are degenerate.
Following the paper [25], the trivial solution can be
explicitly excluded by writing the equation of the so-
called reduced differences:

(kl,num (W) ki gen (1)

w—

Ky pum (”) Ky gen (W))

p(w, u) =

N

- =0
) _ (kZ,num (W) kZ,den (u)
w—u

_ k2,num (u) k2,den (W)) =0

w—u

This system can be solved using the same methods
as in subsection 4.1. Also, a solution method in the
plane of the parameters p, g was proposed in [25].
That is, to form reduced polynomials, the original pol-
ynomials were written in the Bernstein polynomial
basis, and the parameters w and u were restored by
the intersection point.

q(w, u

Sometimes, the polynomials kl(w) and kz(w)

contain only even (or only odd) degrees of w, and the
reduction of system (36) is insufficient. In this case,
the curve turns out to be a multiple of itself, and the
system has the additional solution w=-u. It must
also be excluded by dividing system (36) by the term
w+u . This is equivalent to excluding the solutions
wh=u’.

Situations with even and odd functions £, (w) and

k, (w) are common in the stability analysis of poly-

nomials with real coefficients and a root localization
region D symmetric with respect to the real axis. Un-
der these conditions, the roots of the polynomial are
complex conjugate, and the point k& on the boundary
of the D-partition regions is associated with two roots
on the boundary 0D . These roots correspond to two

values of the parameters, say, w, and w,. If the func-
tion s(w) has the conjugacy property s(—w):Tw)
(see formula (7) or Example 1 below), then these pa-
rameters are explicitly related: w,=-w,. In this case,
the function k(w) is even, and due to its rational na-

ture, the numerator and denominator contain terms
depending on even powers of W ; therefore, the calcu-
lations can be simplified by halving the degree of the

polynomial using the parametric change v = w?.
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4.3. Detection of Adjacent D-Partition Regions

For the arcs of the stability region boundary de-
fined by parts of the main curve or segments, in Step 4
of Algorithm 1, it is necessary to determine the D-
partition regions separated by a given arc (segment).
For the main curve of the D-partition, one can employ
the classical hatching rule [7] since the direction of the
normal to the boundary T' inside the root localization
region is known; like the mapping w— k, the main
curve formula (18) can be used to determine the nor-
mal to the curve toward the region with a larger num-
ber of stable roots. For segments and lines bounding
the stability region, such a rule does not exist.

The idea is to numerically determine the number of
stable roots on different sides of segments or curves:
by stepping a small distance on both sides along the

normal from an arbitrary point k[(wo), w, €W,, on
the segment or curve k((wo), where w, is an inner

point of the interval W, (e.g., its middle). As a normal
for a curve arc, we can take the vector
(k;(w), —k{(w)) orthogonal to the tangent k'(w);
as a normal for a line segment, the vector
( Dys— P1): (a, b) orthogonal to the direction vector.
It is possible to apply randomized algorithms with
both the parameter weW, and the distance chosen

randomly, e.g., according to the Laplace distribution.

Another alternative is to use the one-dimensional
D-partition along the normal line. In this case, it suf-
fices to check the number of roots only on the line
segments adjacent to the boundary.

5. EXAMPLES

Let us demonstrate the constructive D-partition and its
applications with examples.
Example 1 [27, p. 77]. Consider a continuous-time sys-

(s-1)(s-2)

tem with the transfer function
(s +1)(s2 +s+1)

closed by

k
the PI controller k, +—2= . The characteristic polynomial of
s

the closed-loop system is
G(s, ky ky) = ks (s—1)(s-2)

kg (s=1)(s=2) + s(s+1)(s* +5+1). @7

We require the closed-loop system to have a given sta-
bility margin o . Then the boundary of the root localization

region is described by the function s(w)=—c+ jw. Let us

choose 0=0.2. Since the polynomial (37) has real coeffi-
cients, it suffices to take the upper part of the boundary,

W:[O, oo) . The D-partition regions obtained by direct pa-
rameter enumeration are shown in Fig.1a.

The degree drop condition (at s4) takes the form
0-k +0-k, +1=0. It has no solution.

We substitute s(w) into equation (37) and separate the

real and imaginary parts to get the equations

ky (3.6w2 —0.528)+k2 (—w2 + 2.64) )

+w' +1.04w” —0.1344=0,
ko (—w* +3.32w) + ky - (-3.4w) ~1.2° +0.408 w=0.

Its solution determines the main curve

k(w), we [0, »), with the components
4.6w* —7.112w* +0.62016
k (w)= 4 2
-w' —6.28w" —6.9696
K ()= ~w® +8.68w* —5.4208w* —0.230784
? —w —6.28w* —6.9696 '
Compared to the expressions (13), the common factor

W in the numerator and denominator is eliminated here.
The determinant (17) takes the form

—(w4+6.28w2+6.9696)w. It has the unique real root

w, =0 . Note that the example satisfies the conditions speci-

fied at the end of subsection 4.2; upon separating the com-
plex equation into two real ones, one of the resulting equa-
tions will contain only even powers of w, and the other will
contain only odd powers of w. In addition, the function

k (w) contains only even degrees, and it can be replaced by

an equivalent representation of the curve with rational func-
tions of lower order:

4.6v>-7.112 v +0.62016
kl (V) = 2
—% -6.28 v—6.9696
ky (") =

>

- +8.68 v2 —5.4208 v—0.230784

—% —6.28 v—6.9696
vel0, o).

>

Next, for simplicity, consider the initial parameters W .
The critical frequency wy, =0 is associated with the singu-
lar line corresponding to equation (38):

—0.528k; + 2.64k, —0.1344=0

with the

p=(~0.00979021; 0.04895105)" and d=(~2.64;~0.528)" .

The D-partition is shown in Fig. 2a.
The main curve intersects the singular line at the two

points kqy = (0.17279287; 0.08546766) and
ki) =(—1.82840784; —0.31477248) corresponding to the

parameter values w; =0.70951628 and w,=2.70323801,

respectively; they are calculated according to subsection
2.1. There are no self-intersections of the main curve.

parameterization p+td, where
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-0.10 -0.05 0.00 0.05 0.10 0.15 Kk

(b)

Fig. 2. (a) the D-partition for Example 1 and (b) the stability region of the polynomial.

The points w; and w, are associated with the parameter
values £ =-0.06916025 and t,=0.68887031, respectively,

on the line. The main curve has the limit point k, = k(0)

— _0.08898072; —0:230784
—6.969 —6.9696

as w—0, which is associated with the point with
1, =0.02999640 on the line.
The stability region is bounded by one arc of the fun-

T
—(—w :0.03311295]

damental curve k(w),we[O,wl], and the segment

p+id, t €[t,1y] (see Fig. 2b).
Example 2 [10]. Consider the characteristic polynomial
Go(z, ki, ky)= 2" +k 2" +(1+€)2" > +k, of a discrete-

time system; in the paper [10], the D-partition for this poly-
nomial was obtained using trigonometric functions. The
stability of the discrete polynomial is equivalent to the
Hurwitz property of the polynomial

G(s, kiky )= (s+1) +(1+e)(s=1) (s +1)’
thy (s=1)(s+1)* +ky (s 1),

obtained from G(z, k;, k,) by the M&bius transfor-
mation. The boundary of the root localization region (2) is
described by the function s=jw, we[O, oo), considering

the symmetry with respect to the real axis. Let us choose
n=5 and €=0.1.

Direct parameter enumeration yields the approximate
boundaries of the D-partition regions presented in Fig. 1b.

The boundary of the D-partition regions consists of the
only main curve

K (w) = ~16.6 w* +128.8 w® —221.2 w* +128.8 w* —16.6
1 8(wF —6 " +6w? 1)

>

02w —0.8w°—12w*-0.8w?-0.2
kZ(W): 3 6 2
8(w —6wS 46w —1)

and two singular lines. The determinant (17) takes the form

8W(W8 —6w® +6n” —1). It has the four nonnegative real

roots {0, —l+\/§, 1, 1+2 }, which determine the continui-

ty intervals of the main curve. Of these, only the zero root
corresponds to the first singular line —k, —k, +2.1=0 with

the parameterization di+p, where p= (1.05; 1.05) and
d= (1; —1) . In addition, there exists the limit point
k(o) =(2.075; 0.025) as w— 0, which lies on this line at

t =1.025 (see Lemma 1).

The degree drop condition is satisfied by the second
singular line k +k,+2.1=0 with the parameterization
dt+p, where p =(—1.05; —1.05) and d =(—l; 1). The
main curve has the second limit point
k(w) :(—2.075; —0.025) as W—>00, which lies on the
above singular line (of degree drop) at r=1.025 (see
Lemma 4).

Let us choose the localization region K = [—2.5, 2.5]

X[—I.S, 1.5]. The main curve lies in the region K
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1.0
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Fig.3: (a) the D-partition for Example 2 and its localization in the rectangle and (b) the components of the stability region.

for we [0, 0.40398478], [0.42121903, 0.98346081],
[1.01681733, 2.37406180],[2.47534075, oo). The singu-
lar lines belong to the region K for te [—0.45, 1.45] and

te[—0.45, 1.45] , respectively (the intervals are the same

for both lines). The localized D-partition is presented in
Fig.3a.

On the first interval [0, 0.40398478] , the main curve
starts (as w— 0) on the first singular line and intersects it
at w =0.37796447 . On the last interval [2.47534075, oo),
the main curve intersects the second singular line at
w=2.64575131 and ends on itas W —> © .

On the intervals [0.42121903, 0.98346081] and

[1.01681733, 2.37406180], the curve intersects itself at

w=0.42972375 and 0.96431209 (the first self-
intersection) as well as at w=1.03700867 and 2.32707640
(the second self-intersection).

Thus, the stability region consists of four components
(see Fig.3b):

1) the segment of the first singular line for
1€[1.025,1.45] and the arc of the main curve for

wel0, 0.37796447] ;

2) the arc of the main curve for
we [0.42972375, 0.9643 1209] ;
3) the arc of the main curve for

we [1 .03700867, 2.32707640] ;

4) the segment of the second singular line for
1€[1.025,1.45] and the arc of the main curve for
we[2.64575131, o).

The last arc of the curve can be written with a modified
parameterization, see the proof of Theorem 1, as

k,(u)=k,(1/u), uel0, 0.37796447] , where the value at
u =0 is defined and coincides with k(w) :

kg (u)

166 u®~128.8 u® +221.2 u* —128.8 u> +16.6
8(u 6 u® +6u” -1)

>

C02u*+08u’ +12u +0.8u*+0.2
8(u8—6 u®+6 uz—l)

k., (u)

Note that the resulting parameterization coincides with
the original one in W up to the sign, and the interval coin-
cides with the interval of the first component. This is due to
the symmetry of the original root localization set of the dis-
crete system (the unit circle) and its parameterization. ¢

CONCLUSIONS

For a polynomial linearly dependent on two pa-
rameters, the boundaries of each D-partition region,
including the stability region, have been explicitly de-
scribed by parameterizing the curves and segments on
the parameter plane. The stability of the polynomial
has been understood in a generalized sense: all its
roots lie in a given subset of the complex plane (a root
localization region), which may differ from the left
half-plane. The constructive D-partition method has
been proposed, including an algorithm for finding the
boundaries of all stability region components without
unnecessary parts. Moreover, if the boundary of a root
localization region is described by a piecewise rational
curve, then the boundary of the stability region is a
finite set of rational curve arcs and segments. In this
case, the arcs of rational curves are defined on closed
finite intervals of parameters. The results are applied
to approximate the stability region and its boundary, as
well as to analyze robustness; see part II of the study.
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