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Abstract. This paper considers an approach to solving the Cauchy problem for a linear first-order 

partial differential equation by the functional voxel (FV) method. The approach is based on the 

principles of differentiation and integration developed for functional voxel modeling (FVM) and 

yields local geometrical characteristics of the resulting function at linear approximation nodes. A 

classical approach to solving the Cauchy problem for a partial differential equation is presented 

on an example, and an FV-model is built as a reference for further comparison with the FVM 

results. An algorithm for solving differential equations by FVM means is described. The FVM 

results are visually and numerically compared with the accepted reference. Unlike numerical 

methods for solving such problems, which give the values of a function at approximation nodes, 

the FV-model contains local geometrical characteristics at the nodes (i.e., gradient components in 

the space increased by one dimension). This approach allows obtaining an implicit-form nodal 

local function as well as an explicit-form differential local function. 
 

Keywords: functional voxel modeling, partial differential equation, Cauchy problem, local function, local 

geometrical characteristics.  
 

 

INTRODUCTION   

Continuous processes in control systems can be of-

ten described by differential equations with initial 

conditions. For example, under a known input signal, 

the output signal is determined by the solution of the 

Cauchy problem for an ordinary differential equation.  

The resulting function for a partial differential 

equation is not difficult to obtain and has long been 

provided by both analytical and numerical computer 

methods. However, the resulting function obtained 

manually or by means of an analytical computer-based 

calculator is a formulaic expression [1–5], whereas 

numerical methods produce numerical values at ap-

proximation grid nodes [6–9]. In this case, due to the 

absence of an analytical expression, the researcher  

 
______________ 
1 This study was carried out within the scientific program of the 

National Center for Physics and Mathematics, direction No. 9 

“Artificial Intelligence and Big Data in Technical, Industrial, 

Natural, and Social Systems.” 

cannot obtain, e.g., functions of partial derivatives for 

the available solution function, etc. The functional 

voxel (FV) method [10, 11] fills a given area of an 

analytical function with local functions describing a 

linear law for each minimal neighborhood of the area 

obtained during linear discretization. Hence, it be-

comes possible to apply not just the value at a point 

but the corresponding analytical expression in further 

calculations, with all the ensuing advantages. 

The paper [12] considered the principles of differ-

entiation and integration by functional voxel modeling 

(FVM) means. The transition to the FV-model of par-

tial derivatives and back to the FV-model of the anti-

derivative is quite simple: an infinitesimal neighbor-

hood of a point in a given (m – 1)-dimensional domain 

is described by the linear equation 1 1n x

2 2 1 0 m m mn x n x n     , where the coefficients 

are the components of the unit vector of the gradient 

with dimension (m + 1) increased by one. For comput-

er representation, each component is encoded by a 

numerical value of the color palette, forming a sepa-
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rate (m – 1)-dimensional image 
i

M . As a result, to 

describe and store a given area of the space 
3E  (i.e., 

, u f х у( ) ) on the computer, one needs to form four 

2D bitmap images  1 2 3 4
, , , M M M M .   

In this case, it suffices to set initial conditions 

(formulate the Cauchy problem) to construct the FV-

model of an antiderivative. Based on the results of 

[12], we apply the FV method and implement an FV-

model for solving a partial differential equation with 

given initial conditions.  

1. PROBLEM STATEMENT 

To demonstrate the algorithm, let us consider an 

example of solving a homogeneous partial differential 

equation of the form [13] 

  0xu u
e y

x y

 
  

 
                    (1) 

with the initial condition 

0,  3 2( ) .u y y                         (2) 

The differential equation (1) has the analytical so-

lution  

( , ) 3( ) 2.xu х y e y x                    (3) 

Here, 

3( 1),xu
e y

x


 


                       (4) 

3 xu
e

y





.                              (5) 

Figure 1 shows the graph of function (3) on the 

domain 0, 1 , 0, 1x y    
   

, obtained by conven-

tional visualization in MathCAD with a sampling step 

of 1/30. 

 

 

 
Fig. 1. The graph of function (3) in MathCAD. 

 

By visual analysis of Fig. 1, it is possible to deter-

mine approximate values at the corner points of the 

surface segment under consideration. Their precise 

values are (0; 0; 2), (1; 0; –1), (0; 1; 5), and (1; 1; 

7.1584). 

Figures 2a and 2b present the graphs of functions 

(4) and (5), respectively, as the partial derivatives of 

function (3). We calculate their values at the corner 

points of the surface segments:  

– for function (4), (0; 0; –3), (1; 0; –3), (0; 1; 0), 

and (1; 1; 5.1584); 

– for function (5): (0; 0; 3), (0; 1; 3), (1; 0; 

8.15484), and (1; 1; 8.15484).  

  
(a) (b) 

 
Fig. 2. The graphs of functions (4) and (5) in MathCAD. 



 

 
 

 

 
 

67 CONTROL SCIENCES  No. 6 ● 2023  

INFORMATION TECHNOLOGY IN CONTROL 
 

The computer algorithm for obtaining the domains 

of local functions can be described as follows. 

Step 1. A rectangular grid is applied to a given 

domain of the function for further linear approxima-

tion. The dimension of the grid space coincides with 

that of the function domain. The grid step is deter-

mined by the ratio of the size of the function domain 

to the size of the corresponding sides of the graphical 

image. 

Step 2. During linear approximation on the func-

tion domain, the current grid element (the node and its 

nearest neighbors) is sequentially determined, i.e. the 

simplest element of the corresponding dimension is 

formed. For example, for a function of two variables  

, ( )u f x y , we have a triangular approximation ele-

ment in which the neighbors are the nearest grid nodes 

shifted parallel to the axes Ox  and Oy . For a func-

tion of three variables ( , , )u f x y z , the approxima-

tion element is a tetrahedron with a node and neigh-

bors shifted parallel to the axes , , andOx Oy Oz , re-

spectively, etc. 

Step 3. The local equation for the selected approx-

imation element is obtained using the determinant of 

the matrix consisting of the homogeneous coordinates 

of the triangle nodes and the variable point on the do-

main. For example, in the case ( , )u f x y , the deter-

minant of the matrix of dimensions 4 × 4 has the form 

1 1 1

2 2 2

3 3 3

1

1
0

1

1

.

x y u

x y u
ax by cu d

x y u

x y u

          (6) 

Note that the matrix determinant allows obtaining 

such an equation for any matrix dimensions. The coef-

ficients , ,  ,a b c  and d
 
represent the components of 

the gradient vector increased by one dimension; the 

original function ( , )u f x y  can be replaced by a lo-

cal function of the form 

a b d
u x y

c c c
     

since the plane given by equation (6) passes through 

the node under consideration. 

Step 4. There is no sense in storing the local func-

tion for each point of the domain on the computer. It 

suffices to store the coefficients , ,  ,a b c  and d  in the 

form of four bitmap images. This representation pro-

vides visual clarity of the data, which will be further 

used to assess the solution, and their compact storage.  

To proceed, we normalize each coefficient by the 

length 2 2 2 2N a b c d    of the gradient vector, 

obtaining the components of the unit normal: 

1 2 3 4
, , , ,n = n n n n( )  

where 
1 /n a N , 

2 /n b N , 
3 /n c N , and 

4 / .n d N  

The color at the image point is defined as 

 1
, 

2

i

i

P n
M


  

where P = 256 and i = 1, ..., 4. 

The inverse transition from the color value 
i

M  to 

the component  
i

n  is performed by the formula 

2
.i

i

M P
n

P




 

Further, applying the FV method to function (3), 

we obtain a computer FV representation, i.e., the do-

main of local functions of the form 

1 2 3 4 0n x n y n u n    , where 1 2 3,  ,  ,n n n  and 4n  
are 

the coefficients of the local function (local geometrical 

characteristics). They are displayed on the computer 

by M-images 1 2 3, , ,M M M  and 4M  (Fig. 3) with a 

resolution of 400 × 400. In [10], M-images were un-

derstood as image models displaying in tone or color 

one of the local geometrical characteristics of the FV-

model. The accuracy of representing a numerical value 

by half-tint is provided in the RGB format (256 color 

grades). To increase clarity, we demonstrate the M-

images for the color palette P = 16 777 214 (256 × 256 

× 256) color grades in Fig. 4. The resulting patterns 

characterize the transition from red color grades 

through green color ones to blue color grades, provid-

ing higher visibility due to the resulting patterns for 

comparing the result with the reference. In our case, 

the reference is the M-images in Figs. 3 и 4.  

At this stage, we assume that there is sufficient ini-

tial information for the numerical and visual experi-

ment.
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Fig. 3. The graphical representation of the local geometrical characteristics of function (3) (256 greyscale grades). 
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Fig. 4. The graphical representation of the local geometrical characteristics of function (3) (16 777 214 color grades). 

 

 

2. THE ALGORITHM FOR BUILDING AN FV-MODEL  

TO SOLVE DIFFERENTIAL EQUATIONS 

The paper [8] presented an algorithm for obtaining 

the FV-model of the antiderivative of a function by 

given FV-models of its partial derivatives. Note that it 

suffices to determine the local geometrical characteris-

tics at one approximation point to calculate the func-

tion values at the other points of the triangular element 

of the approximation grid. Hence, local geometrical 

characteristics can be further found in the entire solu-

tion domain.   

To apply this algorithm, we express the partial de-

rivatives of a given function to obtain their exact val-

ues at the point under consideration. 

In the example above, the initial condition is func-

tion (2). It represents the cross-section of the desired 

surface of function (3) for 0x  . 

Therefore, 

 

1 1

,   ,  

,  ( 1) )(0 (0

0 

,   ), 

,... 

i i

u u
y h

y y

u u i h u ih

i n

 

 
  

 

   



 

where h  is the approximation step. 

Figure 2b shows the numerical data confirming the 

validity of this solution. Clearly, 3u y  /  at the 

point (0, 0) and 8.15484u y  /
 
at the point (49, 0). 

Along the axis Oy , the value of the derivative expo-

nentially increases. 

For 0x  , the partial derivatives can be defined as 

follows: 

( )
.

xu e y y

x u

  


 
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With the local function of the FV-model written as 

0,ax by cu d     we obtain  

, , 
u a u b

x c y c

 
   

 
      

where the coefficient c can be replaced by the approx-

imation value C (Fig. 5):  

     1 2 3 2 1 3 3 1 2
.C x y y x y y x y y       

Performing the transition to the components of the 

gradient vector, we have 

1 1 1

, ,
a b

A C B C
c c

D Ax By Cu

     

.

   

   

 

 

 

 
Fig. 5. Approximation nodes. 

 

At the first calculation step, the value 
1

u  is given 

by formula (3); in other cases, the values are obtained 

through the next coefficients for the local function: 

.
i i i

A B D
u x y

C C C
     

The algorithm for solving the differential equation 

includes the following basic steps: 

1. Select the next triangular approximation ele-

ment 
0 0 1 1 2 2
, , , , ,x y x y x y ).(    

2. Calculate the coefficient 

     0 1 2 1 0 2 2 0 1
C x y y x y y x y y      .  

3. For x = 0, calculate one of the derivatives ac-

cording to given conditions (in the example above, 

2
3 2u x y    / (( )

0
3 2y y ( ))/ ). For other 

values x, the derivative is determined by the relation

u x  / ,u y /  where 
1 0

u u u  ( ) and 

0 0 0
0 0 0

0 0 0

,
A B D

u x y
C C C

     

1 1 1
1 1 1

1 1 1

A B D
u x y

C C C
    .  

4. Calculate the second derivative based on the 

first derivative (in the example, 

0
0/ ( )( / )

x
u x e y u y


       ). 

5. Calculate the coefficients , ,
i i

A B  and 
i

D .  

6. Pass to the (i + 1)th triangular element. 

For each node of the approximation triangular grid, 

the local geometrical characteristics are successively 

calculated by FVM [6, 7], and the solution domain of 

the desired differential equation is filled with the local 

functions 
1 2 3 4 0.n x n y n u n     On the computer, 

such a domain is represented by the corresponding 

images 1 2 3, , ,M M M  and 4M ; see Fig. 6 (256 grey-

scale grades) and Fig. 7 (16 777 215 RGB color 

grades). 

The result in Figs. 6 and 7 is visually comparable 

with that in Figs. 3 и 4. This confirms the adequacy of 

the algorithm. The numerical estimates of the nodal 

values of the function and its partial derivatives at the 

corner points of the domain    0, 1 , 0, 1x y   are 

presented in the table. 

 

The nodal values of function (3) and its partial 

derivatives (numerical estimates) 

x y u 
u

x




 

u

y




 

0 0 2.0000 –3.0000 3.0000 

0 399 5.0000 0.0000 3.0000 

49 0 0.0235 –2.0279 7.9164 

49 399 7.1486 4.9453 7.9164 

 

Let us compare the points for the corresponding M-

images with the accepted references. According to the 

comparison results, among 640 054 points of the im-

age, the number of points with a value differing at 

most by unity is, respectively, 
1

9515, M 

2 3
3254,   2116,M M   and 

4
6086M   (not more 

than 1.5%). 
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Fig. 6. The graphical representation of the local geometrical characteristics of the differential equation solution (256 greyscale grades).  
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Fig. 7. The graphical representation of the local geometrical characteristics of the differential equation solution (16 777 215 color grades). 

 

 

The resulting solution is a linear local function rep-

resented by the local geometrical characteristics for 

the points of the selected domain: 

1 2 3 4 0.n x n y n u n     

Expressing ,( )u x y , we obtain the local differen-

tial equation 

1 2 4 4

3 3 3 3

or 
n n n nu u

u x y u x y
n n n x y n

 
      

 
  .  

CONCLUSIONS 

This paper has considered an approach to solving a 

linear first-order partial differential equation using the 

functional voxel method. An algorithm for solving 

such differential equations based on the proposed ap-

proach has been presented. The numerical simulation 

results have confirmed the adequacy of this algorithm.   

In future studies, this algorithm will be compared 

with well-known numerical methods in terms of the 

growing error of the function value at the approxima-

tion grid nodes with different steps. Also, the accuracy 

of local geometrical characteristics will be compared 

with the approximation accuracy of the analytical so-

lution. 
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