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Abstract. This paper presents a simple method for generating the partial derivatives of a multi-

dimensional function using functional voxel models (FV-models). The general principle of con-

structing, differentiating, and integrating an FV-model is considered for two-dimensional func-

tions. Integration is understood as obtaining local geometrical characteristics for the antideriva-

tive of a local function with solving the Cauchy problem when finally constructing the FV-

model. The direct and inverse differentiation algorithm involves the basic properties of the local 

geometrical characteristics of functional voxel modeling and the inherent linear approximation 

principle of the codomain of the algebraic function. Simple computer calculations of this algo-

rithm yield an FV-model suitable for any further algebraic operations. An illustrative example 

of constructing a functional voxel model of a complex two-dimensional algebraic function is 

provided. Functional voxel models of partial derivatives are obtained based on this model. The-

se models and the boundary condition at a given point are used to obtain an initial FV-model of 

a complex algebraic function. The approach is applicable to algebraic functions defined on the 

domain of various dimensions. 
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antiderivative. 
 

 

 

INTRODUCTION  

Differential calculus is still topical: it underlies al-

most all theoretical mechanics and mathematical phys-

ics as well as control theory. Nowadays, there exists a 

developed mathematical apparatus based on formal 

partial differentiation and derivation of integrand ex-

pressions to solve the inverse problem. Rather com-

plex solutions are formed using the tables of known 

antiderivatives for various-type simple expressions 

and integration rules. Many attempts were undertaken 

to automate this process and obtain equations for fur-

ther calculations [1–6]. In this case, the computer acts 

as a calculator without acquiring any “intelligent 

skills.” The main problem is the inapplicability of such 

approaches to complex differentiable functions with 

peaks and discontinuities. Such functions arise in R-

functional modeling and actively participate in the 

analytical modeling of geometric models to describe 

different objects and continuous processes. Among 

some examples, we mention a function describing a 

rectangular or polygonal zero contour, etc. For exam-

ple, the following expression describes the positive 

domain of a rectangle with sides a and b: 

   
2 2

2 2 2 2 2 2 2 2 0. a b x y a x b y         (1) 

Numerical methods based on discrete calculus 

have much contributed to automating the process of 

differentiation (the method of differences) and integra-

tion (the method of trapezoids, etc.). The problem 

grows sharply when increasing the dimensionality, 

especially with respect to the automation of expres-

sions. In numerical methods, all arguments of a func-

tion become constants, except for the argument of dif-

ferentiation, and the required order of the derivative is 

achieved by successive differentiation. However, nu-

merical methods have an obvious disadvantage: their 

result is the value of the derivative at a point, not its 

algebraic function, which is required for solving the 

inverse integration problem [7–9].   

Thus, the approaches discussed above cannot gen-

erally provide an automated solution of the direct and 

inverse differentiation problems. 
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We consider a developing computer method called 

functional voxel modeling (FVM). This method is in-

tended for the discrete computer representation of con-

tinuous functions on a given multidimensional do-

main. It involves local geometrical characteristics 

(LGCs) on a given domain of an algebraic function. 

FVM was described in detail in [10, 11]. This method 

is based on the computer representation of the domain 

of local functions that replace the given domain of an 

algebraic function at each point. In contrast to numeri-

cal methods, the result at a point is not a numerical 

value but a function of simple linear form. For a two-

dimensional complex algebraic function as one exam-

ple, we consider the fundamental principle of obtain-

ing the domain of local linear functions in a functional 

voxel computer model (FV-model) and the main dif-

ferential operations performed to obtain the deriva-

tives and the antiderivative. 

 

1. THE FUNCTIONAL VOXEL MODELING                          

OF AN ALGEBRAIC FUNCTION 

As an illustrative example of obtaining an FV 

model, we consider the smooth function 

2 sin π   cos π  , 
y x

u x y
k k

   
    

   
               (2) 

on the domain [–1, 1]   [–1, 1] in the space xOy , 

where the coefficient k takes any value, e.g., 0.5.   

This example of a continuous and smooth function 

provides a mathematical solution of partial derivatives 

for comparing FV-models.  

We apply a regular rectangular grid with a cell 

spacing of 0.02 to the domain of the function. Let the 

nodes be numbered as in Fig. 1 to form a group of 

nodes of the triangular grid segment.  

For the given coordinates of the three points, the 

determinant-based equation of the plane has the form 

1 1 1

2 2 2

3 3 3

1

1

1

1

0,ax

x y z

x y z

x y
by

y z

d
z

x

cz    

 

where 

     1 2 3 2 1 3 3 1 2 ,a y z z y z z y z z       

      1 2 3 2 1 3 3 1 2 ,b x z z x z z x z z       

     1 2 3 2 1 3 3 1 2 , c x y y x y y x y y       

   1 2 3 3 2 2 1 3 3 1(d x y z y z x y z y z       

 3 1 2 2 1 .x y z y z                           (3) 

 

 

 
Fig. 1. The nodes of an approximation grid. 

 

Next, we normalize the coefficients by the length 

of the four-dimensional gradient vector: 
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Let the color gradation values of the monochrome 

palette P  be associated with the values of the normal 

components (LGCs) as follows:  

 
 

1
,  256, 1,4 .
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P n
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Figure 2 shows the M-images (image-models) of 

the FV-model color mapping for the corresponding 

domain of the local geometrical characteristics of 

function (2). 

At each point of the domain, this data representa-

tion allows automatically producing a local function 

that duplicates function (1) but has the simplest possi-

ble form: 

1 2 3 4 0. n x n y n z n                       (4) 

To illustrate the next steps of differentiation, we 

model the M-images for the partial derivatives of func-

tion (2) expressed traditionally: 

2sin π sin π ,  
u y x

y
x a a a

    
    

    
           (5) 

cos π 2 cos π .
u y x

x y
y a a a

     
    

    
         (6) 

Figures 3 and 4 demonstrate the FV-models for 

equations (5) and (6), respectively. Each M-image vis-

ualizes the changes in the local geometrical character-

istics forming the local function for each point.  
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Fig. 2. The basic M-images of the function u.    
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Fig. 3. The basic M-images of the function u / x∂ ∂ . 
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Fig. 4. The basic M-images of the function u / y∂ ∂ . 

 

 

2. PARTIAL DIFFERENTIATION OF FV-MODELS 

We model the partial derivative along the axis Ox

using the above algorithm and the relation  

1

3

,
nu a

x c n


 


                           (7) 

 

where 1n  and 3n  are the coefficients of equation (4). 

Having such values for each point of the domain 

with the M-images 1
uM  and 3

uM  (Fig. 2), we obtain a 

similar approximation scheme (Fig. 5).  

For the three points, the determinant-based equa-

tion of the plane has the form 
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Figure 6 shows the M-images of the color mapping 

for the corresponding domain of the local geometrical 

characteristics of (7). Obviously, these M-images vis-

ually coincide with the ones in Fig. 3.  

By analogy, we can obtain M-images for the deriv-

ative along the axis Oy  (Fig. 7), where  

2

3

 .
nu b

y c n


 


                            (8)  

Consider an example of modeling the second de-

rivative along the axis Ox . For this purpose, we dif-

ferentiate function (3) using its FV-model (Fig. 6) and 

the local differentiation algorithm proposed above.

 

 

 
 

 
Fig. 5. The nodes of an approximation grid. 

 

The resulting FV-models of the derivatives 

2

2
 

u

x




 and 

2u

x y



 
 

are presented in Fig. 8. 

Thus, the FVM approach to differential images al-

lows obtaining derivatives of different order without 

much difficulty. 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 6. The basic M-images of the function 1 3n / n . 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 7. The basic M-images of the function 2 3n / n . 
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(b) 
 

Fig. 8. The basic M-images of functions: (a) 2 2/u x   and (b)
2 /u x y   .  

 

 

3. INTEGRATION OF FV-MODELS 

Consider the inverse differentiation problem: find-

ing the antiderivative (integration). Let us refer to 

formulas (7) and (8), i.e., the equations 

,    .     
u a u b

x c y c

 
 

 
 

Note that the coefficient c in the denominators is 

the doubled area of the triangle with the vertices 

   1 1 2 2,  , ,  ,  x y x y  and  3 3,  x y  in the plane xOy , 

i.e., is calculated by formula (3). 

The coordinates of the nodes of the approximation 

grid are known or can be easily determined for the 

given domain of the function and the sizes of the M-

images. Hence, we can calculate the coefficient c  and 

then the coefficients a and b by the formulas 

,   .
u u

a c b c
x y

 
 
 

 

This leads to an indefinite local integral at the 

point  ,i jx y : 

0.ax by cz    

To find the antiderivative, assume that 

 1 1 1,z f x y     is known; in other words, we calculate 

21 1
1 1 1 sin π  cos π .

0.5 0.5

y x
z x y

   
    

   
     

Then 

1 1 1.d ax by cz     

Completing the definition of the coefficients of the 

local equation, we obtain the corresponding values for 

the other nodes of the approximation grid segment 

(Fig. 9): 

2 2 2 ,
a b d

z x y
c c c

     

3 3 3 .
a b d

z x y
c c c

   
 

 
 

 
 

 
Fig. 9. The nodes of an approximation grid. 

 



 

 
 

 

 
 

56 CONTROL SCIENCES  No. 5 ● 2022  

 

INFORMATION TECHNOLOGY IN CONTROL  

Now we apply the local integration algorithm to 

the second derivative. As expected, the resulting M-

images should be as similar as possible to the M-

images of the FV-model of the first derivative (Fig. 6). 

The initial M-images are the M-images obtained for 

the derivatives 
2

2

u

x




 and 

2u

x y



 
, presented in Figs. 7 

and 8, respectively. The result of the local integration 

algorithm is shown in Fig. 10. These M-images visual-

ly coincide with the ones in Fig. 6.  

The error in the resulting images is due to the loss 

of accuracy when passing to integer values of the pal-

ette. In many cases, this error is insignificant since the

values differ by the third decimal place.  

Applying the local integration algorithm to the M-

images of the first derivative yields the result in 

Fig. 11. It is quite comparable to the M-images of the 

original function u; see the FV-model in Fig. 2.     

Consider an example of differentiating function (1) 

using the proposed approach. Figure 12 demonstrates 

the M-images of the FV-model for the expression 

   
2 2

2 2 2 2 2 2 2 2u a b x y a x b y              

with a = 0.5 and b = 1 on the domain [-1, 1]  [- 1, 1]. 

The M-images of the partial derivative along the 

axis Ox  are shown in Fig. 13.   
 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 10. The basic M-images of the second derivative of the function u.  

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 11. The basic M-images of the integral of the second derivative of the function u.  

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 12. The basic M-images of the integral of the second derivative of the function u. 
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Fig. 13. The basic M-images of the first derivative of the function n1/n3.   

 

 

CONCLUSIONS 

This paper has presented a tool for automating the 

differentiation and integration of wide-range complex 

algebraic functions based on functional voxel model-

ing. Due to linear approximation, the proposed ap-

proach allows differentiating and integrating a wide 

class of undifferentiated functions that arise in R-

functional modeling. Despite a visual error in the re-

sult, this approach is robust and ensures a solution 

even if the function has no mathematical form. An 

example of two-dimensional functions has been pro-

vided to demonstrate and visually compare the results. 

Note that the algorithm is easily transferable to any 

dimension.  
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