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Abstract. This paper proposes a method for normalizing the input variables of fuzzy inference 

systems (FISs), which are used in assessing integrally the state of a complex object. The method 

involves piecewise functions: the variable’s range is divided into several intervals (the length of 

each interval depends the variable’s specifics), and a particular function is assigned to each 

interval. This function shows the patterns of the variable’s variations on the normalized scale 

relative to its variations on the absolute scale. The set of these functions for the entire range of 

the variable forms the normalization operator. When implementing the normalization operator, 

the functions are selected so that after transformation, all input variables positively correlate 

with the output variable. This approach simplifies the construction of FISs: the same terms of 

the input variables have the same semantic meaning after transformation. According to the 

simulation results, FISs with the proposed normalization method are adequate to similar FISs 

without the normalization of the input variables. The proposed normalization method allows 

reducing the number of rules in the FIS knowledge base if the input variables have an optimum 

of their influence on the value of the output variable. 
 

Keywords: fuzzy inference system, normalization, input variable, knowledge base, rule, integral 

assessment, information processing. 
 

 

INTRODUCTION  

Among other tasks, decision support systems are 

developed for integral assessment to rank a definite 

group of objects. Ranking serves for various purposes, 

e.g., to assess the creditworthiness of bank clients. 

Analysis of the publications [1–6] shows that fuzzy 

inference systems (FISs) are widely used to solve such 

problems. 
According to [1–9], many FISs aggregate parame-

ters with different measurement units, different ranges 
of assessment scales, different influences on the output 
variable, and different correlations with the values of 
the output variable. Therefore, to simplify the design 
of FISs, normalization methods were adopted in [1, 2, 
7–12]: the values of input variables were reduced to a 
single scale. As demonstrated therein, such methods 
allow using identical membership functions (MFs) 
when describing the input variables and making the 
FIS invariant to changing the absolute value range of 
the input variables: if necessary, the normalization op-
erator is subject to changes. Considering the results of 

[1, 2, 7–13], we divide all normalization methods into 
two classes: 

– Class 1 contains the methods in which a mathe-
matical function is used for transformation, and the 
normalized parameter interacts with the constants 
characterizing the normalized sample of values [1, 7–
13]. 

– Class 2 contains the methods in which an interval 
of the normalized values is assigned to an interval of 
the initial parameter values [2]. 

Among the restrictions of class 1 methods, we 
mention the difficulty of reducing the absolute values 
of the input variable with a nonlinear influence on the 
output variable to the normalized values with a linear 
influence on the FIS final value. Class 2 methods have 
restrictions as well: in the publications discussed 
above, the mathematical methods for transforming the 
absolute values of variables into the normalized ones 
on a given interval were not formally implemented; the 
transformation itself preserved the correlation with the 
output variable. Such restrictions complicate the de-
sign of rules to transform the values of the input pa-
rameters into the value of the output variable in FISs. 
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Thus, this paper aims at improving the methods for 
normalizing the values of input variables in fuzzy in-
ference systems.  

1. A SURVEY OF RELATED WORKS AND              

PROBLEM STATEMENT 

As described in [1, 2, 14], an FIS is implemented in 
the following stages: 

 forming an array of aggregated variables 

  : 1,iX x i n  , where each variable    has a scale 

;isc  

 forming an array of output variables 

 : 1,jY y j m  .  

Below, we will consider FISs with one output variable 
only. 

After the array of the input variables ix
 
is formed, 

an array of terms   : 1,ix
i kT t k r 

 
is specified for 

each variable. Each term ix

kt  
has a semantic name 

characterizing the state of the described parameter   . 

For each term ix

kt , an MF  μ ix

k ix  is formed, where μ ix

k
 

denotes an operator for transforming an input variable 

from a crisp value ix
 
to a fuzzy one ,fuzz ix . The MF 

value shows the level of confidence that a crisp value 
of a variable corresponds to a specific term. The MP 
domain is the interval [0, 1]: unity indicates that the 
value of the variable fully matches the semantic mean-
ing of the term, and zero indicates that the value of the 
variable does not match the semantic meaning of the 
term. Triangular and trapezoidal functions are often 
used to form MFs. 

The variable aggregation operator is implemented 

by forming rules. Often a rule is a logical statement 

written as (if A  B, ξ, where А denotes the set of 

initial conditions (antecedent), B  is a conclusion 

(consequent), and ξ gives the coefficient of confidence 

in the rule). (Further, let ξ = 1). When forming the set 

A, all value combinations for the terms of the input 

variables are enumerated, which form definite values 

of the terms of the output variables B. There are two 

by enumerating all term combinations for the array of 

input variables and specifying the target value of the 

output variables. It displays the pattern of the influ-

ence of the input variables values on the output varia-

bles. Generally, an FIS with MISO rules can be de-

scribed by 

 FIS 1, , iy F x x  , 

where 
FISF  denotes a fuzzy inference operator for the 

variables array  iX x . Figure 1a shows an example 

of an FIS aggregating the variables 1x  and 
2x . Ac-

cording to the monograph [1], variables can be sup-

plied to the FIS input in absolute or normalized meas-

urement units. In the latter case, the values measured 

on a single scale are supplied to the FIS input. The 

transition from absolute values хabs to the normalized 

units is performed using a normalization operator 
normf : 

 norm norm absx f x . 
Figure 1b presents the FIS aggregating the varia-

bles 
1x  and 

2x  subjected to normalization [1]. Here, the 

normalizer block implements the operator 
normf .  

Analysis of the publications [3–6, 14, 15] shows 

that the input variables often have the following influ-

ences on the integral assessment of the object’s state: 

– directly proportional (e.g., the income of a bor-

rower who wants to get a loan from a bank: the input 

variable positively correlated with the output value 

characterizing the reasonability of issuing a loan); 

– inversely proportional (e.g., the debt load of a 

bank client applying for the next loan: the input varia-

ble negatively correlates with the output value); 

– optimal: there is an interval of input parameter 

values (or even a point) beyond which, on the left or 

right, the value of the final assessment becomes worse 

(e.g., the borrower’s age). 

Additionally, the aggregated variables can have 

different measurement units, different ranges of values, 

and different levels of influence on the final result. In 

turn, their degrees of significance can depend on the 

variable value. If the rules are formed using expertise,  

structures of rules: Multiple 

Input Single Output (MISO) 

and Multiple Input Multiple 

Output (MIMO). Various logi-

cal operations “and,” “or,” and 

“not” can be used to aggregate 

input variables. This paper will 

study FISs based on MISO 

rules with the “and” operator to 

aggregate input variables. We 

form a knowledge base (KB)  

 
 

Fig. 1. The structure of models under study. 
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such a variety of properties of variables may cause 
technical errors in logical inference. To reduce the va-
riety of properties, the authors [1, 2, 8, 9] proposed 
normalizing the variables to the interval [0, 1]. Con-
sidering the results of [1, 2, 7–13], we identify normal-
ization methods based on the construction of a general 
pattern for transforming the variables (class 1 meth-
ods) or dividing the absolute value range of the varia-
bles into intervals and then assigning intervals on a 
normalized scale to each original interval (class 2 
methods). When applying class 1 methods, the maxi-
mum and minimum values of the parameter and statis-
tical indicators of the normalized sample can be con-
sidered. The papers [7, 10] described normalization 
methods based on the relation 

abs

norm abs max/x x x ,   (1) 

where abs
maxx  is the parameter’s maximum value in abso-

lute units. The authors [1, 11] proposed to consider the 

minimum value 
abs

minx : 

   abs abs abs

norm abs min max min/x x x x x   ,          (2) 

or 

   abs abs abs

norm abs max max min/x x x x x   .           (3) 

The following modifications of the relations (2), 
(3) were presented in [12]: 

abs
abs min

norm 1 2abs abs
max min

x x
x D D

x x


 


,                 (4) 

where D1 and D2 denote some constants. The paper 
[13] introduced a method for normalizing input varia-
bles with the operator 

 norm abs / σx x x  ,                     (5) 

where x  and   are the sample mean and the standard 

deviation in the normalized sample, respectively. Note 

that with the operator (5), the range of normx  does not 

fall into [0, 1], and the variable’s range depends on its 
values in absolute measurement units. This feature 
may cause additional difficulties when implementing 
FISs. According to the authors cited, such a relation is 
appropriate for transforming the data used to train 
fuzzy neural networks. The monograph [1] proposed 
methods based on the relations 

   abs abs abs
norm abs mean max min/x x x x x   ,           (6) 

where  abs abs
mean max min0.5x x x  . 

As noted in [1], the operators (1)–(4), (6) can be 
generalized to the straight-line equation 

norm absx kx b  ,         (7) 

where k and b denote some constants.  
Note that the methods described by (1)–(7) have 

the following common feature: it is difficult to consid-
er the influence of the normalized parameter on the 

value of the output variable depending on the value of 
this parameter. Also, these methods do not yield the 
optimum of the influence of the input parameter value 
on the output variable if it lies between the maximum 
and minimum absolute values of the variable. The non-
linear influence can be taken into account using class 2 
methods. In the monograph [2], certain intervals on the 
normalized scale were assigned to intervals on the ab-
solute scale of the parameter. Often, the same number 
of intervals are used relative to the middle of the nor-
malization axis. To illustrate this method, Table 1 
shows an example where the parameter 

abs abs
abs 0 5, ][x x x  is normalized to the interval 

norm norm
0 5,x x 

 
. 

Table 1 

Variable normalization: example 

Absolute value 

interval 

Normalized value 

interval 

Interval 

no. 

abs abs
0 1,x x 

 
 norm norm

0 1,x x 
 

 –2 

abs abs
1 2,x x 

 
 2

norm norm
1 ,x x 

 
 –1 

abs abs
2 3,x x 

 
 3

norm norm
2 ,x x 

 
 0 

abs abs
3 4,x x 

 
 4

norm norm
3 ,x x 

 
 1 

abs abs
54 ,x x 

 
 4 5

norm norm,x x 
 

 2 

 

According to the monograph [2], the normalization 

operator ensures the conditions 
abs abs

0 minx x , 

abs abs
5 maxx x , 

norm norm

0 minx x , and 
norm norm

5 maxx x : there is 

a positive correlation of the variables. Thus, the corre-
lation between the input and output variables does not 
change after the normalization described above. In ad-
dition, the monograph [2] suggested no analytical 
methods for transforming absolute values into the 
normalized ones; provided no recommendations on 
choosing the number of intervals to divide the axis of 
normalized values and the limits of these intervals; 
gave no explanations on the influence of input variable 
normalization on the accuracy of the resulting FIS 
compared to the original FIS (in which the variables 
are measured in absolute units). 

The method described in [16, 17], originally not 
designed for FISs, can be considered a development of 
the normalization procedure suggested in [2]. This 
method divides the normalized values of a variable 
into intervals with the indication of points (their limits) 
and assigns to the points (the limits of the normalized-
scale intervals) some values of the variable on the ab-
solute scale. The resulting pairs of points are used to 
construct a curve, implementing the transformation of 
a variable from one scale to another. The paper [17] 
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proposed selecting points to divide the interval of 

normalized values into parts: 0
norm0 ~ x , 0.25

norm0.25 ~ x , 

0.5
norm0.5 ~ x , 0.75

norm0.75 ~ x , and 
1
norm.1~ x  Some values of 

the variable on the absolute scale are assigned to them: 
0
absx , 0.25

absx , 0.5
absx , 0.75

absx , and 1
absx . The resulting trans-

formation operator is represented by a broken line con-

structed from the pairs of points  0 0
abs norm;x x , 

 0.25 0.25

abs norm;x x ,  0.5 0.5
abs norm;x x ,  0.75 0.75

abs norm;x x , and  1 1
abs norm;x x . 

However, the papers [16, 17] described no analytical 
methods for transforming the absolute values into the 
normalized ones. Moreover, similar to the method de-
scribed in [2], the values positively correlate before 
and after transformation: the type of correlation be-
tween the input and output variables remains the same.  

Thus, the methods for constructing FISs [1, 2, 14] 
and the ones for normalizing input variables [1, 2, 8–
13] have several restrictions. They relate to the proper-
ties of the input variables aggregated using FISs. 
Among such properties of input variables, we mention 
different measurement units, different ranges of values, 
different and (or) uneven levels of influence on the 
output variable, and different types of correlation with 
the output variable. Due to such properties of the vari-
ables, experts face difficulties when forming rules for 
the FIS knowledge base. 

Some of the restrictions are eliminated using nor-
malization methods. Such methods mainly transform 
various values of the input variables to a single scale. 
The disadvantages of the normalization methods often 
proceed from statistical indicators of the normalized 
samples of input variables values (usually, the maxi-
mum, minimum, and average values). The most uni-
versal properties of variable normalization are ob-
served for a method that assigns an interval on the 
normalized scale to intervals on the absolute values of 
the parameter. Therefore, we will improve this method 
below.  

2. IMPROVING THE NORMALIZATION METHOD            

FOR INPUT VARIABLES OF FUZZY INFERENCE SYSTEMS 

2.1 Proposed modifications 

To improve the approach described in the mono-
graph [2], we propose a normalization method based 

on an operator normf  for transforming the absolute val-

ues of an input variable into the normalized ones so 
that (1) the value of the output variable will not de-
crease with an increase in the normalized value of the 
input variable and (2) the value of the output variable 
will not increase with a decrease in the normalized 
value of the input variable. Assume that trapezoidal 

MFs are used to describe the input variables. Such an 
assumption is well-grounded: according to [1, 2, 14], 
this type of MFs is widespread in applications, and the 
corresponding MFs have crisp limits of the support 
and the core. (The crisp limits of the core and the sup-
port of MFs will be used below.) 

Within the proposed method, the normalization op-

erator normf
 
is implemented using a set of functions: a 

certain pattern norm,zf  is assigned to each zth interval of 

the absolute values absx  of an input variable. In other 

words, 

  

  

  

min 1

1 2

max max

norm,1 abs abs abs, abs.

norm,2 abs abs abs. abs.

norm

norm, abs abs abs. 1 abs.

 if   , , 

 if   , ,

...

 if   , .

i i

i i

z i i

f x x x x

f x x x x
x

f x x x x

 
   



 

(8) 

If the patterns norm,zf
 
for neighbor intervals are the 

same, the intervals are combined. The set of functions 
(8) is formed so that the minimum and maximum val-

ues of the normalized variable, 
min

normx  and 
min

normx , have 

the worst (maximum negative) and best (maximum 
positive), respectively, influences on the value of the 
output variable of the FIS. We propose implementing 

the operators norm,zf  as follows: 

1. Define the maximum and minimum absolute 

value of the variable abs.ix . 

2. Define the maximum 
max

normx  and minimum 
min

normx  values of this variable in relative units (in this 

paper, 
min

norm 0x   and max
norm 100x  ). 

3. On the absolute scale, define the interval limits 

z (for the set of functions (8), the points 
1abs.ix , 

2abs.ix

,…, 
maxabs. 1ix  ); on the relative scale, define their coun-

terparts (the point 
1norm,ix  corresponds to the point 

1abs.ix , etc.) in the following way:  

3.1. Considering the recommendations of [1], ex-
perts give the primary representation of a fuzzy input 
variable in the traditional form using trapezoidal MFs 
(in this paper, triangular MFs are studied as a special 
case of trapezoidal MFs: the core degenerates into a 
point). 

3.2. The interval limits are the limits of the MF 
cores of the variable’s primary fuzzy representation. 

3.3. Similar types of MFs are used to describe the 
variables after normalization. The interval limits are 
the points corresponding to the limits of the MF cores 
of the variable’s primary fuzzy representation. 

3.4. If the core of the term’s MF belongs to an in-
terval with the optimality domain, it is divided into 
two equal intervals. 
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4. For each interval of  , define the function 

 norm, abs. norm.z i if x x . 

5. Based on the set of functions norm,zf , construct 

the normalization operator (8). 
Following the monograph [1], we propose imple-

menting the functions norm,zf  as straight lines passing 

through two points: the limits of the intervals on the 
normalized and absolute scales. For example, let points 

1 and 2 for constructing the operator norm,1f  have the 

coordinates  
min

min

abs, norm,ix x  and  
1 1abs, norm,,i ix x , re-

spectively. Then the operator is given by 

   

   
ab

1 min

min 1 m mins in

norm norm
norm,1 abs

norm/

i i

i i i i i

f x x x

x x x x x

  


  


.             (9) 

Figure 2a shows the normalization operator (8) im-
plemented for the input variables positively correlating 
with the values of the output variable. The case of their 
negative correlation is illustrated in Fig. 2b. Finally, 
Fig. 2c corresponds to the situation in which the input 
variables have an optimum of their influence on the 
value of the output variable. 

The proposed modifications allow: 
– determining the number of intervals for dividing 

the normalized value axis based on the methods used 
to construct the MF of the FIS (it equals the number of 
pairs of the MF core limits if normalization applies to 
the variables positively or negatively correlating with 
the output variable, or plus 1 if one optimum affects 
the value of the output variable); 

– ensuring that after normalization, the input varia-
bles have the same correlation with the output varia-
ble; 

– considering changes in the degree of significance 
of the input variable’s influence on the output value of 
the FIS, depending on the variable’s value.  

 

2.2. Verification of the proposed modifications 

The proposed modifications of the normalization 
method were verified by mathematical modeling. Sev-
eral FISs based on the zero-order Takagi–Sugeno 
model were constructed. According to [18], a feature 
of such models is using constants to describe the MF 
of the output variable. The FISs under study had two 
input variables, х1 and х2, and one output variable у. 
Six experiments were carried out:  

– The variables х1 and х2 positively correlate with 
the variable у. 

– The variables х1 and х2 negatively correlate with 
the variable у. 

– The variables х1 and х2 have an optimum with re-
spect to the variable у. 

– The variable х1 has a positive correlation with the 
variable у; the variable х2, a negative correlation with 
the variable у.  

 

 
Fig. 2. Normalization operators for input variables of FISs: some 

examples. 

(a) 

(b) 

(c) 
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– The variable х1 has a positive correlation with the 

variable у; the variable х2, an optimum with respect to 

the variable у. 

– The variable х1 has a negative correlation with 

the variable у; the variable х2, an optimum with respect 

to the variable у. 

Within each experiment, two FISs were investigat-

ed: the FIS of type 1 (the variables х1 and х2 normal-

ized by the proposed method) and the FIS of type 2 

(the variables х1 and х2 processed without normaliza-

tion). The absolute values of the variables х1 and х2 

were measured in the range from 0 to 10 points; the 

values of the variables х1 and х2 after normalization, in 

the range from 0 to 100 points; the value of the varia-

ble y, in the range from 0 to 100 points. 

If a variable passed normalization, its MFs are 

shown in Fig. 3a. If a variable positively correlated 

with the variable y, its MFs are shown in Fig. 3b. If a 

variable negatively correlated with the variable y, its 

MFs are shown in Fig. 3c. If a variable had an opti-

mum with respect to the variable y, its MFs are shown 

in Fig. 3d (variant 1) and Fig. 3e (variant 2).  

The terms in Fig. 3 are described as follows. In Fig. 

3a: NB indicates a worst influence on the output varia-

ble; Z, a medium influence on the output variable; PB, 

a best influence on the output variable. In Fig. 3b–3e: 

NB indicates a low value; NM, a value closer to the 

average; Z, the average; PM, a value closer to a high 

value; PB, a high value. The output variable y is de-

scribed by three terms in the form of the constants 

0y
NBt  , 50y

Zt  , and 100y
PBt   points (low, average, 

and high values, respectively). In view of the mono-

graph [1], we assume that the partition-of-unity condi-

tion holds when constructing the MFs: for any crisp 

value of the variable ix , the terms covering the corre-

sponding segment of the crisp value axis have the 

grades of membership to the MFs adding up to 1. This 

condition can be written as  μ 1 ix
k i i

k

x x X   . 

Due to the expressions (8) and (9), the normaliza-

tion operators of the input variables are the following: 

 under a positive correlation with the variable 

y , 

 

 

 

 

 

norm,1 abs abs abs

norm,2 abs abs abs

direct
norm norm,3 abs abs abs

norm,4 abs abs abs

norm,5 abs abs abs

5 | 0 2,

7.5  5 | 2 6,

10  20 | 6 8,

30  180 | 8 9,

10  | 9 10;

f x x x

f x x x

x f x x x

f x x x

f x x x

   


   


    


   
   

     (10) 

 

 

 

 
 

Fig. 3. Membership functions of input variables. 

(a) 

(b) 

(d) 

(c) 

(e) 
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 under a negative correlation with the variable у, 

 

 

 

 

 

norm,1 abs abs abs

norm,2 abs abs abs

invers
norm norm,3 abs abs abs

norm,4 abs abs abs

norm,5 abs abs abs

10  100 | 0 1,

15  105 |1 3,

10  90 | 3 5,

7.5  77.5 | 5 9,

10  100 | 9 10;

f x x x

f x x x

x f x x x

f x x x

f x x x

     


    


     


    
     

   (11) 

 under an optimum with respect to the variable у 

(variant 1), 

 

 

 

 

 

norm,1 2 abs abs abs

norm,3 abs abs abs

norm,4 abs abs abs

norm,5 abs abs abs

opt.var1
norm norm,6 abs abs abs

norm,7 a

20  | 0 2,

40  40 | 2 2.5,

15  22.5 | 2.5 4.5,

40  90 | 4.5 4.75,

40  290 | 4.75 5,

f x x x

f x x x

f x x x

f x x x

x f x x x

f x

   

   

   

   

     

 

 

 

 

bs abs abs

norm,8 abs abs abs

norm,9 abs abs abs

norm,10 abs abs abs

30  240 | 5 6,

20  180 | 6 7,

12  124 | 7 9.5,

20  200 | 9.5 10;

x x

f x x x

f x x x

f x x x












    
     

     

        

 (12) 

 under an optimum with respect to the variable 

у (variant 2): 

 

 

 

 

 

 

norm,1 abs abs abs

norm,2 abs abs abs

norm,3 abs abs abs

norm,4 abs abs abs

opt.var2
norm,5 abs abs abs

norm

norm,6 abs

20
| 0 1.5,

3

20  20 |1.5 3,

40  80 | 3 3.5,

15  7.5 | 3.5 5.5,

20  20 | 5.5 6,

20 

f x x x

f x x x

f x x x

f x x x

f x x xx

f x

  

   

   

   

   

 

 

 

 

 

abs abs

norm,7 abs abs abs

norm,8 abs abs abs

norm,9 abs abs abs

norm,10 abs abs abs

220 | 6 6.5,

30  285 | 6.5 7.5,

40  360 | 7.5 8,

30  280 | 8 9,

10  100 | 9 10.

x x

f x x x

f x x x

f x x x

f x x x











   

     


    


    


    

 (13) 

In all experiments, the FISs of type 1 had the same 

surface (Fig. 4a). The other FIS parameters were as 

follows: 

– In experiment 1, the variables х1 and х2 in the FIS 

of type 1 were normalized using the operator (10). The 

variables х1 and х2 in the FIS of type 2 positively corre-

lated with the variable y (Fig. 4b). 

– In experiment 2, the variables х1 and х2 in the FIS 

of type 1 were normalized using the operator (11). The 

variables х1 and х2 in the FIS of type 2 negatively cor-

related with the variable y (Fig. 4c). 

– In experiment 3, the variables х1 and х2 in the FIS 

of type 1 were normalized using the operators (12) and 

(13). The variables х1 and х2 in the FIS of type 2 had 

an optimum with respect to the variable y (Fig. 4d). 

 

 

 
Fig. 4. Surfaces of FISs under comparison.  

 

– In experiment 4, the variables х1 and х2 in the FIS 

of type 1 were normalized using the operators (10) and 

(13), respectively. The variable х1 in the FIS of type 2 

positively correlated with the variable y, whereas the 

variable х2 in the FIS of type 2 had an optimum with 

respect to the variable y (Fig. 4e). 

– In experiment 5, the variables х1 and х2 in the FIS 

of type 1 were normalized using the operators (10) and 

(11), respectively. The variables х1 and х2 in the FIS of 

type 2 positively and negatively correlated, respective-

ly, with the variable y (Fig. 4f). 

– In experiment 6, the variables х1 and х2 in the FIS 

of type 1 were normalized using the operators (11) and 

(13), respectively. The variable х1 in the FIS of type 2 

negatively correlated with the variable y, whereas the 

variable х2 in the FIS of type 2 had an optimum with 

respect to the variable y (Fig. 4g). 

(c) 

(a) 

(b) 

(d) 
(e) 

(f) (g) 
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During the experiments, the variables were sup-

plied to the FIS input in the following values combina-

tions in the range from 0 to 10 points: 

– equal values of the variables with a step of 0.5 

points (22 values of each variable in total), 

– the values of the variable х1 with a step of 0.5 

points, and the fixed values of the variable х2 starting 

from 0, increased by 0.5 points for each subsequent 

series of the experiment (462 values of each variable in 

total). 

The error of the results was determined as the dif-

ference between the FISs of types 1 and 2: 

FIS 1 FIS 2
exp  , out,exp  , out,exp  ,Δ  т т

N w N w N wy y  ,         (14) 

where N denotes the experiment number; w is the 

number of the vector of values supplied to the FIS in-

put during the experiment; FIS 1
out,exp  ,

т
N wy

 
and FIS 2

out,exp  ,
т

N wy  

indicate the outputs of the FISs of types 1 and 2, re-

spectively. In experiments 1–6, it was established that 

there are no errors between the output values of the 

FIS of type 1 with the proposed normalization method 

and the FIS of type 2 without normalization. For ex-

plaining the reasons, the features of the FIS operation 

were analyzed.  

The FIS output is the accumulated result of activat-

ing the rules to construct the knowledge base. The re-

sult of each rule is determined by the grades of mem-

bership of the crisp values of the input variables to 

each term and the aggregation operators of their fuzzi-

fied values. In the case under consideration, the results 

of rule execution were processed without any changes, 

and the final FIS value was formed without any chang-

es as well. The changes were introduced when prepar-

ing the variables (before supplying them to the FIS 

input). 

Therefore, the FISs will operate without errors if 

the variables have the same values after the fuzzifica-

tion procedure, regardless of using the proposed nor-

malization method. This assertion was verified in a 

separate series of experiments. Below, we compare the 

values of the input variables after fuzzification for the 

MFs shown in Fig. 3a (the FISs with variables normal-

ization) and MFs shown in Fig. 3d (the FISs with a 

variable having an optimum of its influence on the fi-

nal result). 

In Fig. 3a, the MFs are given by:  

 

 

 

 

3а

3а 3а

3а

μ 1 | 0 10,

1 4
μ μ  |10 40, 

30 3

 μ 0 | 40,

NB

NB NB

NB

x x

x x x x

x x

   



     

  


   (15)

 

 

 

 

 

 

 

3а

3а

3а 3а

3

3

μ 0 | 0 10,

1 1
μ  |10 40,

30 3

μ μ 1 | 40 60, 

1
μ 3 | 60 90,

30

μ 0 | 90,

Z

Z

Z Z

а
Z

а
Z

x x

x x x

x x x

x x x

x x

   

    



   

    



 

      (16)

 

 

 

 

 

3а

3а 3а

3а

μ 0 | 60, 

1
μ μ 2 | 60 90,

30

μ 0 | 90.

PB

Z PB

PB

x x

x x x x

x x

  



    

  


   (17)

 
In Fig. 3d, the MFs are given by: 

 

 

 

 

3г

3г 3г

3г

μ 1 | 0 0,5, 

2 4
μ μ  | 0,5 2,

3 3

μ 0 | 2, 

NB

NB NB

NB

x x

x x x x

x x

   



     

  
  

 (18)

 

 

 

 

 

 

 
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3г

3г 3г

3г

3г

μ 0 | 0 2, 

2 1
μ  | 2 6,

3 3

μ μ 1 | 2 2,5,

1 1
μ 2  | 2,5 4,5, 

2 4

μ 0 | 4,5, 

NM

NM

NM NM

NM

NM

x x

x x x

x x x

x x x

x x

   

    



   

     



 

 (19)

 

 

 

 

 

 

 

3г

3г

3г 3г

3г

3г

μ 0 | 2,5,

1 1
μ 1 | 2,5 4,5, 

2 4

μ μ 1 | 4,5 5, 

μ 6 | 5 6, 

μ 0 | 6,

Z

Z

Z Z

Z

Z

x x

x x x

x x x

x x x

x x

  

    



   


    


 


    (20)

 

 

 

 

 

 

 

3г

3г

3г 3г

3г

3г

μ 0 | 5, 

μ 5 | 5 6,

μ μ 1 | 6 7,

2 4
μ 3  | 7 9,5,

5 5

μ 0 | 9,5,

PM

PM

PM

PM

PM

PM

x x

x x x

x x x

x x x

x x


 


   


   

     



 

   (21) 

 

 

 

 

3

3 3

3
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2 4
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d
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d d
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d
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

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
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

   (22) 
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Also, note the semantic equivalence of the following 

terms in Figs. 3a and 3d: 
3 3a dNB NB , 

3 3a dNB PB ,
 

3 3a dZ NM , 3 3a dZ PM , and 
3 3a dPB Z . The val-

ues of the input variables are given in Table 2.  

For clarity, the fuzzified values of the input varia-

bles normalized by the proposed method are highlight-

ed in gray. 

With the semantic equivalence of the terms, the er-

rors using a formula similar to (14) were determined as 

follows. First, columns 3 and 7, as well as 4 and 6, 

were summed elementwise. Then: 

– From the elementwise sum of columns 3 and 7, 

the corresponding elements of column 8 were subtract-

ed. 

– From the elementwise sum of columns 4 and 6, 

the corresponding elements of column 9 were subtract-

ed. 

– From the elements of column 5, the correspond-

ing elements of column 10 were subtracted. 

These operations yielded arrays with zero ele-

ments. The results  of  such experiments with  the MFs  

shown in Figs. 3b, 3c, and 3e were similar. Under the 

experiment restrictions, such an accuracy was achieved 

because the interval limits on the normalization opera-

tor graph coincided with the points of the MF cores for 

the terms of the normalized input variables. 

Due to the proposed modifications, six types of dif-

ferent FISs (Figs. 4b–4g) were replaced by one type of 

FIS (Fig. 4a). Experiment 3 showed a 64% reduction 

in the number of rules (9 rules in the FIS of type 1 vs. 

25 rules in the FIS of type 2). Experiments 5 and 6 

showed a 40% reduction in the number of rules (9 

rules in the FIS of type 1 vs. 15 rules in the FIS of type 

2). In experiment 3, both variables aggregated had one 

optimum of the influence on the value of the output 

variable; in experiments 5 and 6, only one variable had 

an optimum of the influence on the value of the output 

variable. 

In addition, the time to form the rule bases was 

compared for the FISs of types 1 and 2 in experiments 

2–6. Such a comparison was not carried out in experi-

ment 1: the knowledge bases of the FISs of types 1 and  

 

Table 2  

Values for the terms of MFs in Figs. 3a and 3d 
 

 

Input values Fuzzified values of input variables: 

1 2 3 4 5 6 7 8 9 10 

Without nor-

malization 

Normalized 

using operator 

(12) 

(18) – 

 3μ d
NB x  

(19) – 

 3μ d
NM x

 

(20) – 

 3μ d
Z x  

(21) – 

 3μ d
PM x

 

(22) – 

 3μ d
PB x  

(15) – 

 3μ a
NB x  

(16) – 

 3μ a
Z x  

(17) –

 3μ a
PB x  

0.5 10 1 0 0 0 0 1 0 0 

1 20 0.667 0.333 0 0 0 0.667 0.333 0 

1.5 30 0.333 0.667 0 0 0 0.333 0.667 0 

2 40 0 1 0 0 0 0 1 0 

2.5 60 0 1 0 0 0 0 1 0 

3 67.5 0 0.75 0.25 0 0 0 0.75 0.25 

3.5 75 0 0.5 0.5 0 0 0 0.5 0.5 

4 82.5 0 0.25 0.75 0 0 0 0.25 0.75 

4.5 90 0 0 1 0 0 0 0 1 

5 90 0 0 1 0 0 0 0 1 

5.5 75 0 0 0.5 0.5 0 0 0.5 0.5 

6 60 0 0 0 1 0 0 1 0 

6.5 50 0 0 0 1 0 0 1 0 

7 40 0 0 0 1 0 0 1 0 

7.5 34 0 0 0 0.8 0.2 0.2 0.8 0 

8 28 0 0 0 0.6 0.4 0.4 0.6 0 

8.5 22 0 0 0 0.4 0.6 0.6 0.4 0 

9 16 0 0 0 0.2 0.8 0.8 0.2 0 

9.5 10 0 0 0 0 1 1 0 0 

10 0 0 0 0 0 1 1 0 0 
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2 contain the same rules. For each group of the FISs 

of types 1 and 2, five rule bases were formed. As a 

result, the rule base formation time when using the 

FIS of type 1 instead of the FIS of type 2 was:  

 in experiments 2 and 5, by approximately 

17% smaller, due to various types of correlations be-

tween the input variables and the output variable (no 

need for the expert to compare the semantic value of 

the term describing the input variable range and its 

influence on the final result); 

 in experiments 4 and 6, by approximately 

37% smaller, due to the number of rules in the 

knowledge base of the FIS of type 1 (9 rules) and the 

FIS of type 2 (15 rules); 

 in experiment 3, by approximately 58% 

smaller, due to the number of rules in the knowledge 

base of the FIS of type 1 (9 rules) and the FIS of type 

2 (25 rules). 

Thus, the average reduction in the knowledge base 

formation time over the entire series of experiments 

3–6 was about 35%.  

3. AN EXAMPLE OF IMPLEMENTING THE PROPOSED 

MODIFICATIONS  

As an example, consider a simplified FIS for ranking 

bank clients by creditworthiness. The decision on issuing a 

loan is based on three parameters: 

 х1, the borrower’s monthly income, ranging from 

15 to 100 thousand RUB. This variable positively corre-

lates with the output variable: the higher the person’s in-

come is, the more likely he/she will get a loan; 

 х2, the borrower’s share of monthly payments for 

serving the current loans. It is measured as a percentage of 

his/her earnings, ranging from 0 to 60%. The greater the 

person’s share of current payments is, the less likely he/she 

will get a new loan; 

 х3, the borrower’s age, ranging from 14 to 85 

years. The best interval of this variable is between 35 to 45 

years: at this age, a person has the highest “life” stability in 

terms of income and health. 

The purpose of the experiment was to compare the re-

sults yielded by model 1 (with the proposed normalization 

method), model 2 (without normalization of the input vari-

ables), and model 3 (with the normalization method de-

scribed in [2]: the values of the input variables were divid-

ed into intervals, and an interval on the normalized scale 

was assigned to each interval on the absolute axis). The 

models were FISs with three inputs (the variables х1, х2, 

and х3) and one output (the variable y). The structure of 

models 1 and 3 is shown in Fig. 5a; the structure of model 

2, in Fig. 5b. 
In model 1, the variables х1, х2, and х3 were described 

by the MFs shown in Fig. 3a. In model 2, the variables х1, 

х2, and х3 were described by the MFs shown in Figs. 6a–6c. 

 

 
Fig. 5. The structure of studied models. 

 

 
 

   

 
Fig. 6. Membership functions of input variables for studied models. 

 
In model 3, the variables х1 and х2 were described by the 

MFs shown in Fig. 3a; the variable х3, by the MFs shown in 

Fig. 6d. The semantic meanings of the terms in model 1 

corresponded to those in Fig. 3a. The semantic meanings of 

the terms in models 2 and 3 corresponded to those in Fig. 

3b–3d. The term set {NB, NM, Z, PM, PB}, where 

~ 0,NB  ~ 25NM , ~ 50Z , ~ 75PM , and ~ 100PB  

points, was used to describe the output variable y. The term 

values of the output variable in all models were similar to 

those of the models of Section 2. The meaning of the term 

NM was “closer to the average”; PM, “closer to a high val-

ue.”  

The normalization operators for the input variables of 

model 1 were described by the following relations: 

– for the variable х1, 

   

 

   

     

 

norm,1 1 1 1

norm,2 1 1 1
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norm,4 1 1 1

norm,5 1 1 1
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4 / 3   | 30 45,

6 / 7   150 / 7 | 45 80,

0.5  50 | 80 100; 
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

   
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

   

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– for the variable x2, 

 
 
 

norm,1 2 2 2

2,norm norm,2 2 2 2

norm,3,4,5 2 2 2

2  100 | 0 5,          

1.2  96 | 5 30,      

2  120 | 30 60;

f x x x

x f x x x

f x x x

     


     
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– for the variable х3, 

 

 

 

 

 

 

 

norm,1 3 3 3

norm, 2,3 3 3 3

norm,4 3 3 3

norm,5 3 3 3
3,norm

norm,6,7 3 3 3

norm,8 3 3 3

norm,9 3 3

2.5  35 |14 18,

5  80 |18 28,

30
60 | 28 35,

7

2  20 | 35 40,

2  180 | 40 60,

4  300 | 60 65,

3  23
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f x x x

f x x x

f x x xx
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f x x
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 

3

norm,10 3 3 3

5 | 65 75,

1  85 | 75 85. 

x

f x x x














 


    

 

The normalization operators for the input variables of 

model 3 were implemented considering the method de-

scribed in [2]. Table 3 compares the intervals of the param-

eter values in absolute and normalized units. 
 

Table 3 

Variable normalization for model 3 

Variable and 

its measure-

ment unit 

Absolute-value 

 intervals 

Normalized-value 

intervals 

х1 (income, 

thousand 

RUB) 

115 18x   [0, 10]
 

118 30x   [10, 40]
 

130 45x   [40, 60]
 

145 80x   [40, 90]
 

180 100x   [90, 100]
 

х2 (the share 

of monthly 

payments on 

current loans, 

% of income) 

20 5x   [0, 10]
 

25 30x   [10, 40]
 

230 40x   [40, 60]
 

240 55x   [40, 90]
 

255 60x   [90, 100]
 

х3 (age, 

years) 

314 18x   [0, 2.5]
 

318 24x   [2.5, 20]
 

324 28x   [20, 27]
 

328 35x   [27, 46]
 

335 45x   [46, 54]
 

345 60x   [54, 73]
 

360 65x   [73, 80]
 

365 75x   [80, 97.5]
 

375 85x   [97.5, 100]
 

 

Various value combinations of the variables х1, х2, and 

х3 were supplied to the input of the studied models: 100 

different combinations of the absolute values in total. The 

values were random numbers between the maximum and 

minimum values of the corresponding parameter. The re-

sults yielded by models 1, 2, and 3 are shown in Figs. 7a, 

7b, and 7c, respectively.  

According to the experiment results, the total absolute 

error between models 1 and 2 is approximately 0 points; 

 

 

 
Fig. 7. Client’s creditworthiness: experiment results. 

 

(a) 

(b) 

(c) 
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between models 2 and 3, approximately 0 points. “Approx-

imately” means that the maximum error value in the exper-

iments did not exceed 10
-13

. Thus, the models yield almost 

the same output values. Such an accuracy was achieved due 

to normalizing the variables of models 1 and 2 similar to 

the experiment of subsection 2.2. (The results of this exper-

iment are shown in Figs. 4a–4g.) The experiment carried 

out confirms the reliability of the proposed normalization 

method in the formation of model 1. The knowledge bases 

of models 2 and 3 contain 45 rules each; the knowledge 

base of model 1, 27 rules. Consequently, with the proposed 

modifications, model 1 has the same accuracy of calcula-

tions under a smaller (by 40%) number of rules in the 

knowledge base.  

Similar to the previous experiment (see Section 2), the 

knowledge base formation time was compared for the FISs 

in models 1 and 2. (Model 3 was not considered due to the 

same rules as in model 2.) By analogy, five knowledge ba-

ses were formed for the FISs of models 1 and 2. As a result 

of the comparison, it was found that the knowledge base 

formation time of model 1 is by approximately 47% small-

er than that of model 2. This difference can be explained as 

follows. The knowledge base of model 2 contains more 

rules compared to model 1 (45 vs. 27). Also, all input vari-

ables in model 2 have different types of correlation with the 

output variable. 

4. DISCUSSION OF THE RESULTS 

The proposed approach for transforming the val-

ues of input variables can be implemented using soft-

ware methods: it reduces to constructing an array of 

straight-line equations with two given points. Accord-

ing to the experimental evidence of this paper, if the 

variable under normalization has an optimum of the 

influence on the final result, the number of production 

rules in the FIS knowledge base will be reduced. As is 

known, the formation of production rules consumes 

much effort, often manually performed by an expert. 

Thus, the proposed modifications allow decreasing 

the labor costs of expert groups when forming 

knowledge bases. Here, an additional difficulty for 

experts is caused by different properties of the input 

variables due to the variety of ranges, measurement 

units, and influences on the value of the output varia-

ble. Under such a variety, an expert has to remember 

the specifics of each variable, analyzing the input var-

iables more carefully during rules formation. Accord-

ing to the paper [19], the increased concentration of 

person’s attention leads to rapid fatiguability, nega-

tively affecting the number of mistakes allowed. 

Eliminating mistakes is time-consuming. With the 

proposed modifications, the normalized variables 

have a single range and the same correlation with the 

output variable. Such homogeneous properties of the 

input variables simplify the process of forming pro-

duction rules. 

Despite the introduction of additional mathemati-

cal operations, the experiments have not revealed a 

significant decrease in the computing performance of 

the hardware means of the FISs under consideration. 

This is due to the large computing power reserve of 

modern computers. The proposed modifications have 

a wide application area and are intended to implement 

expert systems for the integral assessment of a com-

plex object. Therefore, the increasing computational 

cost can be considered insignificant compared to the 

resulting simplification of the knowledge base for-

mation process. As is known, this process is mainly 

performed directly by experts. In the experiments of 

Sections 2 and 3, less time was spent on FIS 

knowledge base formation using the proposed modifi-

cations (on average, by approximately 37% and 47%, 

respectively) than on FIS knowledge base formation 

without normalization. 

As follows from the monograph [1], the curse of 

dimensionality is a problem of FIS construction. More 

specifically, the number of rules in the knowledge 

base strongly depends on the number of variables 

     and the number of terms       describing each 

variable. For example, if the same number of terms is 

used to describe all input variables, then the number 

of MISO rules is given by            
    . The 

negative influence of the curse of dimensionality can 

be decreased by developing modifications that will 

reduce the number of rules in the knowledge base 

while maintaining the accuracy of FISs. According to 

the experimental evidence of this paper, the proposed 

modifications allow reducing the number of rules in 

the knowledge base depending on the experiment 

conditions: by 40% in the experiment on the borrow-

er’s creditworthiness (Section 3) and in experiments 5 

and 6 (Section 2); by 64% in experiment 3 (Section 

2). 

CONCLUSIONS 

This paper has proposed a method for normalizing 

the input variables of fuzzy inference systems. The 

method transforms the absolute values of input varia-

bles to a single range of values in normalized units.  

Note that the minimum value of the normalized 

variable has the worst influence on the output parame-

ter, whereas the maximum value of the normalized 

variable has the best influence on it. The method di-

vides the variable’s range into a sequence of intervals. 

Then a pattern is formed for each interval to transform 

the absolute values of the parameter to the normalized 

ones. The normalization operator on a given interval 
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is implemented by constructing a straight line with 

two given points. According to the modeling results, 

under the specified restrictions, the FIS models with 

the proposed normalization method are adequate to 

the FIS models without normalization of the input 

variables. The proposed normalization method allows 

reducing the number of rules in the knowledge base 

depending on the experiment conditions: by 40% in 

the experiment on the borrower’s creditworthiness 

(Section 3) and in experiments 5 and 6 (Section 2); by 

64% in experiment 3 (Section 2). A common property 

of fuzzy inference systems in these experiments has 

been the presence of input variables with an optimum 

of the influence on the value of the output variable. In 

the experiments presented above, less time has been 

spent on FIS knowledge base formation using the 

proposed modifications (on average, by approximate-

ly 37% and 47%, respectively) than on FIS 

knowledge base formation without normalization. 

The proposed modifications open up opportunities 

for developing information processing methods for 

decision support systems of various purposes. 
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