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Abstract. This paper considers routing for a group of unmanned aerial vehicles within a promis-

ing last-mile delivery system. The routing problem is reduced to the bi-criteria single-depot mul-

tiple traveling salesman problem and formalized using a directed graph. Being NP-hard, this 

problem cannot be efficiently solved by standard exact optimization methods. Therefore, heuristic 

algorithms should be applied to obtain good approximate solutions in a short time. The problem is 

solved using NSGA-II, the widespread elitist non-dominated sorting genetic algorithm that 

demonstrates good results in multicriteria optimization. Some chromosome representation and 

crossing and mutation operators are implemented in the algorithm. A simulation software tool is 

presented to investigate the influence of the crossing operators used on the convergence speed of 

the algorithm. Finally, several genetic crossing operators (Partially-Mapped Crossover, Order 

Crossover, Cycle Crossover, and Combined Hierarchical Crossover) are compared in terms of 

efficiency. 
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rithm, crossover. 
 

 

 

INTRODUCTION  

Fast and cost-efficient commercial delivery of 

small-sized goods ordered online is a difficult and 

complex logistics problem that many companies are 

currently trying to solve. One of the most promising 

technologies at the final stage of the supply chain, the 

so-called last-mile delivery, is the use of unmanned 

aerial vehicles (UAVs) within the system for deliver-

ing goods from distribution centers to customers [1]. 

The UAVs-based delivery of small-sized goods in an 

urban environment is more beneficial than classical 

courier delivery from an economic point of view: 

UAVs are not limited to a static set of roads and can 

flexibly move in three dimensions, which significantly 

reduces the time and, consequently, the cost of deliv-

ery [2]. In addition, automation of such a system sig-

nificantly decreases the number of employees engaged 

in order transportation, also reducing its total cost. 

Although last-mile delivery using UAVs suggests a 

more efficient alternative to courier delivery, its im-

plementation within a real system is limited by the 

technical capabilities of currently available hardware 

and software tools. Note also that real delivery sys-

tems involve a large number of customers to be served 

simultaneously.  

As was shown in the survey [3], for a group of 

UAVs, the simplest centralized routing problem is re-

duced to the NP-hard Multiple Traveling Salesman 

Problem (MTSP) provided that each UAV can serve 

one or several customers per flight. In this paper, to 

decrease the dimension of the optimization problem, 

we divide the delivery system into service zones with 

a single distribution center inside and separately solve 

the resulting Single-Depot Multiple Traveling Sales-

man Problems (SD-MTSPs). In Section 1, we show 

the necessity of simultaneous optimization of two con-

flicting objective functions (criteria) and present the 

formal problem statement. 

Standard exact optimization methods need an ex-

ponentially growing time for computations as the 

number of optimized parameters increases; in a real 

system, heuristic algorithms should be therefore ap-

plied to find approximate solutions. Currently, the 

main approach to solving this class of problems is to 
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use various metaheuristic algorithms [4]. We choose 

the elitist Non-dominated Sorting Genetic Algorithm II 

(NSGA-II). See Section 2 for a detailed description of 

this algorithm, as well as the algorithms of genetic 

selection, crossing, and mutation. 

The efficiency of a genetic algorithm mostly de-

pends on the local search capabilities of its crossing 

operator. In Section 3, we compare the results pro-

duced by the algorithm with Combined Hierarchical 

Crossover and several standard crossing operators 

(Partially-Mapped Crossover, Order Crossover, and 

Cycle Crossover) in terms of efficiency. 

1. PROBLEM STATEMENT 

The single-depot multiple traveling salesman prob-

lem has the following general statement. Consider a 

set of n > 1 cities (points) and m identical traveling 

salesmen. Each salesman departs from the same start-

ing point (point 0), makes a tour, and returns to this 

point. Each point, except the starting one, must be vis-

ited exactly once. The problem is solved by minimiz-

ing some global objective function F [5]. 

In the standard statement, it is the total length of 

routes of all salesmen. However, minimization of such 

an objective function without additional route con-

straints yields solutions with strongly imbalanced 

routes (Fig. 1).  

 
 

 
 

 
Fig. 1. A typical solution of the standard problem statement. 

 

From a practical point of view, several salesmen 

are intended to reduce the time of service to all cus-

tomers. Therefore, salesmen routes are often balanced 

by their length using different variations of the mini-

max problem statement, where the objective function 

can be, e.g., the length of the longest route or the so-

called degree of imbalance (the difference between the 

lengths of the longest and shortest routes). In turn, this 

approach may result in the irrational routes of sales-

men in the sense of minimum length (Fig. 2), and the 

time of serving all customers will also be nonoptimal. 

 
 

 
 

 
Fig. 2. A typical solution of the minimax problem statement. 

 

Thus, minimizing the total length and balancing 

the routes are two conflicting optimization problems 

that need to be considered together. The multicriteria 

approach to solving  the multiple traveling salesman 

problem has proven to be efficient [6–8] since it 

smoothens the disadvantages of conflicting objective 

functions without introducing additional solution con-

straints. Moreover, the presence of several objective 

functions in the problem naturally leads to a set of Pa-

reto-optimal solutions instead of a single optimal solu-

tion, and the best solution (in some sense) can be flex-

ibly selected under additional information available 

about the problem. 

The bi-criteria single-depot multiple traveling 

salesman problem can be formalized [6] using a di-

rected graph G = (V, A), where V and A denote the sets 

of vertices and arcs, respectively. A symmetric weight 

matrix (distance matrix) C = (cij), (i, j) ∈ A, is associ-

ated with this graph; it can be defined considering the 

constraints imposed by the environment of the real 

delivery system. In this paper, we define the values cij 

in the simplest way, i.e., as the Euclidean distances 

between points. Let xijk be a binary variable taking 

value 1 if salesman k passes through the arc (i, j) and 

value 0 otherwise. Also, let ui be the number of points 

visited by the salesman on the route from the starting 

point to point i.  
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With the notations introduced above, the formal 

problem statement is as follows: 
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The expressions (2) and (3) define two objective 

functions to be minimized jointly (1), i.e., the total 

route lengths of all salesmen and the difference be-

tween the lengths of the longest and shortest routes, 

respectively. Conditions (4) and (5) ensure that exactly 

m salesmen will leave the starting point and return to 

it. Due to conditions (6)–(8), each point (except the 

starting one) will be visited exactly once. The con-

straint (9) is a classical form of the subtour elimination 

constraint (SEC), which ensures that the solution will 

not contain any degenerate tours. 

2. ALGORITHM DESCRIPTION 

2.1. Chromosome Representation 

The key to obtaining good solutions of an optimi-

zation problem using a genetic algorithm is a correct 

representation of an individual or chromosome that 

should accurately determine the solution of the prob-

lem and allow genetic operators to efficiently generate 

the fittest solutions as the iterative evolutionary pro-

cess continues. The paper [9] proposed a two-part 

chromosome representation method that reduces the 

redundancy of the solution space (compared to the 

one-string and two-string chromosome representation 

methods) and, consequently, improves the efficiency 

of the algorithm. This method was used for solving the 

multiple traveling salesman problem. 

The chromosome consists of two parts (Fig. 3): the 

first part contains (n – 1) numbers characterizing the 

order of visiting points in the routes of salesmen, and 

the second part is composed of (m – 1) break points 

that divide the first part into m groups. Each group 

describes the tour of one salesman (Fig. 4). 

 
 

 
 

 
Fig. 3. The chromosome representation. 

 

 

 
Fig. 4. The solution visualized. 

 

2.2. Crossing Operators 

As is known, the crossing operator (crossover) 

used in a genetic algorithm has the greatest influence 

on the local search capabilities and efficiency of the 

algorithm. Such crossing operators as Partially-

Mapped Crossover (PMX), Order Crossover (OX), 

and Cycle Crossover (CX) are most widespread in 

combinatorial optimization problems. The principles 

of their operation were described in many works; for 

example, see the books [10, 11]. The algorithms of the 

standard crossing operators used below are adapted to 

conform to the two-part chromosome representation 

method. The modified algorithms of the crossing op-

erators are described in detail below. 
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The modified PMX algorithm includes several 

steps as follows (Fig. 5). 

 
 

 
 

 
Fig. 5. The modified PMX algorithm. 

 

Step 1. A pair of parents is supplied to the input of 

the algorithm. Two cutting points are randomly and 

uni 

formly selected from the first parts of the parent 

chromosomes PA and PB. The gene sequences be-

tween the two cutting points are called map sections. 

Step 2. The map sections are swapped and copied 

in accordance with the gene positions into the first 

parts of the child chromosomes CA and CB. The other 

genes are considered undefined. 

Step 3. The gene relationship between the two map 

sections is determined. 

Step 4. The genes undefined in CA and CB are 

filled by copying the genes of the corresponding par-

ent. If a gene present in a child is replaced according 

to its map. 

Step 5. The second parts of the child chromosomes 

are generated randomly. 

The modified OX algorithm includes several steps 

as follows (Fig. 6). 

Step 1. A pair of parents is supplied to the input of 

the algorithm. Two cutting points are randomly select-

ed from the first parts of the parent PA and PB. 

Step 2. The gene sequences are swapped and cop-

ied in accordance with the gene positions into the first 

parts of the child chromosomes CA and CB. The other 

genes are considered undefined. 

Step 3. The left-to-right gene orders are determined 

in PA and PB. 

 

 
 

 
Fig. 6. The modified OX algorithm. 

 

Step 4. The genes undefined in CA and CB are 

filled in accordance with the gene order of the corre-

sponding parents, starting from the second cutting 

point. A gene present in a child is skipped. 

Step 5. The second parts of the child chromosomes 

are generated randomly. 

The modified CX algorithm includes several steps 

as follows (Fig. 7). 

 
 

 
 

 
Fig. 7. The modified CX algorithm. 

 

Step 1. A pair of parents is supplied to the input of 

the algorithm. The starting position of the cycle is ran-
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domly selected from the first part of the parent chro-

mosome PA. 

Step 2. The gene occupying the starting position in 

PA is written into the first part of the child chromo-

some in accordance with its position. The gene occu-

pying the same position in the first part of the parent 

chromosome PB cannot be written into the child 

chromosome at the same position, so it is written into 

the child chromosome in accordance with its position 

in PA. The cycle continues until the gene occupying 

the starting position in PA is found in PB.  
Step 3. After the cycle is completed, the remaining 

undefined genes are copied from PB in accordance 
with their positions. 

Step 4. The second part of the child chromosome is 
generated randomly. 

Step 5. To form the second child, the parents are 

swapped, and Steps 1–5 of the algorithm are repeated. 

The crossing operators described above are univer-

sal for combinatorial optimization problems and gen-

erate the fittest solutions during the iterative evolu-

tionary process of the genetic algorithm. In applica-

tions, however, their local search capabilities turn out 

to be relatively small. 

The authors [12] introduced Combined Hierar-

chical Crossover (Combined HGA, cHGA) to solve 

the multiple traveling salesman problem. This crossing 

operator provides high local search efficiency by con-

sidering the distances between points in the main 

child-formation process and good population diversity 

due to different approaches used to form two children. 

The basic cHGA algorithm includes several steps 

as follows. 

Step 1. A pair of chromosomes PA and PB is sup-

plied to the input to the algorithm. The gene PAk is 

randomly selected from PA and written into the start-

ing position of the child chromosome. 

Step 2. Depending on the given search direction, 

two subsequent genes (PAk+1 and PBk+1) or two previ-

ous genes (PAk–1 and PBk–1) are selected from the par-

ent chromosomes. 

Step 3. The gene PAk is eliminated from the parent 

chromosomes. 

Step 4. The two distances cij between the genes se-

lected at Step 2 and the gene PAk are compared with 

each other. The gene with the smaller distance is writ-

ten into the child and becomes the new gene PAk . The 

algorithm continues from Step 2 while the length of 

the parent chromosome PA exceeds 1. 

According to [12], the children produced by this 

algorithm have different values of the two objective 

functions depending on the representation of the input 

data PA and PB. Two input data generation methods 

were proposed to obtain a well-balanced set of solu-

tions. 

The first child is formed (Fig. 8) by selecting the 

first parts of the parent chromosomes as the input data 

for the main algorithm. The algorithm produces the 

first part of the child chromosome, and its second part 

is randomly selected from the second parts of the par-

ent chromosomes. Most of the resulting children will 

have fairly balanced salesman routes but will not con-

tribute to reducing the total length of all routes.  

 

 

 
Fig. 8. The formation algorithm of the first child. 

 

The second child (Fig. 9) is formed using the pre-

liminary decoding of parent chromosomes into a sin-

gle-string representation as follows: the genes of the 

starting point 0 are added in the beginning of the first 

part of the chromosome and in the positions defined 

by the break points; the second part of the chromo-

some is eliminated. The decoded parent chromosomes 

are supplied to the input of the main algorithm.  

 
 

 
 

 
Fig. 9. The formation algorithm of the second child. 

 

The algorithm result is subjected to a rationaliza-

tion procedure: the “null” routes are eliminated (i.e., 

the right adjacent genes of the starting point 0 are 

moved to a randomly selected position to the right 
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along the chromosome). Finally, the result is encoded 

into the original two-part chromosome representation. 

Most children produced in this way will contribute to 

reducing the total length of all routes but will not con-

tribute to decreasing the degree of route imbalance. 

 

2.3. Selection and Mutation 

The selection operator chooses individuals with the 

highest value of the fitness function to form the set of 

individuals for crossover. The proposed algorithm uses 

binary tournament selection, the standard operator for 

the non-dominant sorting genetic algorithm.  

The search area of the optimal solution may be 

narrowed when hitting a local minimum. Mutation 

operators prevent this situation by editing child genes. 

The proposed algorithm involves four different muta-

tion operators [10, 13]: Insertion Mutation, Exchange 

Mutation, Inversion Mutation, and Scramble Mutation. 

All mutation operators have an equal probability of 

being called. 
 

2.4. NSGA-II 

We solve the problem under consideration using 

NSGA-II, the elitist Non-Dominated Sorting Genetic 

Algorithm II originally proposed in [14]; see Fig. 10. 

This algorithm demonstrates good results in mul-

ticriteria optimization. It involves two procedures: the 

fast non-dominated sort (FNDS) of the set of solutions

into fronts, which ensures a high convergence rate of 

the algorithm, and crowding-distance sort in the space 

of functionals, which ensures a good diversity of the 

population. 

Fast non-dominant sort consists in determining 

the rank r for each individual and combining individu-

als with the same rank into subsets ℱr (the fronts of 

rank r). 

Definition. A solution p is said to be dominant 

over a solution q if: 

1. p is not worse than q in terms of all functionals. 

2. p is strictly better than q in terms of at least one 

functional. ♦ 

For the bi-criteria optimization problem under 

study, we therefore have the following dominance 

condition of individual p over individual q: 

 
 

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )

( )

   

   ( ) ( ) ( ) .

f f f f

f

р q p q

p q pf f f q

  

   
         (10) 

For the sake of convenience, condition (10) will be 

written as the relation p ≺ q. 

The FNDS algorithm includes several steps as fol-

lows. 

Step 1. For each individual p of the population: 

 The list Sp = ∅ is initiated to include the popula-

tion individuals dominated by individual p. 

 The counter np = 0 is initiated for the population 

individuals dominating individual p. 

 
 

 

 
Fig. 10. The population optimization process in NSGA-II.



 

 
 

 
 

 
 

24 CONTROL SCIENCES  No. 1 ● 2024 

MATHEMATICAL PROBLEMS OF CONTROL  

 The dominance condition (10) is verified for 

each individual q of the population: 

o If p ≺ q, then individual q is added in the list 

Sp, i.e., Sp = Sp ∪ {q}.  

o If q ≺ p, then the counter np is incremented 

by 1, i.e., np = np + 1. 

 If np = 0, then individual p is written in the first 

non-dominant front, i.e., ℱ1 ∪ {p}. 

Step 2. The front counter i = 1 is initiated. 

Step 3. While ℱi ≠ ∅: 

 The list Q = ∅ is initiated to include the individ-

uals of the (i + 1)th front. 

 The list Sp is considered for each individual p ∈ 
ℱi: if nq – 1 = 0, then individual q ∈ Sp is written into 

the list Q, i.e., Q = Q ∪ {q}. 

 The front counter is incremented by 1, i.e., i = 

i + 1. 

 The ith front ℱi = Q is formed. 

The procedure continues until all fronts ℱr, r = 

1,..., rmax, are identified. 

Crowding-distance sort in the space of func-

tionals is necessary to select solutions within the same 

front. For each individual ℱr (i) ∈ ℱr, we calculate the 

value 

   
2

1

di ( ) ( )st   dist , r m r

m

i i


  

where  (ist )d m r i  is the distance to the mth func-

tional obtained as follows. 

Step 1. The solutions within the front ℱr of length l 

are sorted in ascending order of the values of the mth 

functional. Then the boundary solutions of the front 

satisfy the relations  

min(1) ,r mf  max( ) .r mfl   

Step 2. The desired distances for the boundary so-

lutions are assigned the maximum value 
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all intermediate solutions are determined by 
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NSGA-II (see Fig. 10) includes five steps as fol-

lows. 

Step 1. The initial parent population P0 of size N is 

formed randomly. Based on this population, an initial 

child population Q0 of size N is generated using the 

genetic operators of selection, crossing, and mutation. 

Elitism is introduced by comparing the current popula-

tion with the best solutions found previously. There-

fore, the process of forming subsequent populations 

will be different. 

Step 2. The parent and child populations are com-

bined into the set Rt = Pt ∪ Qt, which is divided into 

fronts Fr, r = 1,..., rmax, using fast non-dominated sort. 

Step 3. The N fittest individuals are selected from 

the set Rt to form the new parent population Pt+1. The 

fittest individuals are considered to be those with the 

smallest rank r. If the next front cannot be written en-

tirely in Pt+1, it undergoes crowding-distance sort in 

the space of functionals; the fittest individuals are 

those with the largest value of the crowding distance. 

Step 4. Based on the population Pt+1, the new child 

population Qt+1 is generated using the genetic opera-

tors of selection, crossing, and mutation. 

Step 5. The algorithm continues from Step 2 until 

reaching the terminal criterion (a given number of 

generations or a sufficient degree of population homo-

geneity). 

3. COMPUTATIONAL EXPERIMENTS AND THEIR 

RESULTS 

A simulation software tool was developed to or-

ganize computational experiments and investigate the 

influence of the crossing operator on the efficiency of 

the algorithm. This tool is used to: 

 specify the system state (the set {n} of delivery 

points and the number m of salesmen); 

 specify the algorithm parameters (the population 

size N, the number NGen of algorithm iterations, the 

number NRep of algorithm repetitions, the probability 

0 ≤ px ≤ 1 of calling the crossing operator, the proba-

bility 0 ≤ pm ≤ 1 of calling the mutation operator, and 

the seed of the pseudorandom number generator); 

 choose the genetic operators of crossing and mu-

tation used in the algorithm; 

 collect statistics across generations (in automatic 

mode) and visualize the final set of Pareto-optimal 

solutions; 

 visualize the final solution on an interactive map 

if the delivery points in the set are have geographical 

references; 

 create new datasets on the interactive map. 

The software tool was implemented using Python 

3.9.6 as the programming language. All computations 

were performed on a PC with AMD Ryzen 7 

5800X3D 4.70 GHz CPU and 64 GB RAM. 
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The following parameter values were selected for 

all computational experiments: N = 100, NRep = 1, 

px = 1, and pm = 0.05. The benchmarks berlin52, eli76, 

and rat99 [15–17] were used as datasets to compare 

the results of the algorithm with different crossing op-

erators. Note that the first point was taken as the start-

ing point (see all conditions in the table). 

 

The conditions of computational experiments 

Dataset 
The number 

of points, n 

The number of 

salesmen, m 

The number of  

iterations, NGen 

berlin52 52 5 1400 

eli76 76 7 1800 

rat99 99 7 2200 

 

The graphs in Fig. 11 show the final non-

dominated Pareto fronts for the corresponding da-

tasets. They represent the sets of possible solutions of 

the multiple traveling salesman problem. The abscissa 

axis corresponds to the total route length whereas the 

ordinate axis to the difference between the lengths of 

the longest and shortest routes. (Both values are di-

mensionless.) 

For all benchmark datasets, the Pareto fronts yield-

ed by the algorithm with cHGA have better results in 

terms of the joint minimization of the two objective 

functions compared to standard crossing operators. 

The evolution graphs of the minimum values of the 

two objective functions corresponding to the boundary 

individuals of the current non-dominated Pareto front 

were plotted to estimate the convergence rate of the 

algorithm with cHGA. The following pattern is evi-

dent for all benchmark datasets: at the first genera-

tions, the values of the objective functions decrease 

rapidly; then, the rate of change drops dramatically 

(Fig. 12). In a real last-mile delivery system, it is 

therefore possible to use the solution sets obtained in a 

small number of iterations to save computational 

(time) resources. 

  

 

 
Fig. 11. A comparative analysis of the final non-dominated Pareto fronts for different datasets: (a) berlin52 with m = 5, (b) eli76 with m = 7, and (c) rat99 

with m = 7.  
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Fig. 12. The evolution of objective function values for the rat99 dataset 

with m = 7.   

 

For example, we consider the Moscow–ICS dataset 

created using the interactive map of the software tool. 

For this dataset, the algorithm with n = 41, m = 5, and 

NGen = 200 yielded the solution demonstrated in 

Fig. 13. For visualization purposes, the Pareto-

efficient solution occupying the middle position in the 

final front of Pareto-optimal solutions is presented in 

Fig. 14. 

 

 

 
Fig. 13. The final non-dominated Pareto front for the Moscow-ICS 

dataset. 

 

 
Fig. 14. The solution visualized for the Moscow–ICS dataset.  

 

 

CONCLUSIONS 

This paper has considered the routing problem for 

a group of UAVs within a promising last-mile delivery 

system, formalized as a bi-criteria single-depot multi-

ple traveling salesman problem. As has been illustrat-

ed, the two conflicting objective functions should be 

optimized jointly. The genetic operators used have 

been described. A simulation software tool for this 

problem has been implemented based on NSGA-II, the 

elitist non-dominated sorting genetic algorithm.  

Computational experiments have been carried out 

to compare the efficiency of different crossing opera-

tors of the genetic algorithm when solving the bi-

criteria single-depot multiple traveling salesman prob-

lem. According to the experiments, combined hierar-

chical crossover demonstrates the best results in terms 

of the joint optimization of two objective functions. 

Also, the convergence rate of the algorithm with com-

bined hierarchical crossover has been studied. As it 

has turned out, the proposed algorithm produces ac-

ceptable solutions in a short time. 

REFERENCES 

1. Baur, S., Cargo Drones: A Potential Gamechanger in the Logis-

tics Industry, Roland Berger, 2022. URL: 

https://www.rolandberger.com/en/Insights/Publications/Cargo-

drones-A-potential-gamechanger-in-the-logistics-industry.html. 

(Accessed September 23, 2023.)  

2. Moadab, A., Farajzadeh, F., and Fatahi Valilai, O., Drone Rout-

ing Problem Model for Last-Mile Delivery Using the Public 

Transportation Capacity as Moving Charging Stations, Scien-

tific Reports, 2022, vol. 12, no. 1, pp. 1–16. 

3. Khoufi, I., Laouiti, A., and Adjih, C., A Survey of Recent  

Extended Variants of the Traveling Salesman and Vehicle 

https://www.rolandberger.com/en/Insights/Publications/Cargo-drones-A-potential-gamechanger-in-the-logistics-industry.html
https://www.rolandberger.com/en/Insights/Publications/Cargo-drones-A-potential-gamechanger-in-the-logistics-industry.html


 

 
 

 

 
 

MATHEMATICAL PROBLEMS OF CONTROL  

27 CONTROL SCIENCES  No. 1 ● 2024 

Routing Problems for Unmanned Aerial Vehicles, Drones, 

2019, vol. 3, no. 3, art. no. 66. 

4. Germanchuk, M.S., Lemtyuzhnikova, D.V., and Lukianen-

ko, V.A., Metaheuristic Algorithms for Multi-Agent Routing 

Problems, Control Sciences, 2020, no. 6, pp. 3–13. (In Rus-

sian.) 

5. Bektas, T., The Multiple Traveling Salesman Problem: an 

Overview of Formulations and Solution Procedures, Omega, 

2006, vol. 34, no. 3, pp. 209–219. 

6. Necula, R., Breaban, M., and Raschip, M., Tackling the  

Bi-criteria Facet of Multiple Traveling Salesman Problem with 

Ant Colony Systems, Proceedings of the IEEE 27th Interna-

tional Conference on Tools with Artificial Intelligence (ICTAI), 

Vietri sul Mare, 2015, pp. 873–880. 

7. Bolanos, R., Echeverry, M., and Escobar, J., A Multiobjective 

Non-dominated Sorting Genetic Algorithm (NSGA-II) for the 

Multiple Travelling Salesman Problem, Decision Science Let-

ters, 2015, vol. 4, pp. 559–568. 

8. Alves, R.M.F. and Lopes, C.R., Using Genetic Algorithms to 

Minimize the Distance and Balance the Routes for the Multiple 

Travelling Salesman Problem, Proceedings of the IEEE Con-

gress on Evolutionary Computation (CEC), Sendai, 2015, pp. 

3171–3178. 

9. Carter, A.E. and Ragsdale, C., A New Approach to Solving the 

Multiple Traveling Salesperson Problem Using Genetic  

Algorithms, European Journal of Operational Research, 2005, 

vol. 175, no. 1, pp. 246–257. 

10. Simon, D., Evolutionary Optimization Algorithms, New York: 

John Wiley & Sons, 2013. 

11. Gladkov, L.A., Kureichik, V.V., and Kureichik, V.M., Genet-

icheskie algoritmy (Genetic Algorithms), 2nd ed., Moscow: 

FIZMATLIT, 2010. (In Russian.) 

12. Shuaia, Y., Yunfengaand, S., and Kai, Z., An Effective Method 

for Solving Multiple Travelling Salesman Problem Based on 

NSGA-II, Systems Science & Control Engineering, 2019, vol. 

7, no. 2, pp. 108–116. 

13. Soni, N. and Kumar, T., Study of Various Mutation Operators 

in Genetic Algorithms, International Journal of Computer Sci-

ence and Information Technologies, 2014, vol. 5, no. 3, pp. 

4519–4521. 

14. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., A Fast and 

Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE 

Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, 

pp. 182–197. 

15. Benchmark Data for the Single-Depot Multiple Traveling 

Salesman Problem (Multiple-TSP), Iaşi: Alexandru Ioan Cuza 

University (UAIC). URL: https://profs.info.uaic.ro 

/~mtsplib/ (Accessed September 23, 2023.) 

16. TSPLIB. Symmetric Traveling Salesman Problem (TSP), Hei-

delberg: University of Heidelberg. URL:  http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/tsp/ (Accessed September 

23, 2023.) 

17. TSPLIB. Capacitated Vehicle Routing Problem (CVRP), Hei-

delberg: University of Heidelberg. URL: http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/vpr (Accessed September 

23, 2023.) 

 
This paper was recommended for publication  

by A.A. Lazarev, a member of the Editorial Board. 

  
Received May 15, 2023,  

and revised November 12, 2023. 

Accepted November 29, 2023. 

 
Author information 

Sosedov, Vladislav Aleksandrovich. Engineer, Trapeznikov In-

stitute of Control Problems, Russian Academy of Sciences, Mos-

cow, Russia  

 vladyslav.sosedov@gmail.com   

ORCID iD: https://orcid.org/0009-0001-0920-2579  

 
Cite this paper 

Sosedov, V.A., Combined Hierarchical Crossover in a Genetic 

Algorithm for Last-Mile Delivery: Efficiency Analysis. Control 
Sciences 1, 18–27 (2024). http://doi.org/10.25728/cs.2024.1.3  

Original Russian Text © Sosedov, V.A., 2024, published in 

Problemy Upravleniya, 2024, no. 1, pp. 23–34. 

 

 

This paper is available under the Creative Commons Attribution 

4.0 Worldwide License. 

 

Translated into English by Alexander Yu. Mazurov,  

Cand. Sci. (Phys.–Math.), 

Trapeznikov Institute of Control Sciences,  

Russian Academy of Sciences, Moscow, Russia 

 alexander.mazurov08@gmail.com 

 

https://profs.info.uaic.ro/~mtsplib/
https://profs.info.uaic.ro/~mtsplib/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/vpr
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/vpr
mailto:vladyslav.sosedov@gmail.com
https://orcid.org/0009-0001-0920-2579
http://doi.org/10.25728/cs.2024.1.3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

