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Abstract. This paper is devoted to analytical approaches to path planning with obstacles. Two 

analytical modeling principles are compared for obstacles in a scene: the methods of potentials 

and R-functional modeling. The functional voxel design principle of complex computational pro-

cesses is presented on an illustrative example of modeling of the R-function for the un-

ion/intersection of the domains of two functions. The fundamentals of arithmetic operations over 

local geometrical characteristics describing the components of a homogeneous unit vector of a 

local function are discussed. The denormalization principle of such components is demonstrated 

for application in arithmetic operations constituting an R-function. The scene is modeled by the 

layout of concentric objects and a local function describing the target by a funnel surface at a giv-

en point. A dynamic formation algorithm is considered for the final local function of the union of 

the funnel and scene surfaces at a current point. The final local function is used to determine the 

components of the direction vector of gradient-based motion to the target.  
 
Keywords: R-function, functional voxel modeling, local geometrical characteristic, local function, gradient, 

homogeneous vector, path planning with obstacles. 
 

 

 

INTRODUCTION 

The path planning problem statement already has 

many solutions for detecting spatial obstacles and con-

structing an avoiding route [1–3]. Most path planning 

algorithms are based on the “moving-until-stop” prin-

ciple due to the lack of information necessary for 

analysis at each point. Among them, we mention heu-

ristic algorithms, particularly the ant colony algorithm, 

the particle swarm method, and the evolutionary ge-

netic algorithm [4], which often yield a path without 

smoothness and cannot be used in several applications 

requiring a smooth motion trajectory. This class of 

algorithms also includes the wave algorithm and the 

A* algorithm. Therefore, special attention of research-

ers is paid to analytical approaches to describing the 

environment to avoid obstacles. Such a method allows 

describing geometrical models with maximum accura-

cy and displaying the geometrical properties of envi-

ronment objects for each point in a given domain of a 

scene. 

The analytical approach to path planning with a 

complex configuration of obstacles is traditionally re-

duced to constructing and analyzing the surface relief 

of a function f(x, y) = z, where the set of points         

f(x, y) = 0 defines the boundary of an obstacle to be 

avoided. According to the studies of relief construc-

tion methods, there are two main approaches: the R-

functional construction of the surface relief to design 

gradient-based motion (R-functional modeling) and 

the construction of the potential field as a sum of point 

sources of distributed potential (the method of poten-

tials). 

The method of potentials considers the sum of 

“hyperboloidal” functions of movement to a target and 

repulsion from separate points (obstacle objects). The 

method of R-functional modeling (RFM) [5–7] pro-

vides a unified functional description of a complex 

geometry of a scene with obstacles based on the R-

functional union of “paraboloidal” functions. There is 

no need to perform complex calculations when con-

structing the definitional domain of the potentials: it 

suffices to sum their values sequentially. In R-

functional modeling, union R-functions are used to 

include the next object in the scene. In comparison 

with the method of potentials, this fact appreciably 
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increases the calculation time but allows describing 

objects of complex geometrical shape, which cannot 

be done with the method of potentials. Therefore, it is 

recommended to apply both methods: the R-functional 

model can be used to describe a static deterministic 

environment of complex geometry, whereas potentials 

can be dynamically added anywhere in the scene by 

summing them with the R-functional surface. 

1. PROBLEM STATEMENT  

In this paper, we study the possibility of using the 

functional voxel model (FM-model, in particular, its 

gradient properties) for the computer representation of 

the domain of an R-function in path planning with ob-

stacle avoidance. Note that the optimal (shortest) path 

requirement is not intentionally imposed here: the 

principle of flowing around objects often makes the 

agent occluded, for a long time, with respect to the 

terminal point, and only the departure to the open 

space will require aligning its motion to the target. 

These are the properties of local gradient-based mo-

tion optimization (Fig. 1). 

 

 

 
Fig. 1. Gradient-based motion to a target with obstacle avoidance (the 

red cross indicates the target and the white cross the agent). 

 

We assert that the FV-model allows performing 

arithmetic operations over the values of two different 

functions defined by a single domain [8–10]. In other 

words, the assertion is that functional voxel modeling 

(FVM) [10] allows implementing complex algebraic 

expressions based on arithmetic operations at the level 

of calculating local geometrical characteristics. As an 

illustrative example, let us consider the FVM of the 

intersection/union R-function ω(x, y) as a function 

whose arguments are also the values of functions  

ω1(x, y) and ω2(x, y) [5–7]:  

1 2

2 2
1 2

ω( , ) ω ( , ) ω ( , )

ω ( , ) ω ( , ).

x y x y x y

x y x y

 


             (1) 

The expression (1) includes the following arithme-

tic constructs: sum, difference, raising to a power, and 

root extraction for function(s). We study each of these 

procedures in detail. 

The FVM principle involves the computer repre-

sentation of a given domain of an initial complex func-

tion F(Xm+1) = 0 by local functions L(Am+1, Xm) = 0, 

where Ai is a local geometrical characteristic showing 

the deviation of the unit homogeneous normal vector 

at a current point. This characteristic is encoded by an 

appropriate color of the m-dimensional image. A local 

function is linear and decomposes into a polynomial:  

1 1 1 2 2 1( , ) ... 0.m m m m mL A X a x a x a x a        

Consider the necessary arithmetic operations in-

cluded in the R-function to calculate its local geomet-

rical characteristics at the points of a given domain. As 

an example, we define a two-dimensional domain with 

two local functions at each point (x, y):  

(1) (1) (1) (1)
1 1 2 3 4

(2) (2) (2) (2)
2 1 2 3 4

( , , ) 0,

( , , ) 0.

L x y z a x a y a z a

L x y z a x a y a z a

    

    

   (2) 

The superscript in the notation of a local geomet-

rical characteristic, enclosed in brackets, describes the 

function number. To simplify the calculations, we di-

vide all the equation coefficients, including the free 

one, by that at the argument z:  

(1)(1) (1) (1)
31 2 4

1 (1) (1) (1) (1)
3 3 3 3

(1) (1) (1)
1 2 4

(2)(2) (2) (2)
31 2 4

2 (2) (2) (2) (2)
3 3 3 3

(2) (2) (2)
1 2 4

( , , )

0,

( , , )

0.

aa a a
L x y z x y z

a a a a

l x l y z l

aa a a
L x y z x y z

a a a a

l x l y z l

   

    

   

    

 

As a rule, the value of the components of the ho-

mogeneous vector grows, causing its denormalization 

(increasing the length of the normal vector).   

To obtain the values of the local characteristics li 

for the sum of arguments z = z
(1)

 + z
(2)

, it suffices to 

add all the equation characteristics in pairs. We prove 

this fact as follows: 
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(1) (2)

(1) (1) (1) (2) (2) (2)
1 2 4 1 2 4

(1) (2) (1) (2) (1) (2)
1 1 2 2 4 4

( ) ( )

( ) ( ) ( ).

z z z

l x l y l l x l y l

l l x l l y l l

 

       

      

 

By analogy, for the subtraction procedure,  
(1) (2)

(1) (1) (1) (2) (2) (2)
1 2 4 1 2 4

(1) (2) (1) (2) (1) (2)
1 1 2 2 4 4

( ) ( )

( ) ( ) ( ).

z z z

l x l y l l x l y l

l l x l l y l l

 

       

      

 

In addition, 
(1) (2)

3 3 1.l l   

Therefore, the local geometrical characteristics 

eliminating the coefficient 3l  at the computed argu-

ment z in the sum or difference produce the local func-

tion of addition or subtraction, respectively. In other 

words, to obtain the terms of operations over local 

functions, it suffices to add their coefficients. 

To preserve the linear property of a local function 

under the multiplication operation, it suffices to re-

place one of the functions by the value of the argu-

ment z, e.g.: 

  

 

     

(1) (2)

(1) (1) (1) (2) (2) (2)
1 2 4 1 2 4

(1) (1) (1) (2)
1 2 4

(1) (2) (1) (2) (1) (2)
1 2 4 .

z z z

l x l y l l x l y l

l x l y l z

l z x l z y l z



      

   

   

 

The value of the sub-root expression can be ob-

tained by utilizing the following property: 

(1) (1) (1)(1)
(1) 1 2 4

(1) (1) (1) (1)
1 2 4

l x l y lz
z

z l x l y l

  
 

  
   

(1) (1) (1) (1) (1) (1)
1 2 4 1 2 4

(1) (1) (1) (1)
.

l x l y l l l l
x y

z z z z

  
      

2. R-FUNCTION MODELING FOR THE FV-MODEL 

To illustrate the modeling process of the intersec-

tion R-function, we take as input functions 
(1) ( , )z x y  

and 
(2) ( , )z x y . 

Let 
(1) 21z y  , which is the algebraic function of 

the geometrical object describing a symmetric band of 

positive values of x  along the Ox  axis (Fig. 2). 

Figure 3 shows the FV model for the function (1)z . 

Let 
(2) 21z x  , which is the algebraic function of 

the geometric object describing a symmetric band of 

positive values of y  along the Oy  axis (Fig. 4). 

 
 

Fig. 2. The voxel representation of the positive domain of the function 

z(1) (the blue color indicates the negative domain of values). 

 

 

 

1 2 3 4                                                 Х Х Х ХM M M M  

 
Fig. 3. The voxel representation of the normal components of the 

function z (1). 

 
 

 
 

Fig. 4. The voxel representation of the positive domain of the function 

z(2) (the blue color indicates the negative domain of values). 
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Figure 5 shows the FV model for the function (2)z . 
 

 

1 2 3 4                                                       Y Y Y YM M M M  

 
Fig. 5. The voxel representation of the normal components of the 

function z(2). 

 

The graphical information in Figs. 3 and 5 allows 

obtaining four local geometrical characteristics at each 

point of the domain and forming two local functions 

L
(1)

 and L
(2)

 (2).  

We simplify further calculations by dividing all the 

coefficients of the local equation by the coefficient a3. 

In this case, the third coefficient takes a unit value: 
(1) (2)
1,2,4 1,2,4(1) (2) (1) (2)

1,2,4 1,2,4 3 3(1) (2)
3 3

, , 1.
a a

l l l l
a a

     

The values of z  for both functions are obtained 

based on these coefficients: 

(1) (1) (1) (1) (2) (2) (2) (2)

1 2 4 1 2 4,   .z l x l y l z l x l y l         

The final law for determining the local geometrical 

characteristics of the intersection/union R-function is 

given by 

   

(1) (1) (2) (2)
(1) (2)

3
2 2

(1) (2)

,   1,   1, 2, 4.R Ri i
i i i

l z l z
l l l l i

z z

 
 

    
 
 

 

By normalizing the resulting coefficients 
R
il  using 

the four-component norm 

       
2 2 2 2

4 1 2 3 4
R R R RN l l l l     and matching 

them to the monochromatic gradient palette, we get 

the required four M-images of the intersection function 

(Fig. 6). 

 

 

 

Fig. 6. The voxel representation of local geometrical characteristics on 

images iM . 

 

Figure 7 demonstrates the modeling result for the 

positive z-domain of a square with side 2.  

 
 

Fig. 7. The voxel representation of the positive domain of the function 

(1) (2)
L L  (the blue color indicates the negative domain of values). 

 

3. THE PATH PLANNING ALGORITHM TO A GIVEN 

TARGET IN A DETERMINISTIC ENVIRONMENT  

To apply FVM principles, it is necessary to formal-

ize the description of a scene in which the agent will 

act and describe the law of movement to a given point 

(target). The target is dynamically set during the oper-

ation of the future algorithm; in contrast, the scene 

may have various complex configurations and is pre-

pared in advance in a special system by the algorithm 

presented in [11, 12]. 

As an example, we describe the scene by a func-

tion on a given domain of sizes 20 × 20, with the 

origin placed in the center. The scene function con-

tains three concentric objects of unit radius; their ar-

rangement is shown in Fig. 8. The formalization of the 

scene function contains a nested structure of the fol-

lowing functions: 

   
2 2

(3) (12) (3) (12) ,Sz z z z z     

   
2 2

(12) (1) (2) (1) (2) ,z z z z z     

   
2 2(1) 1 4 2 ,z x y      

   
2 2(2) 1 2 4 ,z x y      

   
2 2(3) 1 4 4 .z x y      

To keep the previously accepted notation (the ob-

ject number indicated by the superscript), we will put 

an element with a superscript in brackets when raising 

it to the second power. 
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Fig. 8. The scene described by the function  ,S
z x y . 

 
To set the target, it is necessary to specify in the 

scene a point with coordinates  ,C Cx y ; see the cross 

in Fig. 8. Now any other point of the scene must lie on 

the surface of the function of the inverted cone with 

the vertex point  ,T Tx y . Uniting the function of this 

cone with the scene function 
Sz  yields the surface 

function 
Gz  of the problem solution (Fig. 9). Any 

point moving along the gradient of the surface will 

tend to the point  , ,T Tx y  avoiding the concentric 

objects. 

 

 
 

Fig. 9. The scene described by the function  ,G
z x y . 

When constructing the FV-model, at each point of 

the domain, we obtain a local function SL  with local 

geometrical characteristics 1 2 3, , ,S S Sa a a   and 4
Sa  in-

stead of the structurally nested function  ,Sz x y . 

Therefore, it makes sense to form the target function 

using local geometrical characteristics 1 2 3, , ,T T Ta a a  

and 4 .Ta  

To this end, it is necessary to specify some current 

point  ,A Ax y  of the agent’s position in the scene. 

For this point, we define the local geometrical charac-

teristics of the target’s local function  ,T
A AL x y . Let 

0.001Tz    be the level of the target point (i.e., the 

height of the inverted cone). In other words, the cone 

surface is maximally unfolded with respect to the 

plane xOy . Then the distance between the agent’s cur-

rent point and the target point is given by 

     
2 2 2

2T A T A Td x x y y z     , 

and the local geometrical characteristics at the agent’s 

point are expressed as follows: 

1 ,T T Ax x
a

d


  

2 ,T T Ay y
a

d


  

3

2
,T Tza

d
  

3
4 1 2 3 10 .T T T T

T Ta a x a y a       

We normalize the characteristics 1 2 3, , ,T T Ta a a  and 

4
Ta : 

       
2 2 2 2

4 1 2 3 4 ,T T T T TN a a a a     

4

,   1, ,4.
T

T i
i T

a
n i

N
    

These characteristics 1 2 3, , ,T T Tn n n  and 4
Tn , as well 

as those 1 2 3, , ,S S Sa a a  and 4
Sa  of the local function 

 ,S
A AL x y  taken from the FV-model of the scene, have 

to be prepared to model the resulting local function 

 ,G

A AL x y  by the union construct: 

1,2,4 1,2,4

1,2,4 1,2,4 3 3

3 3

, , 1.

T S

T S T S

T S

n a
l l l l

n a
     

We find the local geometrical characteristics of the 

local function    ,G
A AL x y : 

1 2 4 1 2 4,   .T T T T S S S Sz l x l y l z l x l y l         
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2 2

3

,  

1,    1,  2, 4.

T T S S
G T S i i
i i i

T S

G

l z l z
l l l

z z

l i

 
 

    
 
 

 

 

The local geometrical characteristics at the point of 

the solution surface  ,G
A Az x y  being obtained, we 

determine the next point of the directed gradient-based 

motion segment with a certain step S. To find the co-

sines of the deviation of the normal vector in the plane 

xOy , it is necessary to reduce the two local geometrical 

characteristics to the two-dimensional norm 

   
2 2

2 1 2
G G GN l l  : 

2

,   1, 2.
G

G i
i G

l
n i

N
   

The next step is to calculate the coordinates of the 

new current point of the agent’s position in the scene: 

1 2' ,   ' .G G
A A A Ax x Sn y y Sn     

Figure 10 demonstrates the operation of the gradi-

ent-based motion algorithm from the agent’s position 

to the target point with avoiding the three concentric 

obstacles. The red cross indicates the target whereas 

the white cross the agent. 

 

 

 
Fig. 10. Path planning for an agent in a scene with three obstacles. 

 

Note that the FV-model of the scene is described 

and modeled separately, and the speed of the algo-

rithm does not depend on the number and size of the 

objects placed in it.  

Four images describing the scene function in the 

same format (a set of local functions) are the input of 

this algorithm, which makes the latter independent of 

the complexity of the scene. The speed of such an al-

gorithm depends on the representation accuracy of the 

FV-model (image resolution) and the parameter S (the 

step of gradient-based motion). 

Figure 11 shows the gradient-based motion to the 

target in a scene with 25 regularly distributed concen-

tric objects.  

 

 

 
Fig. 11. Path planning for an agent in a scene with 25 obstacles. 

 

Finally, Fig. 12 presents gradient-based motion to 

the target in a scene of complex geometry.  

 

 

 
Fig. 12. Path planning for agents in a scene of complex geometry.  
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CONCLUSIONS 

In this paper, we have presented a new FVM tool 

that provides set-theoretic operations over local func-

tions constituting a rectangular domain. It allows op-

erating the data of object’s local geometry when im-

plementing the description of complex analytical con-

structs on a PC; these data are further applied in dy-

namic algorithms of analytical optimization schemes. 

With the gradient-based motion algorithm, the model-

ing parameters of the cone surface of the motion are 

chosen to change the agent’s path by introducing ob-

jects of complex shape; as a result, the agent surely 

arrives at the target. Using the FV-model, it is possible 

to introduce a new object in the scene, such as the tar-

get’s cone surface, for dynamic control of the agent’s 

motion in a complex geometrical environment. 
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