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Abstract. In the stability analysis of linear systems depending on several parameters, the D-

partition method is often used, also known as the D-decomposition method in the literature. This 

method describes the stability region of a characteristic polynomial via the equation of its bound-

ary. A constructive D-partition method proposed below identifies individual parts of curves and 

straight lines on the parameter plane that form the boundaries of the D-partition regions and, in 

particular, the stability region. A characteristic polynomial linearly dependent on two parameters 

and a stability region with a piecewise rational parametric boundary are considered. In this case, 

the boundary of each D-partition region is a finite set of arcs of rational curves and segments, 

rays, or straight lines that can be found explicitly. The rational curve arcs are parameterized on 

intervals whose limits are found by calculating the real roots of auxiliary polynomials. A D-

partition, bounded (localized) on a compact set, consists of a finite number of segments and arcs 

of rational curves parameterized on the segments.  
 

Keywords: constructive D-partition, D-decomposition, root localization, root clustering, rational curves, 

localized D-partition. 
 

 

 

INTRODUCTION  

Controller design for linear control systems is 

closely related to the analysis of the characteristic pol-

ynomial. This applies both for systems written in the 

input–output form using transfer functions and for sys-

tems with the state-space representation.
1
 In this case, 

the stability of a system is determined by the roots of 

its characteristic polynomial. Consider a characteristic 

polynomial of degree n  that depends on two real pa-

rameters: 

 1 2,   , .G s k k                             (1) 

Here, 1k  and 2k  are parameters representing, e.g., 

controller coefficients (gains) or some uncertainty. All 

roots of the polynomial (1) of asymptotically stable 

                                                           
1 If the system is not decomposed into several independent sys-

tems, i.e., its matrix can be reduced to the Frobenius (Brunovský 

canonical) form. 

continuous-time systems lie in the left complex half-

plane:  

{ :Re  0}.s s  D                       (2) 

(Such polynomials are called Hurwitz polynomials.) 

For stable discrete-time systems, all roots of the 

characteristic polynomial lie inside the unit circle 

( { : 1})s s  D ; such polynomials are called 

Schur polynomials. This case can be reduced to the 

analysis of a continuous polynomial using a linear-

fractional (Möbius) transformation with denominator 

cancellation: a polynomial  0G z  is Schur if and only 

if the polynomial     0

1
1

1

n s
G s s G

s

     
 is Hurwitz 

and  0 1 0G    [1]. The last condition describes a 

special case in which the degree of the polynomial 

 G s  may be less than that of  0G z ; this occurs if 

0G  has a root 1 . 
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In general, the required localization set of the roots 

of a polynomial  D  can be any subset of the com-

plex plane, selected based on the requirements for the 

system. The behavior of a system is determined not 

only by the roots of its characteristic polynomial but 

also by its structure and initial conditions. Despite this, 

several important properties (besides stability) can be 

analyzed based on the location of the roots. For in-

stance, it is possible to limit the degree of stability, the 

damping ratio, and other engineering performance cri-

teria [2–4]. 

If all n  roots of a polynomial lie in a set D , it is 

called D-stable. For the sake of convenience, we will 

simply call it stable. By analogy, the roots of a poly-

nomial lying in a set D  will be called stable, and 

those lying outside D  unstable. Without loss of gen-

erality, we will demonstrate the stability analysis of a 

continuous-time system; in this case, D  is the open 

left complex half-plane, and D-stability means that the 

polynomial is Hurwitz. General requirements for the 

set D  are provided in Section 1. 

The roots of the polynomial (1) depend on the pa-

rameters 1k  and 2k , and the problem is to determine 

the parameter values under which the polynomial is 

stable (i.e., all its roots are stable). The results are used 

both to analyze the system stability with respect to 

these parameters (e.g., the physical parameters of the 

system included in the characteristic polynomial) and 

to design low-order controllers, such as PI, PD, or PID 

controllers with one fixed gain. If a system is stabiliz-

able, then the set of such parameters is non-empty; it is 

called the stability region of the system in the parame-

ter space. Let us denote the stability region by nD , 

where the subscript corresponds to the number of sta-

ble roots. 

To construct the stability region, we apply the D-

partition method, originally proposed by Yu.I. 

Neimark. This method serves to describe a stability 

region using its boundary [5–9]. The idea behind the 

method can be outlined as follows. The boundary D  

of a root localization region (the imaginary axis for 

continuous-time systems, the unit circle for discrete –
time systems, etc.) is mapped onto the parameter 

plane, implicitly or explicitly. The resulting boundary 

divides the parameter plane into connected compo-

nents, which we will call D-partition regions. Within 

each component mentioned, the number of stable roots 

does not change. The set of D-partition regions in 

which all roots are stable forms the stability region. 

The number of the components can be estimated for 

Hurwitz and Schur polynomials [10]. Thus, the 

boundary nD  of a stability region satisfies the condi-

tion 

    1 2 1 2,  :  ,   , 0 ,    .nD k k G s k k s   D     (3) 

The zero symbol 0  in formula (3) emphasizes 

that the equation is complex. Let the boundary of a 

root localization region be parameterized by a real pa-

rameter w :   :s w w W   D . Then the D-

partition is given by the so-called main equation 

  1 2,   , 0 ,   ,G s w k k w W                 (4) 

and the degree drop condition of the polynomial im-

posed on the coefficient at n
s : 

 1 2, 0nG k k  .                         (5) 

Equation (5) describes the change of the total number 

of roots. It corresponds to a structural change in the 

system and can be interpreted as follows: in this case, 

at least one of the roots is “infinite” and unstable (by 

the number of consecutive leading terms equal to 0).  

The features of solving the main equation are pre-

sented in Section 1. The advantage of D-partition is its 

simplicity and clarity. The drawbacks of the D-

partition method are obvious: 

 the dependence on a small number of parameters 

(one, two, or three; some exceptions for special poly-

nomial structures were investigated in [11]); 

 nontrivial application to polynomials that depend 

on parameters nonlinearly: equation (4) must be re-

solved with respect to the parameters; 

 redundancy in the construction of boundaries, in 

particular, that of a stability region. 

The last point is due to the fact that the mapping of 

the imaginary axis onto the parameter plane limits the 

connected components of a stability region and, in 

addition, separates all other regions with different 

numbers of stable roots. Moreover, the image of the 

imaginary axis can separate regions with the same 

number of stable roots. As a consequence of this prob-

lem, the boundary of a stability region is typically de-

fined and analyzed in graphical and numerical form. 

In this paper, we address the latter problem using 

an explicit and constructive description of the arcs of 

the stability region boundary and the algorithmization 

of its construction. This is achieved using a combina-

tion of algebraic and computational algorithms. The 

method is suitable for polynomials with the linear de-

pendence on the parameters and arbitrary root locali-

zation regions whose boundary D  is parameterized 

by a piecewise rational function. The D-partition 

method is used in many practical problems of design-

ing controllers with such a structure [5]. Therefore, the 

explicit identification (detection) of a stability region 

is topical.  
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This study further develops the results presented in 

[12]. The parameterization of the stability region 

boundary obtained below can be used for subsequent 

optimization within the stability region and for other 

tasks related to the analysis and design of controllers 

with desired characteristics specified by a root locali-

zation region. (These issues will be discussed in part II 

of the paper.)  

 

Alternative approaches 

We outline the main approaches to describing a 

stability region and its boundaries; in the general case, 

they are applicable to a larger number of parameters. 

Let us divide them into four groups. 

The simplest and most obvious method is the brute 

force exploration over the parameters k , e.g., using a 

regular grid. At each grid node, the roots of a polyno-

mial are calculated, and their number in a root locali-

zation region D  is counted. Based on this parameter, 

the node’s belonging to the corresponding region of 

the D-partition is determined. To implement this ap-

proach, at least an approximate localization of the sta-

bility region is required. As a rule, it is available in the 

form of a parallelepiped 1 2K K K  K

1 1 2 2, , , ;k k k k k k             The ranges of all  

parameters, , , i i iK k k     1, , ,i    are taken from 

the “physical” constraints of the analyzed system or 

based on other considerations. However, the number 

of trial points (grid nodes) is inversely proportional to

the lth degree of grid (mesh) fineness, and the stability 

region boundary will be described approximately. For 

example, small stability or instability regions, as com-

pared to the grid fineness, may be missed. This simple 

method quickly evaluates or localizes a stability re-

gion. Some examples of direct parameter enumeration 

are shown in Fig.1. Clearly, the stability region on the 

left includes only seven trial points; with a sparser 

grid, it would not have been detected. 

Within the second approach, the parameter plane is 

divided into sets (often rectangles), and their belong-

ing to a stability region is determined, e.g., using suf-

ficient criteria for robust stability [13]. The algorithm 

has a complexity estimate with respect to the degree of 

the polynomial and surely yields an internal approxi-

mation of a stability set. The same approach is appli-

cable to the analysis of systems with uncertainty [14]. 

The third approach is to describe a stability region 

implicitly as a system of equations and inequalities, 

e.g., matrix ones. This allows solving “higher-level” 

problems, such as obtaining an optimal controller in 

some sense, or designing a controller or observer that 

satisfies additional constraints, such as the H  norm 

of transfer functions, etc., among stable controllers. 

The third approach is convenient due to its organic 

integration of the specified D-stability constraints into 

an optimization problem. For instance, the parameter 

constraints written in terms of the positive (negative) 

definiteness of certain matrices are well consistent 

with control problems in the semidefinite program-

ming formulation [15]. Such formulations are natural  
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Fig.1 . Direct parameter enumeration: (a) Example 1 and (b) Example 2; see Section 5.  
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when the system is represented in the state space (as 

an ODE) using matrices where the parameters enter 

linearly, and they will enter the characteristic polyno-

mial polynomially. Despite the convenience of speci-

fying a region by formulas, in fact, a stability region 

can have a complex structure, be nonconvex, multiply 

connected, or even disconnected. As a result, the op-

timization problem on this set is complex in itself. 

Note a similar approach where the boundary of a sta-

bility region or, more generally, a region of parameters 

satisfying problem requirements (not necessarily in 

terms of polynomial’s roots) is described using a cer-

tain boundary equation (guardian map) [16, 17]. This 

group also includes other approaches in which the 

boundary of a stability region is used implicitly. For 

example, in the direct search for an optimal controller, 

the numerical method “stays inside” a stability region 

due to a barrier-type function that tends to infinity 

when approaching the region boundary [18]. 

Finally, the fourth group of approaches is algebraic 

analysis of equation (4) as a system of two equations 

for a set of real parameters 1 2,   , ,  w k k   As a rule, the 

main equation is polynomial, and its solution can be 

analyzed using algebraic methods [4, 20]. In particu-

lar, it is possible to eliminate the variable w , obtain 

the equation of the D-partition boundary, and then ex-

tract its parts corresponding to the stability region 

boundary. A set of points selected simultaneously al-

lows identifying not only the arcs of the stability re-

gion boundary but also the region itself. The algorithm 

includes the construction of a Gröbner basis and its 
ideal, or a similar exclusion of the variables (which is 

essentially equivalent to writing the solution of the 

main equation (4) in analytical form) and cylindrical 

algebraic decomposition (CAD) for a system of poly-

nomial equations [19, 20]. However, this method re-

quires special software, and its numerical implementa-

tion can be time-consuming and memory-intensive; 

moreover, the result is very sensitive to the coeffi-

cients of the polynomial and the way they are defined. 

Technically, all listed methods are reduced to ana-

lyzing a certain curve (curves, or straight lines, further 

called lines for brevity) on the plane that is the solu-

tion of a certain equation defining the boundaries of 

D-partition regions. The formulations of the corre-

sponding problems depend on the method used to de-

scribe the curve. In this paper, we specify the process 

of constructing the D-partition for one and two param-

eters by combining algebraic and numerical methods. 

For this purpose, we use elementary auxiliary con-

structs to calculate the real roots of some polynomials. 

The result is an analytical description of the stability 

region boundary as a set of parameterized curves and 

lines with definite parameterization intervals. For this 

description of the boundary in the form of a set of 

curves and lines, we propose several numerical ap-

proximation methods for a stability region and/or its 

boundary with a desired accuracy. The methods help 

to solve a number of stability region-related problems 

easily, such as the localization of a stability region, 

robustness analysis, etc. 

1. CONSTRUCTIVE D-PARTITION 

1.1. D-Partition for Polynomials Linearly Dependent on 

Parameters  

Consider a characteristic polynomial linearly de-

pendent on two parameters 1k  and 2k : 

       1 2 1 2,  , .G s k k k P s k Q s R s            (6) 

Let D  be a regular open
2
 localization region 

for the roots. Further, assume that the polynomials 

   , ,P s Q s  and  R s  have no common roots.
3
  

When varying the parameters 1k  and 2k , the roots 

of the polynomial change and may enter the region D  

or, conversely, leave it. Let the boundary D  of the 

root localization region have a real-valued parameteri-

zation by polynomials, or rational functions, or a set of 

such polynomials and functions. 

Consider D-partition using the example of Hurwitz 

polynomials. Without loss of generality, we take the 

boundary of the asymptotic stability region (2) with 

the simply connected boundary  Γ  : Re  0s s    

and the parameterization 

   ,   ,s w jw w    .                   (7) 

In the general case, assume that the boundary is 

described by a set of simple curves, each representing 

                                                           
2 Or a regular closed region; in this case, the belonging of each arc 

of the boundary of the stability region to the stability region itself 

must be checked separately, in particular, by separately consider-

ing the intersection points and junction of the boundary arcs, while 

the methodology for constructing the D-partition remains the 

same. This technical issue also occurs for closed but irregular root 

localization regions, e.g., with {  : Re  0,  Im  0}s s s  D , during 

aperiodicity analysis. The results of this paper are valid for open 

sets as well, where “internal” and “hanging” parts of the boundary 

of the root localization region and similar arcs of the stability re-

gion boundary are possible. 

3 Otherwise, the common root lying in the region D  can be isolat-

ed as a common factor, which leads to a polynomial of degree 

1n  . If the common root does not belong to the region ,D  then 

the polynomial is unstable for any values of the parameters. 
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a piecewise rational
4
 function; see Section 2. Note that 

if the set D  is symmetric with respect to the real axis 

and the coefficients of the polynomials are real, then it 

suffices to study only the “upper” part of the boundary 

with Im  0s  , particularly during asymptotic stability 

analysis,  0,w  . In this case, the intersection 

points of the boundary Γ  with the real axis will be 

treated as the junction points of the boundary arcs. 

The parameters k  on the stability region boundary 

must satisfy the main equation (4) or the degree drop 

equation (5). We specify them for the polynomial (6). 

The leading coefficient of the polynomial  1 2,nG k k  

is linear in the parameters 1k  and 2k , and equation (5) 

connects the coefficients of the polynomials 

   , ,P s Q s  and  R s  at 
n

s , denoted by 0 , nP a

0 , nQ b  and 0 nR c , respectively. Some (but not all) 

of them can be zero: 

 1 2 0 1 0 2 0, 0.nG k k a k b k c                 (8) 

The main equation (4) of the D-partition for the 

boundary (7) takes the form  1 2,   , 0G jw k k  . It is 

polynomial with respect to all parameters and is 

equivalent to the system of two real linear equations 

   
   

   
   

1 2 1

2

1 2 1

2

Re  ,   , Re 

  Re  0

Im  ,   , Im 

Im  Im  0.

G jw k k k P jw

k Re Q jw R jw

G jw k k k P jw

k Q jw R jw

 


  



   

         (9) 

This is a linear vector equation with respect to the 

variables 1k  and 2k  with the coefficients polynomially 

dependent on w . Its solution can be written in explicit 

form. For this purpose, consider singular (or critical) 

frequencies nullifying the determinant of the matrix 

     
   

Re  Re 
.

Im  Im 

P jw Q jw
T w

P jw Q jw

 
  
 

          (10) 

The critical frequencies are determined by a poly-

nomial equation compiled  for (10):  

     
   

det Re   Im 

Re   Im  0.

T w P jw Q jw

Q jw P jw



 
           (11) 

                                                           

4 When substituting the rational function  s w , the main equation 

(4) reduces to a polynomial equation with respect to w ; and one 

should separately consider the cases where the denominator of 

 s w  is zero. If the root localization set is multiply connected, it 

may be necessary to analyze not only the stability region nD  but 

also other regions ,  1, , dD d n   [3, 21]. Within the approach 

proposed, such situations can be considered uniformly, describing 

a region with an arbitrary number of stable roots. 

Let it have M  different real roots iw , and let at 

most n  of them be on the interval  0,   for the case 

of asymptotic stability with the boundary (7), includ-

ing the zero root (in the general case, at most 2n  

roots). For each root, the solution set of (9) is either a 

line, called a singular line, or an empty set. In addi-

tion, the rows of the augmented matrix composed of 

 iT w  and     T
Re  ,   Im i iR jw R jw   are either 

linearly dependent or linearly independent. In the lat-

ter case, no solution exists, and the corresponding root 

iw  is ignored. The augmented matrix itself is nonzero 

by the assumption of no common roots of the polyno-

mials ,  , P Q  and .R  Assuming the existence of a solu-

tion, we denote by ia  and ,ib  the elements of the non-

zero row of the matrix  iT w  and by ic  the free term. 

Then the solution of system (9) at iw w  is described 

by the line equations 

1 2 0,    1, ,  .i i ia k b k c i M                 (12) 

The linear dependence of the rows of the augmented 

matrix covers the case when one row is zero; for ex-

ample, for the boundary (7), this occurs when nullify-

ing the imaginary part for 0w , which corresponds 

to a singular line. 

On the remaining intervals  1 20,   , w w  

 2 3, , ..., w w    1,  ,  , M M Mw w w  , the solutions of 

equation (9) define a rational curve on the plane con-

sisting of at most 1M   connected arcs, according to 

the number of intervals where the functions  1k w  and 

 2k w  are continuous: 

       

   

       

   

1

2

1
Im   Re 

det

Im   Re  ,

1
Re   Im 

det

Im   Re  .

k w R jw Q jw
T w

R jw Q jw

k w R jw P jw
T w

R jw P jw









    (13) 

Thus, the D-partition is described by the curve 

(13), further  referred to as the main curve, and 1K   

line equations (8) and (12).  

In general, the boundary of the root localization 

region Γ  is piecewise continuous, with different arcs 

having their own parameterization; as a result, the D-

partition is defined by several main curves and a set of 

lines. Moreover, the root localization boundary may 

consist of several connected components [3]. A con-

structive D-partition algorithm in the general case is 

presented below. Its idea is to identify the boundaries 
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of individual D-partition regions and, in particular, the 

stability region, using the one-dimensional parameter-

ization of the boundary arcs. 

 

1.2. Constructive D-Partition for Two Real Parameters 

We propose a numerical-algebraic algorithm for 

describing individual D-partition regions by calculat-

ing their boundaries. Some transformations are per-

formed analytically whereas the others numerically. 

All nontrivial numerical operations can be reduced to 

calculating the real roots of certain polynomials. The 

approach proposed copes with the difficulties inherent 

in the alternative methods, see the Introduction. In par-

ticular, it requires no special software and can be ef-

fectively implemented. On the other hand, it explicitly 

describes the boundaries of D-partition regions in the 

form of rational curve arcs and segments. Only the 

intervals of the parameters of these curves and seg-

ments are obtained numerically. 

Algorithm 1. Constructive D-partition. 

Input: a polynomial of degree n  that linearly de-

pends on the parameters, of the form (6); a root locali-

zation region D  with a parameterized boundary  

  ,   : ,

1,  , ,

s w w W

L

      

 
      (14) 

and 0 d n   as the number of stable roots sought for. 

Step 1. For all arcs of the boundary Γ , compile 

the D-partition equations in the form of a system of 

two equations, e.g., 

     
     

     
     

1 2 1

2

1 2 1

2

Re  ,   , Re 

Re  Re  0

Im  ,   , Im 

Im  Im  0,

.

G s w k k k P s w

k Q s w R s w

G s w k k k P s w

k Q s w R s w

w W

 

   





  


  (15) 

Step 2. Obtain the solution of (15) as a set of par-

ametric curves     ,1 ,2 ,,  , k w k w w W  and singu-

lar lines; add to this set the line from the degree reduc-

tion equation (8) if its solution set is non-empty. In 

this case, the intervals W  can be divided into inter-

vals, half-intervals, or segments corresponding to the 

continuous curve arcs and separated by critical fre-

quencies. 

Step 3. Find all intersection points of the curves 

and lines obtained in the previous step, and the points 

of self-intersection of the curves     ,1 ,2, k w k w  

within the intervals W  on the intervals with a contin-

uous dependence on the parameter w . When calculat-

ing the intersection points, consider the finite limit 

points as belonging to the corresponding curves (see 

Section 3). 

As a result, the intervals W  will be divided into 

the subintervals ,iW  corresponding to continuous 

curve arcs from one intersection to another (or infinite 

arcs without intersections). The lines are splitted into 

segments parameterized by the intervals mt T  .  

Step 4. Determine which D-partition regions lie on 

each side of each curve arc and segment. Sequentially 

group the curve arcs and segments that bound the part 

of the D-partition region with d  roots. 

Output: an ordered set of curve arcs and segments 

(or intervals) parameterized by the intervals ,  iW  and 

mT  that forms the boundaries of the region dD . 

In Step 3, it is essential to consider the finite limit 

points of the curves in order to calculate the division 

of singular lines into segments representing the 

boundaries of different D-partition regions.  

The algorithm is mainly applied to find the stabil-

ity region nD , i.e., for d n . Other D-partition re-

gions may be needed when analyzing a multiply con-

nected root localization region or if the initial root lo-

calization set is described by the union of sets (see 

footnote 4 on p. 5) 

Algorithm 1 can be generalized to the case of a 

nonlinear dependence on the parameters: it is neces-

sary to obtain an explicit solution of the main D-

partition equation   1 2,   , 0G s w k k   with respect 

to the parameters, depending on the value of the pa-

rameter w  then. This may require re-parameterization 

or the introduction of extra parameters to describe the 

branches of curves or additional lines. Moreover, it is 

necessary to provide algorithms for finding intersec-

tion points of the resulting curves and lines. Apparent-

ly, to obtain such a solution even in the case of a poly-

nomial dependence on 1k  and 2k  is a nontrivial prob-

lem. The identification of solvable cases is an interest-

ing area of further research. 

Next, we characterize the boundaries of D-partition 

regions for piecewise rational boundaries of the root 

localization region in a bounded set. 

2. CONSTRUCTIVE D-PARTITION FOR A ROOT 

LOCALIZATION REGION WITH A RATIONAL BOUNDARY 

Consider the implementation features of Algorithm 

1 and its applicability. We begin with the boundary Γ   

(14) of the root localization set consisting of a single 

curve:   Γ : .s w w W    In the general case, the 



 

 
 

 

 

 

39 CONTROL SCIENCES  No. 6 ● 2025  

ANALYSIS AND DESIGN OF CONTROL SYSTEMS  
 

results obtained are valid for each boundary arc   . 

Without loss of  generality, we will consider the stabil-

ity region nD  as the desired D-partition region. 

First of all, it is necessary to solve equations (15) 

with respect to w . If  s w  can be represented as a 

rational complex function, 

     real imag s w s w j s w   

with rational functions  reals w  and  imags w , then the 

functions      ,  ,P s w Q s w  and   R s w  (hence, 

  Re P s w , etc.) are also rational. By multiplying the 

denominators of the functions   Re  , P s w  

  Re  ,Q s w  and   Re R s w  (or   Im  ,P s w  

  Im Q s w , and   Im R s w  for the second equa-

tion) by the least common multiple, the system of 

equations (15) can be reduced to the form (9), where 

the degrees of the polynomials 1 ,P  2 ,P  1 ,Q  2 1,  , Q R  

and 2R  depend both on the degree of the original pol-

ynomial G  and on the degrees of the numerator and 

denominator of the function  s w : 

     
     

1 1 2 1 1

1 2 2 2 2

0

0.

k P w k Q w R w

k P w k Q w R w

   
   

          (16) 

The conversion of equation (15) to a polynomial 

system of two equations is not unique. Similar to the 

conversion from Schur polynomials to Hurwitz ones, 

with the substitution of the rational function  s w , 

one can first multiply the polynomial   1 2,   ,G s w k k  

by the denominator of the function  s w  risen to 

power n . Thus, the denominators will be eliminated 

from equations (15) since the function  s w  describes 

the parameterization of the curve and its denominator 

does not vanish on the interval W. Only after this 

transform should the resulting polynomial equation be 

divided into the real and imaginary parts. In both cas-

es, the coefficients of the polynomials 1 2,  ,P P  etc. are 

calculated analytically by substituting the function 

 s w  and separating the real and imaginary parts. This 

method seems preferable: in the above operation of 

separating the real and imaginary parts of a complex 

polynomial (see the previous method), it is necessary 

to multiply the numerator by the complex conjugate 

denominator, which doubles the degree of the poly-

nomials. In turn, the degree of the numerator and de-

nominator of the complex function   1 2,   ,G s w k k  is 

a multiple of the degree of the original system and 

those of the numerator and denominator of the func-

tion  s w . 

The main solution of system (16), like the solution 

of system (9) in the case     s w jw , is described by a 

single rational function (on the intervals of its continu-

ity) and, possibly, by singular lines. The singular lines 

correspond to the parameters w , called critical fre-

quencies
5
 by analogy to Section 1. They are deter-

mined by the equation similar to (11): 

         1 2 1 2det     0.T w P w Q w Q w P w     (17) 

The general solution       1 2  , k w k w k w , simi-

lar to formulas (13) , is expressed by the rational func-

tions 

       

     
 

       

     
 

1 2 1

1,num

1 2

1,den

2 1 2

2,num

2 1

2,den

1
 

det

  ,

1
 

det

  ,

.

k w R w Q w
T w

k w
R w Q w

k w

k w R w P w
T w

k w
R w P w

k w

w W



 



 

   

        (18) 

Here, the subscripts “num” and “den” indicate the pol-

ynomials in the numerator and denominator, respec-

tively. 

Depending on the context, it is convenient to con-

sider  k w  without singular frequencies either as a 

single curve defined by a general expression or as a set 

of continuous curves defined on open intervals.  

 

2.1. Straight Lines and Intersections with Them 

Similar to equation (9) for asymptotic stability 

analysis, the system of equations (16) is polynomial, 

and its solutions may include singular lines; we denote 

them by analogy with the lines (12), with the coeffi-

cients ,  ,  ,    0,  , i i ia b c i M  . They are supplemented 

by the singular line with the subscript 0i  , corre-

sponding to the degree drop condition (8). The total 

number of roots depends on the particular functions 

  G   and  s w  and the degrees of the polynomials 

forming them. The critical frequencies iw  are deter-

mined numerically from equation (17); only the real 

                                                           
5 Sometimes, critical frequencies are not the roots iw  themselves 

but the function values ( )is w , also termed generalized critical 

frequencies. 



 

 
 

 

 
 

40 CONTROL SCIENCES   No. 6 ● 2025  

ANALYSIS AND DESIGN OF CONTROL SYSTEMS  

roots belonging to the interval W  are needed here. 

The list of critical frequencies consists of only those 

iw  for which the solution set of system (16) is non-

empty.  

The intersection of these lines with the main curve 

of the D-partition (18) is given by the equation 

        
        

        

2 1 1 2

1 2 2 1

1 2 1 2

   

   

    0,  

  0, ,  .

i

i

i

a R w Q w R w Q w

b R w P w R w P w

c P w Q w Q w P w

i K



 

  

 

     (19) 

This equation is polynomial with respect to w , and 

its real roots (denoted by ,  1, mw m   ) can be calcu-

lated explicitly. These roots, together with the critical 

frequencies iw , divide the interval W  into segments 

and intervals corresponding to the simple, continuous 

parts of the D-partition boundaries, the arcs of the 

main curve. These arcs form the main, non-trivial part 

of the D-partition. The intersection points are deter-

mined from equation (18) as 

      1 2, m m mk w k w k w . They divide the funda-

mental curve into arcs and, moreover, divide the sin-

gular lines into segments or infinite intervals (rays). 

 

2.2. Selection of Segments on a Straight Line 

On the plane of parameters, the intersection points 

of singular lines with each other and with the main 

curve determine the segments and intervals of each 

singular line. Consider a line on the plane given by 

equation (12), where the numbers a  and b  are not 

simultaneously zero:  

1 2 0.ak bk c                          (20) 

We describe the relationship between the algebraic 

and parametric representations of a line: 

 
2

    ,    ,  

,   ,    0.

k t t d p t

p d d

     

 
            (21) 

Equation (20) with 

2 1 1 2 2 1,   ,  a d b d c d p d p                (22) 

yields the expression (21). The above representation is 

unique up to a (nonzero) multiplier. 

Conversely, the form (20) can be obtained from 

formula (21). This form is associated with any pair of 

a direction vector d  and an origin point p  satisfying 

the independent system of equations  

1 2

1 2

0

0.

ad bd

ap bp c

 
   

                      (23) 

The direction vector can be taken as  T
  , d b a  ; 

it is defined up to a nonzero multiplier. The second 

equation in system (23) coincides with equation (20), 

and any point on the line satisfying (20) is selected as 

p . (This condition is also obvious from the fact that 

the point  0k p  belongs to the line.) For example, 

one can take the intersection point of the straight line 

with the X axis,  / , 0c a , if 0a  , or with the Y ax-

is,  0,  /c b , if 0b  . It is possible to take the point 

closest to the origin: 

1 22 2 2 2
,    .

ac bc
p p

a b a b
   

   
          (24) 

If the point k  on the straight line is known, we can 

immediately select p k . For instance, if all intersec-

tion points of the straight line (20) with other lines or 

with the main curve (curves) of the D-partition are 

known, then the point (24) can be replaced by the one 

with the minimum (or maximum) abscissa or ordinate, 

and the direction vector d  can be selected so that all 

segments and intervals of interest correspond to the 

intervals with a nonnegative value t . In this case, the 

direction vector d  can be normalized so that the pa-

rameters of all segments of interest fall within the in-

terval  0 1t ,  . This is convenient under the a priori 

localization of the stability region described in Sec-

tion 3. 

For the parameterization (21), it is of interest to de-

termine the parameter t  by a point on the line, the so-

called inversion problem. In particular, for Algorithm 

1, it is necessary to determine the line segments be-

tween the intersection points with other lines or with 

the main curve of the D-partition. Let a point 

 T

1 2,k k k  lie on the straight line (21). The parame-

ter value can be obtained from the equation for one of 

the coordinates:  *
1 1 1/t k p d   if 1 0d  , or 

 *
2 2 2/t k p d   if 2 0d  ; or from the expression 

     T

1 1 1 2 2 2*

2 2 2
1 2

   .
k p d k p d k p d

t
d d d

   
 


  (25) 

If the point k  is obtained numerically and does not 

lie on the line, formula (25) will correspond to the 

point closest to k  on the line (its Euclidean projec-

tion): 

 

 

 

T

* *

2

T T T

T T T

T

T
,

k p d
k t d p d p

d

dd dd dd
p k p I p k

d d d d d d

dd
k I p k

d d


   

 
      

 
 

    
 

   (26) 
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where   stands for an identity matrix of dimension 

2 2    , and 

T

T

dd

d d
 is the projector onto the line. 

It remains to consider the intersection points of two 

lines. Let the first be given algebraically, by equation 

(20), and the second parametrically by formula (21). If 

the lines intersect and do not coincide with each other, 

then they are not parallel, and   1 2, 0a  b d  ad bd   . 

Here,  ,a  b d  denotes the matrix product of the row 

vector  , a b  and the column vector d , i.e., the 

standard inner product of the vectors  T
,a  b  and d . 

Then the intersection point 
*

k  is found by substituting 

formula (21) into equation (20) as follows: 

 
 

 
 

* 1 2
2

1 2

* *
2

,  
,

,  

,  
  .

,  

c a b pc ap bp
t

ad bd a b d

c a b p
k t d p d p

a b d

 
   




    

       (27) 

Here, 
*
2t  refers to the parameterization of the second 

line. To find the value of the parameter 
*
1t  correspond-

ing to the first line, we need to consider its parameteri-

zation (21), substituted into the second line equation 

(20). 

3. LOCALIZED D-PARTITION  

AND LIMIT POINTS 

In practice, D-partition is performed in a bounded 

closed region (a compact set), e.g., in a rectangle 

1 1 2 2, ,k k k k       K . We will call it an (a priori) 

localization region and the D-partition in this region a 

localized D-partition. Of course, localized D-partition 

yields part of the stability region within the corre-

sponding localization region. However, in many cases, 

the chosen localization region contains the entire sta-

bility region since the latter is often bounded and 

small. Sometimes it can be determined in advance that 

a polynomial is unstable outside a region K , e.g., us-

ing necessary stability criteria. For instance, for a pol-

ynomial to be Hurwitz, all its coefficients must have 

the same sign (Stodola’s criterion), etc. [22]. 

The boundaries of a rectangle K  are vertical and 

horizontal segments; for such segments, equation (19) 

becomes simpler, cf. the equation for one of the com-

ponents (18): 

       
        

2 1 1 2

1 2 1 2

1 1

     

   

,

  ,  

,

R w Q w R w Q w

x P w Q w Q w P w

x k k



 



        (28) 

       
        

1 2 2 1

1 2 1 2

2 2

     

   

.

  ,  

,

R w P w R w P w

y P w Q w Q w P w

y k k



 



        (29) 

When solving each of these equations, it is neces-

sary to check whether the other coordinate falls within 

the desired interval (i.e., whether the main curve inter-

sects the segment on the line). If the roots of the first 

equation are mw , one should select only those for 

which  2 2 2,mk w k k   , and vice versa. Basically, 

such a check has not been required to find the intersec-

tions of the main curve with singular lines. 

The intersection of singular lines with the bounda-

ries of a region K  is done considering their parame-

terization 

 

1 11 1 1 1

2 2

1 1

2 2 2 2 2 2

,   , 
0 0

0 0
   ,   ,  

0, 1 .  

k kk k k k
t t

k k

k k
t t

k k k k k k

t

       
       
      

      
                



      (30) 

When calculating the intersection of the segments 

(30) with the singular lines (20) using formula (27), 

one additionally checks the inclusion  *

2 0, 1 t  ; if it 

fails, there is no intersection of the singular line with 

the segment. 

The D-partition localized in a bounded set is con-

venient because it simplifies the analysis of limit 

points. In what follows, except for Lemma 4, we con-

sider a single main curve       1 2,k w k w k w . Let 

adjacent critical frequencies iw  and 1iw   be found on 

an interval W . The curve is continuous on the open 

interval 1( ,  )i iw w   between the critical frequencies. 

Consider the limit points of the curve on this interval 

and any endpoint cw  of the segment. The left endpoint 

c iw w  corresponds to the right-sided limit whereas 

the right one 1c iw w   to the left-sided limit. There 

are two possible cases. 
Lemma 1. If the right-sided (left-sided) limit 

 lim
c

c
w w

k w k


  exists, then the limit point

 ,1 ,2  ,c c ck k k  lies on the singular line corresponding 

to the critical frequency cw . 

P r o o f. Let us directly substitute the solution (18) into 

system (16); within the interval 1( ,  )i iw w  , both equations 

turn into the identity          1 2k w P w k w Q w R w   

   
   

det
0 

det

T w
R w R w

T w
   , ,cw w  since  det 0.T w   
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As   cw w , the identity remains valid due to continuous 

dependence of (11) on k ; in particular, all the terms 

 ,1 , c ck P w  ,2   c ck Q w , and  cR w  depending continu-

ously on w  will satisfy the corresponding equality. Thus, 

the point ck  satisfies equation (11), i.e., the solution set is 

non-empty at cw w , and the rank of the augmented matrix 

does not exceed that of the matrix  cT w . By assumption, 

the polynomials , P Q , and R  have no common roots; 

therefore, the polynomials 1 2 1 2 1,  ,  ,  ,  ,P P Q Q R  and 2R  also 

have no common roots, i.e., the matrix  cT w  is nonzero. 

In addition,  det 0cT w  , meaning that the rank of the 

matrix  cT w  and, consequently, the rank of the augment-

ed matrix, is 1. As a result, the solution of system (16) at 

cw w  is a singular line containing ck . ♦ 

According to Lemma 1, the curve can be further 

defined at the point cw  by the value ck , keeping the 

continuity of the curve and closing its definitional in-
terval at the corresponding endpoint. 

For the sake of definiteness, consider the left end-

point of the segment,   iw w , and the corresponding 

limit on the right as iw w  . The following lemma 

characterizes the infinite arcs of curves outside the 
region K .  

Lemma 2. If the right-sided limit  lim
iw w

k w
 

 does 

not exist and  0k w K  for some 0 1( ,  )i iw w w  , 

then there exists  0, c iw w w  such that  ck w K

and   k w K  for all  , i сw w w . 

P r o o f. It follows from continuity. By construction, the 

sign of the determinant  detT w  is constant within the 

interval 1( ,  )i iw w  . Let us find all intersection points of the 

curve    1,  ,  ,i ik w w w w   with the boundaries of the 

region K , e.g., from equations (28) and (29); among them, 

we select the minimum value of the parameter, denoting it 

by cw . The existence of a minimum is ensured by the com-

pactness of the region K  and the continuity of the function 

 k w . The point   ck w  does indeed exist since 

 0k w K  and  k w  has no limit as iw w  . The func-

tion  k w  is rational; therefore,  k w  increases infinitely 

as   iw w  , and  ik w  K  for a value i cw w   suffi-

ciently close to iw . On the interval ( ,  )i cw w , the function 

 k w  is continuous and does not intersect the boundary of 

the region K , so the arc of the curve  k w  also lies outside 

the region K  for all     , i сw w w . ♦  
Obviously, Lemma 2 is valid for both endpoints of 

the segment or interval 1( ,  )i iw w  . Note that with 

Lemmas 1 and 2, for the D-partition inside the region 

K , it suffices to consider the segment 

1[ ,  ]   ( ,  )c d i iw w w w  , where сw  and dw  are deter-

mined algorithmically. To check the intersection of the 

boundary’s arc with the rectangle K , it suffices to find 

the roots of the four polynomials (28), (29). 

For completeness, we should study infinite param-

eterization intervals and their limit points. Assume that 

after the division by critical frequencies, the interval 

W  includes the infinite one ( ,  ).iw    

Lemma 3. If the limit  lim
w

k w


 does not exist, 

then the order of the rational function’s numerator is 

greater than the order of its denominator, 

 
w

k w

 , and an analog of Lemma 2 is valid. 

That is, if  0k w K  for some 0 ( ,  )iw w  , then 

there exists 0cw w  such that  ck w K  and 

  k w K  for all cw w . 

The proof of Lemma 3 repeats that of Lemma 2.  

Finally, the case of the existence of a limit on an 

infinite interval of the parameter is characterized by 

the following lemma. It considers the arc of the curve 

  Γ , i i is w w W   on the unbounded section 

 ,  .   

Lemma 4. If the limit  lim i
w

k w k
  for the arc 

of the curve Γ i  exists, then either the limit  lim i
w

s w


 

exists and belongs to the curve   or the limit 

 lim i
w

s w


 does not exist and the point k  lies on the 

singular line satisfying the degree reduction condition 

(8).
 P r o o f. According to this lemma, consider two cases.  

1. If the limit  0 lim i
w

s s w


  exists, then it belongs to 

the closure of Γi  since   Γi is w  . In turn, the closure of 

Γi  is a subset of the entire boundary Γ  because the bound-

ary is closed.  

2. If the limit  lim i
w

s w


 does not exist, then 

 
w

r w


  in the polar representation      j w
is w r w e

 . 

In this case,  s w  is a root of the polynomial (6). Let us 

divide the polynomial by 
n

s . As a result, the coefficients of 

the functions   / n
P s s , etc., at the parameters 1k  and 2k  

and in the free term tend to those of the polynomials ,  , P Q  

and R  at 
n

s , and the remaining coefficients tend to zero. 

For each  , i iw W s w  is a root of the equation 

  / 0n
P s s  , and the limit point k  satisfies the degree 
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drop equation (8). In other words, k  lies on the corre-

sponding singular line. ♦ 

The limit point  lim i
w

s s w 
  (if exists) is the 

junction point of the arcs of the root localization 

boundary, i.e., it either belongs to the curve Γ ,  ,m m i  

or is the other endpoint of the same arc of the curve 

Γ .i  In addition, the limit point matches a finite value 

of the parameter w  (possibly from another arc of the 

curve Γm  and  )ms s w   since all boundary points 

are parameterized by definition. 

Lemmas 1 and 4 characterize the finite limit points 

of the curve arcs. They are considered in Step 3 of Al-

gorithm 1 when searching for the intersection points. 

Strictly speaking, in such cases, the curve is further 

defined at the finite limit point iw  (the boundary of the 

interval); for infinite limit points as w , the pa-

rameterization is changed, see the proof of Theorem 1 

below. When checking the belonging of a limit point 

k  to a singular line, according to formula (26), one 

can use the distance from the point to the line 

 
T

T
.

dd
I p k

d d

 
  

 
 If this distance does not exceed 

the specified accuracy, then the limit point can be con-

sidered an intersection point. This point splits the line 

into two parts by the parameter t , calculated using 

formula (25). To check the belonging of the limit point 

to another main curve defined by a rational function, 

the algebraic form of this curve is used, together with 

inversion (the recovery of the parameter by a point on 

the curve, see [23]). The split can be obtained in an-

other way, using the fact that the curve is defined by a 

system of equations. For this purpose, the values of the 

components of the limit point k (of the first main 

curve) are substituted into one of the equations (16) of 

the second main curve; the resulting equation is solved 

with respect to w . Then the roots found are substitut-

ed into the second equation of the second main curve; 

those are selected for which the equality holds for the 

same components of k . For the limit point (of the first 

main curve) being on the second main curve, this pro-

cedure yields the latter’s parameter matching this 

point. 

The above lemmas completely characterize the 

boundaries of the localized D-partition regions of the 

polynomial (6) with a piecewise rational boundary of 

the root localization region. By assumption, the 

boundary of the localization region K  consists of a 

finite number of rational curve arcs. 

Theorem 1. The boundaries of the D-partition re-

gions localized in a compact set K  consist of a finite 

number of segments, arcs of the boundary K  of the 

localization region, and arcs of rational curves de-

fined on finite closed intervals of parameters. 
P r o o f. For a linear dependence of a polynomial on pa-

rameters, the D-partition is described by singular lines and 

rational curves of the form (13) defined on open (if the end-

point of the interval corresponds to a critical frequency or is 

unbounded) or closed (if the curve corresponds to an arc of 

the boundary defined on a closed interval) numerical inter-

vals. Each endpoint of the interval is considered inde-

pendently, so the interval can be closed on one side and 

open on the other. Due to the compactness of the set K , the 

parts of the singular lines belonging to K  are segments, and 

their number is finite by the assumption of a rational bound-

ary of K . If an arc of the boundary of the root localization 

region consists of a single point, it is mapped either to a 

singular line or to a point on the parameter plane (a degen-

erate segment). If the simply connected component j  of 

the region iD  (denoted by , i jD ) of the original non-

localized D-partition does not lie entirely inside or outside 

K , the localized D-partition will include the region 

, i jD K , and part of the latter’s boundary will, in general, 

be the boundary of K . In this case, the number of arcs of 

each main curve outside and inside K  is finite by the as-

sumption of a rational boundary of K . As for the remaining 

parts of the boundary (i.e., the fractional curve arcs defined 

on intervals with at least one open or unbounded endpoint), 

Lemma 2 or Lemma 3 will be valid for unbounded  k w : 

the corresponding endpoint of the subinterval is closed. 
Consider a rational curve arc defined on the interval W  

with a finite open endpoint 2w  and an existing limit  k w . 

For the sake of definiteness, we take the right endpoint of 

the interval  0 2    , W w w  and the limit  
2

2
 

lim      
w w

k w k
 

 . 

There are two possible cases. If 2k K , then (Lemma 1) 

the rational curve (13) can be further defined at the point 

2w  by the value 2k . If 2k  K , then (following the proof 

of Lemma 2), due to the compactness of the set K , a subin-

terval  0 1, w w  with a closed right endpoint is selected 

within the interval such that  1k w K  and   ,k w K

 1 2,  .w w w  Thus, the interval’s right endpoint corre-

sponding to the arc of the curve (the boundary  k w ) lying 

in the region K  is closed. The same is valid for the left 

open endpoint of the interval. 

Finally, we need to consider the case with an unbounded 

interval, e.g.,  1, w  , and an existing limit 

  .lim    
w

k w k


  In this case, the parameterization can be 

changed; for example, see [24]. Without limiting generality, 

the left endpoint is closed since one of the above cases is 

valid. An interval unbounded from below is considered by 

analogy. The interval  ,   , which is unbounded on 

both sides, is divided into three intervals, e.g., 

    ,  1 ,   1, 1 ,  1,     . If k  K , then, similar to the 
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previous case with an open endpoint of the interval, the re-

gion K  contains an arc of the curve  k w  with a subinter-

val  1 2, w w  whose right endpoint is closed. If k K , 

then we choose 0 1w w , e.g., 0 1 1w w  . With the param-

eter    0  1/ ,  0, 1u w w u    introduced, the fractional 

curve  k w  has the fractional parameterization 

   0    1/uk u k w u  , which can be defined at    0u  as well 

by the limit value k . Thus, all arcs of the boundaries of the 

localized D-partition defined by the curve (13) are actually 

defined on finite closed intervals. ♦  
Under the assumption of a rational boundary of the 

localization region K , the boundaries of the localized 

D-partition regions are either segments or rational 

curve arcs defined on finite closed intervals (seg-

ments), and their number is finite. 

4. CONSTRUCTIVE D-PARTITION IMPLEMENTATION 

4.1. Intersection of Two Main Curves 

If the boundary Γ  of a root localization region is 

described by several functions   :s w w W  , 

1, 2,  , then it is necessary to find all points of 

their pairwise intersections. Consider the two main 
curves and the corresponding functions, denoted by 

 , a
k w w W , and  , b

k u u U : 

   
 

   
 

1,num 2,num

1 2

1,den 2,den

, 

a a

a a

a a

k w k w
k w k w

k w k w
    

and                                  (31)  

   
 

   
 

1,num 2,num

1 2

1,den 2,den

, 

b b

b b

b b

k u k u
k u k u

k u k u
  .  

Their intersection is described by a system of two 

rational equations, which can be reduced to the system 

of polynomial equations 

       
       

1,num 1,den 1,num 1,den

2,num 2,den 2,num 2,den

   
 

    ,

,   .

a b b a

a b b a

k w k u k u k w

k w k u k u k w

w W u U

 



 

 

One uses only the solutions not corresponding to sin-

gular lines, i.e.,  1,den 0a
k w   and  1,den 0b

k u  . This 

system of two polynomial equations can be solved 
numerically, e.g., by Newton’s method started near the 

solution, or by decomposing the parameter plane 

1 2( , )k k  [25] or the argument space [24], or by alge-

braic methods, e.g., by resultant approach. We empha-
size that, as in the case of the intersection of the main 

curve and lines, only the values of the parameters w  

and u  corresponding to the intersections are deter-

mined numerically. 

Recall the idea behind application of resultants us-

ing an example of solving a system of two polynomi-

als 

   , 0,   ,  0p w u q w u                   (32) 

depending on two parameters; details can be found in 

the monograph [21]. The first parameter is taken out 

into monomials, and the second one remains in the 

coefficients of the polynomial of the first parameter. 

Let the maximum degree of these polynomials in u  be 

m . In other words, at least one of the polynomials 

 mp w  and  mq w  is not identically equal to zero: 

     
   

1
1

1 0

,

0,

m m
m mp w u p w u p w u

p w u p w


  

  
     (33) 

     
   

1
1

1 0

,

0.

m m
m mq w u q w u q w u

q w u q w


  

  
      (34) 

Next, the coefficients  ip w  and  iq w  are used 

to construct a matrix  R w  of dimensions n n , 

called the resultant. There are different ways to con-
struct it; the most famous ones are the Bézout and 
Sylvester resultants. The key property is that the two 

polynomials (31) have common roots (in u ) if and 

only if the determinant of the matrix  R w  is vanish-

ing, i.e., the coefficients of the polynomials  ip w  

and  iq w  satisfy a certain condition. A common root 

of the polynomials means the existence of a value u 

for which equalities (32) and (33) are satisfied. In this 
case, the coefficients of the polynomials correspond to 

a particular value of w , i.e., a solution of the system 

of equations is obtained. Thus, one should first solve 
the equation 

 det 0R w                             (35) 

i.e., find the roots  jw  of this polynomial, excluding 

the roots of the polynomial  1,den
a

k w  among them. 

Next, it is necessary to substitute each of the roots 
found into the coefficients of the polynomials (33), 

(34), calculate their roots  ,p i ju w  and  , ,q i ju w  and 

then select only those matching roots that are not roots 

of the polynomial  1,den
b

k u . The resulting pairs 

 , ,   p i ju w  give the solution of system (32). By con-

struction, they are the solutions of equations (31); 
thus, the parameters of the curves corresponding to the 
intersection points have been obtained. With alterna-
tive methods used to find the intersection points (e.g., 

on the plane )k , one faces the inversion problem—
restoring the parameters w  and u  by the point 

 , .p q  This can also be done using resultants [23].  
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The above procedure allows finding all solutions 

of system (31). This approach has two features as fol-

lows. The first is an increase in complexity since the 

polynomial (35) has a degree of order 
2

m . To calcu-

late its coefficients, it is desirable to use accurate alge-

braic computations. The procedure can be supple-

mented with the refining solution of system (31) or 

(32) by Newton’s method, using the obtained pair 

 , u w  as the starting point. 

The second feature is that, in order to apply result-

ants, the polynomials must be independent. In particu-

lar, they must have no common factors, their coeffi-

cients must be linearly independent, etc. Such cases 

correspond to the degeneration of the resultant due to 

the structure of the polynomials ()p  and ()q  and the 

dependence of their coefficients on w . In these cases, 

for any values of w , equation (35) becomes an identi-

ty and cannot be used to find individual w . Algebrai-

cally, this situation corresponds to an infinite number 

of solutions of system (32), i.e., the overlapping of the 

rational curves  a
k w  and  b

k u  on each other, or to 

a set of solutions independent of one parameter, e.g., 

 , 0w  for any w . The latter case corresponds to the 

common root of the numerator and denominator 

   1 2,  a a
k w k w , which must be reduced when writing 

the curves. As a rule, D-partition results in the main 

curves of general position, and the approach involving 

resultants is successful. An important exception here is 

the problem of finding the self-intersection of the main 

curve: this problem is solved using different parame-

terizations of the same curve. 

 

4.2. Self-Intersection of a Main Curve 

The last component for describing the arcs of the 

D-partition boundary is the points of the self-

intersection of a main curve. The rational curve (18) 

can intersect itself, dividing the plane into additional 

regions. The points of self-intersection satisfy the sys-

tem of equations 

   
   

1 1

2 2

 
,

.

k w k u

k w k u

w u

 
 



 

This system reduces to the system of polynomial 

equations  

       
       

1,num 1,den 1,num 1,den

2,num 2,den 2,num 2,den

     
 

      ,

.

k w k u k u k w

k w k u k u k w

w u

 
 



 

A challenge arises due to the inequality condition 

of the parameters since the system has the trivial solu-

tion w u . Hence, it is impossible to use the result-

ants described in subsection 4.1: they are degenerate. 

Following the paper [25], the trivial solution can be 

explicitly excluded by writing the equation of the so-

called reduced differences: 

   

   

 
   

   

1,num 1,den

1,num 1,den

2,num 2,den

2,num 2,den

 
( , )

 
0

 
,  

 
 0.

k w k u
p w u

w u

k u k w

w u

k w k u
q w u

w u

k u k w

w u






  
 



 


 


       (36) 

This system can be solved using the same methods 

as in subsection 4.1. Also, a solution method in the 

plane of the parameters p, q was proposed in [25]. 

That is, to form reduced polynomials, the original pol-

ynomials were written in the Bernstein polynomial 

basis, and the parameters w  and u  were restored by 

the intersection point. 

Sometimes, the polynomials  1k w  and  2k w  

contain only even (or only odd) degrees of w , and the 

reduction of system (36) is insufficient. In this case, 

the curve turns out to be a multiple of itself, and the 

system has the additional solution w u  . It must 

also be excluded by dividing system (36) by the term 

w   u . This is equivalent to excluding the solutions 
2 2

w u . 

Situations with even and odd functions  1k w  and 

 2k w  are common in the stability analysis of poly-

nomials with real coefficients and a root localization 

region D  symmetric with respect to the real axis. Un-

der these conditions, the roots of the polynomial are 

complex conjugate, and the point k  on the boundary 

of the D-partition regions is associated with two roots 

on the boundary D . These roots correspond to two 

values of the parameters, say, 1w  and 2w . If the func-

tion  s w  has the conjugacy property       s w s w   

(see formula (7) or Example 1 below), then these pa-

rameters are explicitly related: 2 1   w w . In this case, 

the function  k w  is even, and due to its rational na-

ture, the numerator and denominator contain terms 

depending on even powers of w ; therefore, the calcu-

lations can be simplified by halving the degree of the 

polynomial using the parametric change 
2

v w .  
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4.3. Detection of Adjacent D-Partition Regions 

For the arcs of the stability region boundary de-

fined by parts of the main curve or segments, in Step 4 

of Algorithm 1, it is necessary to determine the D-

partition regions separated by a given arc (segment). 

For the main curve of the D-partition, one can employ 

the classical hatching rule [7] since the direction of the 

normal to the boundary Γ  inside the root localization 

region is known; like the mapping ,w k  the main 

curve formula (18) can be used to determine the nor-

mal to the curve toward the region with a larger num-

ber of stable roots. For segments and lines bounding 

the stability region, such a rule does not exist. 

The idea is to numerically determine the number of 

stable roots on different sides of segments or curves: 

by stepping a small distance on both sides along the 

normal from an arbitrary point  0 0 ,, k w w W  on 

the segment or curve  0k w , where 0w  is an inner 

point of the interval W  (e.g., its middle). As a normal 

for a curve arc, we can take the vector 

    ' '
2 1,k w k w  orthogonal to the tangent  k w ; 

as a normal for a line segment, the vector 

   2 1, , p p a b   orthogonal to the direction vector. 

It is possible to apply randomized algorithms with 

both the parameter w W  and the distance chosen 

randomly, e.g., according to the Laplace distribution. 

Another alternative is to use the one-dimensional 

D-partition along the normal line. In this case, it suf-

fices to check the number of roots only on the line 

segments adjacent to the boundary. 

5. EXAMPLES 

Let us demonstrate the constructive D-partition and its 

applications with examples.  

Example 1 [27, p. 77]. Consider a continuous-time sys-

tem with the transfer function 
  

  2

1 2

1       1

s s

s s s

 

  
 closed by 

the PI controller 2
1

k
k

s
 . The characteristic polynomial of 

the closed-loop system is  

    
     

1 2 1

2
2

,   ,       1 2  

  1 2     1 1 .

G s k k k s s s

k s s s s s s

  

      
          (37) 

We require the closed-loop system to have a given sta-

bility margin  . Then the boundary of the root localization 

region is described by the function      s w jw  . Let us 

choose    0.2 . Since the polynomial (37) has real coeffi-

cients, it suffices to take the upper part of the boundary, 

    0, W   . The D-partition regions obtained by direct pa-

rameter enumeration are shown in Fig.1a. 

The degree drop condition (at 
4

s ) takes the form 

1 20  0   1  0.k k      It has no solution. 

We substitute  s w  into equation (37) and separate the 

real and imaginary parts to get the equations 

   2 2
1 2

4 2

3.6  0.528   2.64

1.04  0.1344   0,

k w k w

w w

   

   
            (38) 

   3 3
1 2  3.32  3.4  1.2  0.408     0.k w w k w w w        

Its solution determines the main curve 

   ,  0, k w w  , with the components 

 
4 2

1 4 2

4.6   7.112     0.62016
  ,

6.28  6.9696

w w
k w

w w

 


  
 

 
6 4 2

2 4 2

8.68   5.4208  0.230784
  .

6.28  6.9696

w w w
k w

w w

   


  
 

Compared to the expressions (13), the common factor 
w  in the numerator and denominator is eliminated here. 

The determinant (17) takes the form 

 4 26.28 6.9696 .w w w    It has the unique real root 

0    0w  . Note that the example satisfies the conditions speci-

fied at the end of subsection 4.2; upon separating the com-

plex equation into two real ones, one of the resulting equa-

tions will contain only even powers of w, and the other will 

contain only odd powers of w. In addition, the function 

 k w  contains only even degrees, and it can be replaced by 

an equivalent representation of the curve with rational func-

tions of lower order: 

 

 

 

2

1 2

3 2

2 2

4.6   7.112     0.62016
  ,   

6.28  6.9696

8.68   5.4208  0.230784
  ,   

6.28  6.9696

0,   .

v v
k v

v v

v v v
k v

v v

v

 


  
   


  

 

 

Next, for simplicity, consider the initial parameters w . 

The critical frequency 0 0w   is associated with the singu-

lar line corresponding to equation (38): 

1 20.528  2.64 0.1344 0k k     

with the parameterization      p t d , where 

 T    0.00979021;  0.04895105p   and  T    2.64; 0.528d    . 

The D-partition is shown in Fig. 2a. 

The main curve intersects the singular line at the two 

points    1 0.17279287;  0.08546766k   and 

   2 1.82840784;   0.31477248k     corresponding to the 

parameter values 1 0.70951628w   and 2    2.70323801w  , 

respectively; they are calculated according to subsection 

2.1. There are no self-intersections of the main curve.  



 

 
 

 

 

 

ANALYSIS AND DESIGN OF CONTROL SYSTEMS  
 

47 CONTROL SCIENCES  No. 6 ● 2025  

 

 
 

 

 

(a) (b) 
 

 
Fig. 2. (a) the D-partition for Example 1 and (b) the stability region of the polynomial. 

 
The points 1w  and 2w  are associated with the parameter 

values 1    0.06916025t   and 2    0.68887031t  , respectively, 

on the line. The main curve has the limit point    0 0k k  

T
0.62016 0.230784

0.08898072;   0.03311295
6.9696 6.9696

        
 

as  0w  , which is associated with the point with 

0 0.02999640t   on the line. 

The stability region is bounded by one arc of the fun-

damental curve    1,  0, k w w w , and the segment 

 1 0,   , p td t t t   (see Fig. 2b).  

Example 2 [10]. Consider the characteristic polynomial 

 0 1 2,  ,G z k k   1 2
1 21n n n

z k z z k
       of a discrete-

time system; in the paper [10], the D-partition for this poly-

nomial was obtained using trigonometric functions. The 

stability of the discrete polynomial is equivalent to the 

Hurwitz property of the polynomial 

        
    

5 2 3

1 2

4 5

1 2

,   , 1 1 1 1

1 1 ,1

G s k k s s s

k s s k s

      

    
 

obtained from  0 1 2,  , G z k k  by the Möbius transfor-

mation. The boundary of the root localization region (2) is 

described by the function      ,  0, s jw w   , considering 

the symmetry with respect to the real axis. Let us choose 

5n   and 0.1  . 

Direct parameter enumeration yields the approximate 

boundaries of the D-partition regions presented in Fig. 1b. 

The boundary of the D-partition regions consists of the 

only main curve 

   
8 6 4 2

1 8 6 2

16.6  128.8  221.2  128.8  16.6
,

8 6  6  1

w w w w
k w

w w w

   


  

   
8 6 4 2

2 8 6 2

0.2  0.8  1.2  0.8  0.2

8 6  6  1

w w w w
k w

w w w

    


  
 

and two singular lines. The determinant (17) takes the form 

 8 6 28 6  6  1w w w w   . It has the four nonnegative real 

roots  0,  1 2, 1, 1 2   , which determine the continui-

ty intervals of the main curve. Of these, only the zero root 

corresponds to the first singular line 1 2 2.1 0k k     with 

the parameterization      d t p , where  1.05; 1.05p   and 

 1;  1d   . In addition, there exists the limit point 

   0 2.075;  0.025  k   as 0w , which lies on this line at 

1.025t   (see Lemma 1).  

The degree drop condition is satisfied by the second 

singular line 1 2 2.1 0k k    with the parameterization 

     d t p , where  1.05;   1.05p     and  1; 1 d   . The 

main curve has the second limit point 

   2.075;   0.025k      as w , which lies on the 

above singular line (of degree drop) at 1.025t   (see 

Lemma 4). 

Let us choose the localization region  2.5,  2.5 K  

 1.5, 1  .5  .   The   main   curve   lies   in   the   region  K  
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(b) 
 

 
Fig.3: (a) the D-partition for Example 2 and its localization in the rectangle and (b) the components of the stability region. 

 
for  0, 0.40398478w  ,  0.42121903,   0.98346081 ,  

 1.01681733,  2.37406180 ,  2.47534075,    . The singu-

lar lines belong to the region K  for    0.45, 1  .45t   and

 0.45, 1  .45t  , respectively (the intervals are the same 

for both lines). The localized D-partition is presented in 

Fig.3a.  

On the first interval  0,  0.40398478 , the main curve 

starts (as 0w ) on the first singular line and intersects it 

at   0.37796447w  . On the last interval  2.47534075,    , 

the main curve intersects the second singular line at 

 2.64575131w   and ends on it as w . 

On the intervals  0.42121903,  0.98346081  and 

 1.01681733,  2.37406180 , the curve intersects itself at 

 0.42972375w   and 0.96431209  (the first self-

intersection) as well as at 1.03700867w   and 2.32707640  

(the second self-intersection). 

Thus, the stability region consists of four components 

(see Fig.3b):  

1) the segment of the first singular line for 

 1.025, 1  .45t  and the arc of the main curve for 

 0,  0.37796447w ; 

2) the arc of the main curve for 

 0.42972375,  0.96431209w ; 

3) the arc of the main curve for 

 1.03700867,  2.32707640w ; 

4) the segment of the second singular line for 

 1.025, 1.45t  and the arc of the main curve for 

 2.64575131, w  .  

The last arc of the curve can be written with a modified 

parameterization, see the proof of Theorem 1, as 

     1/ ,  0,  0.37796447uk u k u u  , where the value at 

0u   is defined and coincides with  k  : 

   
8 6 4 2

,1 8 6 2

16.6  128.8  221.2  128.8  16.6
    ,

8 6  6  1
u

u u u u
k u

u u u

   


  
 

   
8 6 4 2

,2 8 6 2

0.2  0.8  1.2  0.8  0.2
  

8 6  6  1
u

u u u u
k u

u u u

   


  
. 

Note that the resulting parameterization coincides with 

the original one in w  up to the sign, and the interval coin-

cides with the interval of the first component. This is due to 

the symmetry of the original root localization set of the dis-

crete system (the unit circle) and its parameterization. ♦ 

CONCLUSIONS 

For a polynomial linearly dependent on two pa-

rameters, the boundaries of each D-partition region, 

including the stability region, have been explicitly de-

scribed by parameterizing the curves and segments on 

the parameter plane. The stability of the polynomial 

has been understood in a generalized sense: all its 

roots lie in a given subset of the complex plane (a root 

localization region), which may differ from the left 

half-plane. The constructive D-partition method has 

been proposed, including an algorithm for finding the 

boundaries of all stability region components without 

unnecessary parts. Moreover, if the boundary of a root 

localization region is described by a piecewise rational 

curve, then the boundary of the stability region is a 

finite set of rational curve arcs and segments. In this 

case, the arcs of rational curves are defined on closed 

finite intervals of parameters. The results are applied 

to approximate the stability region and its boundary, as 

well as to analyze robustness; see part II of the study. 
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