
S  urveys 

 

 

 
 

 

2 CONTROL SCIENCES   No. 4 ● 2021 

 DOI: http://doi.org/10.25728/cs.2021.4.1 

 

NATURAL COMPUTING WITH APPLICATION TO RISK MANAGEMENT  

IN COMPLEX SYSTEMS 
 

A.A. Shiroky and A.O. Kalashnikov  
 

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia 
 

 shiroky@ipu.ru,  aokalash@ipu.ru 

 
 

Abstract. This paper surveys natural computing models and methods with application to risk 

management in complex systems. The equivalence of risk minimization and effective control 

problems is shown. The general risk management problem is stated for complex systems under 

uncertainty. The structure of fundamental and applied risk management problems is described. 

The well-known natural computing methods are briefly considered with application to risk 

management by the criteria of formalism, universality, and learning capability. The scientific 

community’s preferences in natural computing models and methods for solving different classes 

of risk management problems are analyzed. Some promising approaches are outlined, which are 

currently underinvestigated according to the authors’ opinion. 
 

Keywords: risk management, effective control problem, natural computing.  

 

 

INTRODUCTION  

Many control problems for complex systems can 

be reduced to assessing and minimizing risks of the 

controlled system or interpreted in these terms. Risk 

management is an integral problem involving subprob-

lems, including identification, monitoring, forecasting, 

optimization, etc. Effective solutions are impossible 

under continuously circulating volumetric data flows 

without building sufficiently complex models of con-

trolled systems and applying adequate computational 

methods. The real dynamic systems for which such 

problems are considered are open. Hence, the methods 

used should adapt the models to a continuously chang-

ing (particularly unpredictable) environment. 

In this regard, an analogy with the processes in liv-

ing nature suggests itself: living organisms permanent-

ly struggle for survival in a variable environment caus-

ing both predictable and unpredictable threats. Analy-

sis of the behavioral models of living organisms, 

group control structures, and protection mechanisms 

against external threats seems to be very promising 

due to the proven operability of such models (there are 

many examples in nature) and their high effectiveness 

achieved in the course of evolutionary processes. At 

the moment, natural computing is an actively develop-

ing field of science that combines element connectivi-

ty, group behavior, and emergence. In the book [1], 

the term “natural computing” was defined as an area 

of research that studies models and computational 

methods inspired by nature and considers the phenom-

ena occurring in nature from the information pro-

cessing viewpoint. 

Many branches of natural computing (e.g., artifi-

cial neural networks) are now at their peak of popu-

larity; others (e.g., bacterial and DNA computing) are 

relatively little investigated. This paper surveys the 

main known classes of natural computing algorithms 

and their application to risk management. Note that 

describing the approaches themselves is not the goal 

of the authors. 

Further presentation is organized as follows. In 

Section 1, the general risk management problem is 

stated for complex systems under uncertainty, and its 

equivalence to the effective control problem is shown. 

Section 2 considers fundamental and applied risk 

management problems for complex systems, identify-

ing those solved by natural computing methods. In 

Section 3, we suggest possible classification bases of 

natural computing, highlighting the ones important for 

applying the described algorithms and methods to risk 

http://doi.org/10.25728/cs.2021.4.1
mailto:shiroky@ipu.ru
mailto:aokalash@ipu.ru


 

 
 

 

 
 

SURVEYS 

 

3 CONTROL SCIENCES   No. 4 ● 2021 

management in complex systems. Section 4 overviews 

well-known natural computing methods and algo-

rithms and classifies them by the bases selected in 

Section 3. Finally, Section 5 outlines some promising 

approaches currently underinvestigated according to 

the authors’ opinion. 

1. RISK MANAGEMENT IN COMPLEX SYSTEMS      

UNDER UNCERTAINTY: GENERAL PROBLEM STATEMENT 

In this paper, complex systems are systems with an 

infinite variety of responses to external actions. In the 

most general statement, the control problem is to find 

control actions transferring a complex system to a tar-

get state. Such control actions are called effective. 

Formally, this problem can be written as follows. 

Let U be the set of control actions, and let Q and Θ 

be the sets of system states and environment’s states, 

respectively. Assume that the system state q ∈ Q is 

uniquely determined by the environment’s state and 

control actions applied: q = q(u, θ), where u ∈ U and 

θ ∈ Θ. We introduce a functional K = K(u, q, θ) = 

= K(q(u, θ)), further referred to as the optimality crite-

rion, which depends on the control action u, the sys-

tem state q, and the environment’s state θ. The prob-

lem is finding a globally optimal control action u* ∈ U 

such that 
*( , , ) max ( , , ).u UK u q K u q               (1) 

In the degenerate case, when the controller 

“knows” the actual states of the controlled system 

q
0
 ∈ Q and environment θ0 ∈ Θ, the optimality criteri-

on is a function of one variable, and problem (1) re-

duces to: 

 K(u*, q
0
, θ0) = max

u ∈ U
K(u, q

0
, θ0).             (2) 

Suppose that there exists a set of (nonunique) vari-

ables (u*, q*, θ*) for which 

( *, *, *) maxmaxmax ( , , )
u U q Q

K u q K u q
  

    

(the perfect statement). 

The function 

 φ(u, q, θ) = K(u*, q*, θ
*) – K(u, q, θ),  

representing the difference between the maximum and 

current values of the optimality criterion (for some u, 

q, and θ), will be called the loss function. Clearly, 

min
u ∈ U

φ(u, q, θ)  = K(u*, q*, θ*) – max
u ∈ U

K(u, q, θ). 

In other words, maximization of the optimality criteri-

on is equivalent to minimization of the loss function. 

In the deterministic case, the equivalence holds as 

well: 

min
u ∈ U

φ(u, q
0
, θ0)= 

= K(u*, q*, θ
*) – max

u ∈ U
K(u, q

0
, θ0).      (3) 

In real problem statements, complete awareness is 

rare, mainly occurring in technical systems control. As 

a rule, the controller has incomplete and (or) unrelia-

ble information about the states of the controlled sys-

tem and environment. Hence, to solve the problem, the 

uncertainty must be eliminated somehow. For exam-

ple, it is possible to choose the most probable or least 

favorable states, or act differently; see the paper [2]. 

Let u ∈ U be a fixed control action. We define an 

uncertainty elimination operator ℑ: the result of apply-

ing it to the optimality criterion will depend on the 

chosen control action u only: 

𝔎(u) = ℑK(u, ⋅, ⋅). 

By analogy with problem (2), we find a globally 

optimal control action u* that will maximize the opti-

mality criterion under uncertainty: 

 𝔎(u*) = max
u ∈ U

𝔎(u).                   (4) 

We introduce a real-valued risk function 

ρ(u) = 𝔎(u*) – 𝔎(u). 

Generally, risk is often defined as a system param-

eter and a property of a controller (particularly, a deci-

sion-maker) to decide under uncertainty, which can 

cause both undesirable (dangerous) and significantly 

beneficial consequences. (For example, see the paper 

[3].) Within the problem statement under study, we 

introduce the absolute maximum of the optimality cri-

terion. Therefore, there can be no beneficial conse-

quences, and the values ρ(u) are interpreted as an un-

desirable risk due to using the control action u. By 

analogy with (3), we pose the risk minimization prob-

lem: 

   *

   
ρ  =minρ

u U
u u


.                     (5) 

Obviously, 

   *

       

 = Argmax = Argminρ
u U u U

u u u
 

K .             (6) 

Thus, in the case of complex systems control under 

uncertainty, maximization of the optimality criteri-

on (4) is equivalent to minimization of the risk (5): 

the identity (6) holds. 

2. THE STRUCTURE OF RISK MANAGEMENT PROBLEMS 

FOR COMPLEX SYSTEMS 

Without loss of generality, the risk management 

problem for complex systems (see the statement in 

Section 1) can be decomposed into several particular, 

sequentially arising problems. 

First, to determine the components of the system 

under study and its operating environment, it is neces-

sary to solve the identification problem. Then, for the 

identified objects, it is necessary to determine a refer-



 

 
 

 

 
 

SURVEYS 

 

4 CONTROL SCIENCES   No. 4 ● 2021 

ence model of their behavior, i.e., solve the modeling 

problem. Next, it is necessary to compare the behavior 

of these objects with the reference model to detect 

anomalies in the latter. Finally, it is required to predict 

the situation considering the anomalies detected in the 

previous step. 

A general solution of the risk minimization prob-

lem is based on solving the four problems mentioned. 

Note that these problems do not depend on the essence 

and structure of the system under study. At the same 

time, to build a technology for their solution, it is nec-

essary to consider the subject area specifics, passing to 

applied and technological risk management problems. 

There are four classes of such problems; see Fig. 1. 

Let us correlate the fundamental and applied risk 

management problems for complex systems (Fig. 1). 

When solving the fundamental problem of objects 

identification, we determine their most essential pa-

rameters. The set (e.g., Cartesian product) of the rang-

es of all objects parameters in the model is the state 

space of the system and its environment. Such a space 

is constructed by solving the applied parameterization 

problem. 

Different objects of the system and its environment 

can exhibit different behavior. Therefore, to start solv-

ing the fundamental problem of behavior modeling, it 

is first necessary to solve the applied problem of clas-

sifying objects of the controlled system. 

 

 

 

Fig. 1. The hierarchical structure of risk management problems for complex systems. 

 

The fundamental problems of identifying behav-

ioral anomalies and predicting the situation are associ-

ated at the application level with algorithms for classi-

fication, behavior modeling, anomaly detection, and 

prediction. In risk management, they are used togeth-

er. At the same time, the development of decision-

making algorithms is a separate applied problem that 

depends on the subject area but, as a rule, not on the 

implementation of other algorithms. 

The natural computing algorithms and methods 

considered below are intended for solving the entire 

spectrum of the applied problems of classification, 

behavior modeling, anomaly detection, and prediction. 

From the authors’ viewpoint, a good method should 

suit any of these problems, including the development 

of algorithms for application software. Further consid-

erations will rest on this premise. 

3. CLASSIFICATION OF NATURAL COMPUTING MODELS 

AND METHODS 

When classifying natural computing, researchers 

often select as a basis the biological process (biologi-

cal evolution, brain activity, sensory organs activity, 

etc.) underlying the algorithm or model of computa-

tions. This basis is convenient since it separates well 

the classes of algorithms. Its disadvantage lies in not 

answering the question: which problems can be solved 

by different classes of algorithms? 

Another approach to classifying natural computing 

models and methods is selecting the principle of algo-

rithm development as a basis. In the survey [4], all 

natural computing algorithms were divided into evolu-

tionary, swarm, and ecological ones. Note that these 



 

 
 

 

 
 

SURVEYS 

 

5 CONTROL SCIENCES   No. 4 ● 2021 

classes overlap: for example, artificial immune net-

works have characteristic features inherent in both 

swarm and evolutionary algorithms. 

When considering natural computing models and 

algorithms with application to risk management in 

complex systems, it seems reasonable to select the 

classification bases corresponding to the specifics of 

problem (6). From the authors’ viewpoint, the specif-

ics are the variety of responses of such systems to ex-

ternal actions, not described by a finite set. Under un-

certainty, the set of external actions Θ is not fully 

identified. Standard optimization techniques will only 

work in the identified part of this set. At the same 

time, a very important task is to minimize the risk in 

the event of new (previously unpredictable) external 

actions. 

Considered within a single paradigm, the techno-

logical problem of developing algorithms and software 

requires a universal approach. In other words, the cho-

sen approach should solve all applied risk manage-

ment problems for complex systems. Therefore, the 

first (and most important) classification basis for natu-

ral computing models and methods will be universali-

ty. Since the matter concerns computational models, 

universality is understood primarily as the ability to 

implement an arbitrary algorithm (universal computer) 

or, at least, to calculate an arbitrary function with a 

given accuracy (universal approximator). 

The risk management problem statement for com-

plex systems assumes that the method or algorithm 

used must have a formalism adequate to the problem. 

In addition, since the systems under study often oper-

ate in a variable environment, the form of functions 

can (and will) change over time. This fact implies an-

other requirement to the algorithm or method used, 

known as learning capability. 

Thus, to solve the problem, it is advisable to adopt 

the following classification bases: 

– universality (universal computer or universal ap-

proximator), 

– the type of calculations (formal grammar, math-

ematical model, family of algorithms, element base, 

etc.), 

– formalism (there is a formal model or not), 

– learning capability (the ability to implement ma-

chine learning algorithms, the ability to implement 

adaptive algorithms, or no learning capability), 

– technical implementation (hardware and software 

platforms). 

4. NATURAL COMPUTING: A SURVEY 

Natural computing models and methods include 

heuristic algorithms (or their families united by a 

common idea), some formal grammars, element bases 

of computers, and a series of mathematical models. 

The former include artificial immune systems, swarm 

intelligence, and amorphous and evolutionary compu-

ting. Formal grammars describe membrane computing 

[5] and Lindenmayer systems [6] (P systems and L-

systems, respectively). The natural element bases of 

computers are founded on DNA molecules [7], 

Physarum amoebas [8], and some types of bacteria [9, 

10]. Natural computing based on mathematical models 

includes cellular automata [11], artificial neural net-

works [12], and calculations with dynamic systems 

and chaos [13]. Let us briefly describe some of them. 

 

4.1. Formal grammars 

A formal P system is defined by an aggregate 

Π = (O, C, μ, w1,…, wm, R1,…, Rm, io), 
where: 

O is a non-empty finite alphabet of objects; 

C ⊂ O is the set of catalysts; 

μ is a membrane structure composed of membranes 

1,…, m that determine the regions of the P system; 

w1,… , wm are strings over the alphabet O that de-

scribe the multisets of objects contained in regions 1, 

…, m, respectively; 

R1,…, Rm is a finite set of evolution rules for re-

gions 1, …, m, respectively; 

finally, io ∈ {0, …, m} is the number of the region 

containing the result of calculations (zero result will 

be sent to the environment). 

The evolution rules have the form u → v or 

u → vδ, where u ∈ O+, v ∈ (O × Tar)*, and 

Tar ={here, in, out}. Here, O+ denotes the set of all 

possible strings over the alphabet O, except the empty 

string λ, and O* = O+ + {λ}. Rules with an arbitrary 

action u are called cooperative; rules with u ∈ (O – C), 

noncooperative. Noncooperative rules with a catalyst, 

i.e., the ones of the form cu → cv or cu → cvδ, where 

u ∈ (O – C), c ∈ C, and v ∈ ((O – C) × Tar)*, are 

called catalytic. The catalysts in such rules “help” oth-

er objects of the P system to evolve, not changing 

themselves and never moving between its regions. 

The membrane structure and multisets of objects 

located in the regions bounded by the membranes de-

fine the configuration of the P system. The initial con-

figuration is given by the membrane structure and the 

objects contained in the regions (μ, w1, …, wm). In the 

course of the system evolution, applying the rules can 

change both the multisets of objects and the membrane 

structure. An example of the initial configuration of a 

P system is shown in Fig. 2. 

Note that the rules of evolution in each step are ap-

plied   in   all  regions  of  the  system  simultaneously.  



 

 
 

 

 
 

SURVEYS 

 

6 CONTROL SCIENCES   No. 4 ● 2021 

 

 
Fif. 2. Initial configuration of P system with three membranes, 

alphabet O = {𝒂, 𝒃, 𝒄, 𝒅, 𝒆, 𝒇, 𝛅} , and the set of catalysts C = {c}.  

 

A detailed description of membrane computers can be 

found in [5]. 

A basic L-system consists of an alphabet V, an ini-

tial string (axiom) ω ∈ V+, where V is the set of all 

nonzero-length strings over V, and the set of produc-

tion rules P of the form p: a → x, a ∈ V, x ∈ V+. For 

each symbol a ∈ V not belonging to the left-hand side 

of P, the rule a → a holds. Such symbols are called 

constants or terminal symbols. 

The rules from the set P are applied iteratively, 

starting from the axiom (initial state). At each itera-

tion, all symbols from the left-hand side of P are re-

placed by the corresponding right-hand side. For ex-

ample, the system G = (V = {a, b}, ω = a, P = {a → b, 

b → ba}) produces the strings a → b → ba → ba b → 

ba b ba → ba b ba ba b → … 

Basic L-systems (called 0L-systems) involve no 

special symbols. More complex symbolic L-systems 

(SL-systems) recognize special substrings, i.e., re-

served symbol operators. A detailed description of L-

systems and particularly these operators, including 

several practical examples, can be found in [6]. 

 

4.2. Element bases 

DNA computers encode information in nucleotide 

sequences. DNA molecules contain four nitrogenous 

bases: cytosine (C), guanine (G), adenine (A), and 

thymine (T). In the DNA computer model, nucleotide 

sequences are represented as strings over a finite al-

phabet {A, T, G, C}. The operations performed by the 

computer using various enzymes on DNA molecules 

are completely described by the rules of extended H-

systems (also called splicing systems, see Chapter 7 of 

the book [14]). 

Let 

S = (V, Σ, A, R), 

where: V is a finite alphabet; Σ ∈ V is a terminal al-

phabet; A ⊂ V* is the set of axioms; finally, 

A ⊂ V* × V* × V* × V* are splicing rules.  

Each rule r r = (u1, u2, u3, u4) ∈ R is written as 

 r = u1#u2$u3#u4; u1,u2,u3,u4 ∈ V*; #, $ ∉ V. 

This expression is interpreted as follows: cut the 

string between consecutive entries of the substrings 

u1 and u2, u3 and u4; then glue the resulting fragments 

on the left of the first cut and on the right of the sec-

ond one so that u1 and u4 turn out near each other. For 

example, consider some x1, x2, y
1
, y

2
 ∈ V* and strings 

x = x1u1u2x2 and y = y
1
u3u4y

2
. Applying the rule r to 

the pair (x, y) yields the string z = x1u1u4y
2
. 

The formal model of a DNA computer was de-

scribed in detail in [15]. Bacterial computing [9, 10] is 

an implementation of such a computer in living organ-

isms. 

 

4.3. Mathematical models 

A cellular automaton is defined by an aggregate 

(ℒ, 𝒮,𝒩, 𝑓), where: 

ℒ ⊆ ℤD is the D-dimensional cellular space, i.e., a 

(possibly infinite) set of cells in ℒ that forms a regular 

lattice; 

𝒮 is the finite set of cells states; 

𝒩 = (v1⃗⃗  ⃗, … , vN⃗⃗⃗⃗ ) is the neighborhood vector from 

N elements of the set ℒ that connects a cell with its 

neighbors (for a cell located in v ∈ ℒ, the neighbor 

cells are located in (v + vi⃗⃗ ) ∈ ℒ ∀i ∈ {1, …, N}); 

Finally, 𝑓: SN → S is a local transition rule deter-

mining the cell state at the next time instant, 𝑓(a1, …, 
aN), where a1, …, aN are the states of its N neighbors. 

A configuration of a cellular automaton is a global 

state C: ℒ → 𝒮. Let 𝒮ℒ be the set of all configurations. 

Then a mapping G: 𝒮ℒ → 𝒮ℒ is called a global transi-

tion function, and a cellular automaton can be defined 

by the aggregate (ℒ, 𝒮,  𝒮ℒ, G). 

Computing based on a cellular automaton is per-

formed by sequentially calculating the transition func-

tion. As a rule, a cellular automaton is assumed to be 

synchronous (all cells change their state simultaneous-

ly) and homogeneous (all cells use a single transition 

rule). In this case, if a configuration ( )v v vy y   fol-

lows a configuration ( )v v vx x   (that is, y = G(x)), y 

will be the result of calculating the following expres-

sion for each v  ∈ ℒ: 

y
v 
 = G(x)v  = G(xv ) = f(xv +v1⃗⃗  ⃗, …, xv +vN⃗⃗⃗⃗ ). 

The model, types, and properties of cellular au-

tomata were considered in detail in the book [16]. 



 

 
 

 

 
 

SURVEYS 

 

7 CONTROL SCIENCES   No. 4 ● 2021 

The formal model of an artificial neuron is writ-

ten as 

 s = w ⋅ x + b,  𝓏 = g(s), 

where: x ∈ ℤ{0,1}
N  denotes the vector of input data; w 

denotes the vector of weights; b is the displacement; 

g(⋅) is an activation function; finally, 𝓏 denotes the 

output. When forming an artificial neural network, 

individual neurons s are combined into a layer 

s = Wx + b,  z = g(s), 

where W denotes the matrix of weights. A neural net-

work can have several interconnected layers. 

An artificial neural network is trained by adjusting 

the weights, as a rule, via minimizing some loss func-

tional: ( ) min.L 
w

w   

The evolution of artificial neural network architec-

tures, learning modes, and applications was discussed 

in the survey [17]. 

The computing model with dynamic systems and 

chaos is based on the concept of a chaotic element: a 

chaotic chip or a chaotic processor [18]. Let the state 

of such an element be determined by the variable x. 

The logical gate implemented by this element is con-

structed in the following way. 

 The input signals are: 

x → x0 + X1 + X2 for the binary logical operations 

(NAND, NOR, XOR, AND, OR, and XNOR); 

x → x0 + X for the unary operations (NOT),  

where x0 denotes the initial system state and 

                      X = {
0          for I = 0,
Vin > 0 for I = 1,

  

where Vin is a positive constant. 

 Dynamic updating is used, i.e., x → f(x), where 

f(x) is a linear function. 

 A threshold mechanism is used for obtaining the 

output signal Z: 

 Z = {
0            if f(x) ≤ E,
f(x) – E if f(x) > E,

 

where E is a threshold. 

The output value is interpreted as logical zero if 

Z = 0 and as logical one if Z > 0. 

A feature of chaotic elements is the ability to 

change the type of the logical gate they implement 

using control of the values (x0, E). A classical exam-

ple is a chaotic element with f(x) = 4x(1 – x) and 

Vin=1/4. This element implements one of the logical 

operations AND, OR, XOR, NAND, or NOT, depend-

ing on the values (x0, E); see Table 1. 

The chaotic computing paradigm was considered 

in detail in the paper [18]. 

Table 1 

Values x0 and E corresponding to different logical 

operations of chaotic element with f(x) = 4x(1 – x) and 

Vin=1/4 

Logical 

operation 
AND OR XOR NAND NOT 

x0 0 1/8 ¼ 3/8 1/2 

E 3/4 11/16 ¾ 11/16 3/4 

 

The other approaches are either unique in natural 

computing or combine very heterogeneous elements 

and therefore cannot be identified with any of the 

groups mentioned. 

 

4.4. Universality of natural computing 

Consider the universality of different types of natu-

ral computing. 

Cellular automata and artificial neural networks are 

universal computers. Smith’s classical work [19] was 

devoted to the Turing-complete cellular automaton. 

The Turing completeness theorem for fully connected 

recurrent artificial neural networks with sigmoidal ac-

tivation functions was proved in the paper [20]. 

The computing paradigm with nonlinear dynamic 

systems (chaos) emerged in response to the limitations 

of transistors as a traditional element base. Logical 

elements (gates) based on transistors cannot be 

changed after the hardware implementation. Pro-

gramming involves switching between several differ-

ent single-purpose elements. A chaotic element is ca-

pable of transforming into various logical elements 

using a threshold-based morphing mechanism. The 

work [21] described the implementation of the AND, 

OR, NOT, and XOR gates, substantiating the univer-

sality of chaotic chips. 

Collision-based computing [22], also called ballis-

tic computing, free space computing, and billiard 

computing in the literature, implement logical circuits 

using a homogeneous unstructured environment with 

mobile localizations. These can be gliders in cellular 

automata, solitons in optical systems, or wave frag-

ments in excitable chemical systems. Logical truth 

corresponds to the presence of localization; logical 

false, to the absence of localization. When two or 

more moving localizations collide, they change their 

velocity and (or) state vectors. The post-collision paths 

and (or) states of localizations result from logical op-

erations implemented by a collision. The equivalence 

of the billiard computing model based on a two-

dimensional block cellular automaton to a reversible 

Turing machine was established in [23]. 



 

 
 

 

 
 

SURVEYS 

 

8 CONTROL SCIENCES   No. 4 ● 2021 

The term “reaction-diffusion computing” can be 

interpreted as a computational model based on the cor-

responding family of differential equations and as a 

chemical computer in which data are represented by 

concentrations of different chemical elements and pro-

cessing is performed using chemical reactions (e.g., 

the Belousov–Zhabotinsky reaction); see [24, 25]. On 

the other hand, reaction-diffusion equations are often 

used to model other computational environments, par-

ticularly chaos and collision-based computing. The 

paper [26] demonstrated the fundamental possibility of 

universal calculations in chemical computers under 

limited resources. Note that a similar result was ob-

tained therein for Physarum computing, discussed be-

low. 

Now let us consider formal grammars. Membrane 

computing (also known as P systems [5]) involves the 

membrane concept based on the simplest analogy with 

biological cells. During the operation of such systems, 

the objects of calculations (the sets of symbolic multi-

sets) and, moreover, the membrane structures them-

selves evolve. This peculiarity is inherent in P sys-

tems. Each membrane structure (cell) is treated as a 

separate computational element, and the principle of 

maximum parallelism is employed. Consequently, 

such a grammar allows writing P-systems that solve 

NP-complete problems in polynomial time (due to the 

exponential growth of the number of membranes and, 

accordingly, parallelism). Computational complete-

ness was proved for some P systems. In particular, this 

was done for communicative membrane systems [27]. 

(In such systems, actions over an object are performed 

when it passes through the membrane.) In the paper 

[28], a similar assertion was derived for several classes 

of P systems with catalysts (symbols in a multiset that 

cause the application of some rule, not “consumed” by 

it). In 2009, Turing completeness was shown for an 

extension of P systems, the so-called mutual mobile 

membrane systems, in the case of three membranes 

[29].  

Lindenmayer systems (L-systems) were originally 

proposed by botanist A. Lindenmeier [30] as a formal 

language for describing algal growth. Later on, the 

approach was developed into a formal grammar. In 

1991, L-systems were first used for expanding some 

elementary functions into a Taylor series [6]. A corre-

sponding compiler and a visualization subsystem for 

the IBM PC platform were created soon [31]. Howev-

er, the generation of fractal structures remains the 

main application of Lindenmayer systems. The com-

putational completeness of such systems is not dis-

cussed in the literature. 

A separate trend in the development of natural 

computing is searching for new (alternative) computa-

tional element bases. In 1994, it was proposed to use a 

DNA molecule [7]. An advantage of the DNA ap-

proach is the simultaneous generation of all possible 

solutions of combinatorial problems (e.g., Hamiltonian 

path problems in directed graphs) using known bio-

chemical reactions. Then the molecule string encoding 

the desired response can be quickly filtered out. How-

ever, when scaling the method proposed by L. 

Adleman, the number of DNA molecules needed to 

find a solution grows exponentially with the problem 

dimensionality. This fact imposes physical restrictions 

on the computational power of such a computer. Nev-

ertheless, already in 1999, it was established that DNA 

computers can be universal computers [32]. In 2017, a 

design of a DNA computer implementing a non-

deterministic universal Turing machine was proposed 

[33]. 

In 2010, using Adleman’s ideas, a group of re-

searchers created a bacterial computer based on genet-

ically modified E. coli bacteria [10]. In contrast to the 

earlier experiments [9], the researchers placed the 

DNA sequences encoding the problem to the breaks in 

the DNA strands of genes encoding fluorescent pro-

teins. Note that the inserted fragments were framed by 

the so-called hix sites. As a result, the effect of site-

specific inversion of bacterial DNA in the presence of 

a special protein, DNA-invertase Hin, was used. Dur-

ing the inversion of the nucleotide strand, the encoding 

fluorescent proteins are restored, and the bacteria that 

“found” the correct solution glow under the micro-

scope. 

Another approach to the creation of non-traditional 

computers is to use some special properties of living 

organisms. The most famous experiment involves the 

slime mould (amoeba) Physarum polycephalum, 

which tends to take a shape minimizing the sunlight 

effect on it. The paper [34] described the application 

of such an “amoebic computer” to the approximate 

solution of the NP-complete traveling salesman prob-

lem. As demonstrated therein, the amoeba solves this 

problem in linear time. However, to calculate the 

lighting scheme of the amoeba, a recurrent neural net-

work is used, whose dynamics are determined by a 

weight matrix with n4 elements (n denotes the number 

of cities). Therefore, the gain in time is not obvious for 

large dimensions. The universality of such a computer 

has not yet been investigated. 

Finally, we consider the families of heuristic and 

metaheuristic algorithms commonly related to natural 

computing. Artificial immune systems include several 

classes of such algorithms, created by analogy with 

their natural implementation in the immune systems of 

vertebrates. Despite no generally accepted formaliza-

tion (the one proposed in [35] has not become wide-



 

 
 

 

 
 

SURVEYS 

 

9 CONTROL SCIENCES   No. 4 ● 2021 

spread), the results of [36, 37] suggest that a universal 

approximator can be based on an artificial immune 

system. 

Swarm intelligence algorithms usually include sys-

tem models in which many agents interact locally with 

the environment and with each other. The agents obey 

some fairly simple rules of behavior. However, the 

entire multi-agent system exhibits complex (“intelli-

gent”) behavior. In practice, such algorithms are used 

for solving various optimization problems. For exam-

ple, see the survey [38]. The universality of such algo-

rithms (e.g., as a universal approximator) has appar-

ently not been raised in the literature. 

The term “amorphous computing” was introduced 

by a group of MIT researchers in 1996. It refers to a 

class of computing devices consisting of numerous 

cheap, almost identical information processing units. 

In this case, cheapness is an essential property: among 

ther things, such devices were intended for the whole-

sale production of smart structural materials as an ad-

ditive (“improver”). The possibility of universal calcu-

lations on an amorphous computer composed of asyn-

chronously operating finite probabilistic automata was 

first shown in [39]. Several amorphous computing sys-

tems from the class of universal computers were con-

sidered in [40]. 

Along with the fuzzy logic and swarm intelligence 

models considered previously, evolutionary computing 

belongs to a large class of the so-called “soft compu-

ting” with approximate models. Technically, evolu-

tionary computing is a family of global optimization 

algorithms based on the idea of biological evolution. 

The family of candidate solutions forms a “popula-

tion” that is gradually improved by selection or ran-

dom “mutations.” The process stops when the solu-

tions reach the required level of accuracy. 

The forms of natural computing, the types of cor-

responding calculations, and their universality are de-

scribed in Table 2, including the relevant references. 

5. NATURAL COMPUTING FOR RISK MANAGEMENT       

IN COMPLEX SYSTEMS: ANALYSIS OF POSSIBLE USE 

As noted earlier, natural computing tools suitable 

for risk management in complex systems must, first of 

all, be universal, have a formal mathematical model, 

and, finally, demonstrate a high level of adaptiveness. 

In terms of applications, it is also important that the 

model or algorithm have software implementation (to 

be used when developing specialized software) or 

hardware implementation (to speed up operation). The 

latter requirement becomes crucial for risk manage-

ment in information security (e.g., when creating traf-

fic analyzers). In the previous section, we have select-

ed the types of natural computing with proven univer-

sality. Let us check whether they match the other crite-

ria. 

 
Table 2   

Well-known natural computing methods and algorithms and their universality 

Form of natural computing Type of calculations Universality 

Cellular automata Mathematical model, ele-

ment base 

Universal computer [19] 

Artificial neural networks Mathematical model, ele-

ment base 

Universal computer [20] 

Computing with dynamic systems and 

chaos 

Mathematical model, ele-

ment base 

Universal computer [21] 

Collision-based computing Computational model Universal computer [23] 

Reaction-diffusion computing Mathematical model, ele-

ment base 

Universal computer [26] 

Membrane computing (P systems) Formal grammar  Universal computer [27–29]  

Lindenmayer systems (L-systems) Formal grammar Applicable to symbolic calculations [6] 

DNA computing Element base Universal computer [32, 33] 

Bacterial computing Element base Universal computer (possibly) 

Physarum computing Element base Universal computer [26] 

Artificial immune systems Family of algorithms Universal approximator (possibly) [36, 37] 

Swarm intelligence Family of algorithms Universal approximator (possibly) 

Amorphous computing Family of algorithms Universal computer [39, 40] 

Evolutionary computing Family of metaheuristic 

algorithms 

Not applicable 

 



 

 
 

 

 
 

SURVEYS 

 

10 CONTROL SCIENCES   No. 4 ● 2021 

According to the Curtis–Hedlund–Lyndon theorem 

for cellular automata, proved in 1969, transitions be-

tween any two shift spaces can be determined by a 

uniformly local rule [41]. The class of adaptive sto-

chastic cellular automata allows implementing adap-

tive algorithms [42]. Technically, the formal automa-

ton model is implemented on a conventional comput-

er: free software modules are available in Python and 

Wolfram (Mathematica). Thus, adaptive control sys-

tems can be designed based on this type of computing. 

Artificial neural networks received a formal model 

within finite automata theory back in 1956; see [43]. 

One year later, the classical work was published de-

scribing the learning algorithm for an artificial neural 

network based on a two-layer perceptron in which one 

layer is hidden and untrainable [44]. Many pro-

grammed neural network architectures are currently 

available for solving various classes of problems 

(mainly recognition and classification). Their hard-

ware implementations are constantly being improved; 

for example, see the survey [45]. 

Chaotic calculations involve models of various 

nonlinear dynamic systems [13], which give the nec-

essary formalism. The behavior of such systems can 

be numerically simulated, e.g., in MATLAB. Work is 

now underway towards the design of a chaotic proces-

sor. In particular, the paper [18] described the opera-

tion of chaotic transistors. The same research team 

patented the architecture of an arithmetic-logic device 

based on such transistors [46]. However, this class of 

systems does not exhibit learning capability. 

Collision-based computing systems are often 

called billiard computers, and their model is often 

called the formal billiard model. The paper [47] de-

scribed all currently used mobile and stationary locali-

zations (“balls” and “tables,” respectively). Such sys-

tems have no learning capability. The models of such 

computers can be constructed in MATLAB. There is 

no hardware implementation yet; the most recent 

known publication in this area [48] presented the idea 

of a chemical transistor using chemical wave frag-

ments as stationary localizations. 

The Kolmogorov – Petrovsky – Piskunov equation 

is considered the first formal reaction-diffusion system 

model in the one-dimensional case [49]. More com-

plex models are required to describe environments 

suitable for computing. One example is a chemical 

computer based on the Belousov – Zhabotinsky reac-

tion [26, 50]. Such systems are not trainable. ReaD-

Dy 2 library [51] is the contemporary software imple-

mentation of the “reaction-diffusion” computing mod-

el. Also, some experiments were carried out with the 

programming of a chemical computer [24]. 

The main component of a membrane computer 

(membrane structure) was formally described by Paun, 

the pioneer of P systems [5]. Such a grammar allows 

writing adaptive algorithms. However, the membrane 

computer has no learning capability. Its software im-

plementation is the P-Lingua programming language 

[52], a plug-in to Eclipse IDE. There are no hardware 

implementations. 

Natural computing systems with alternative bases 

(DNA, bacterial, and Physarum computers) have no 

unique computational model. They use classical ones 

instead: a Turing machine, nondeterministic finite au-

tomata, or others, depending on the researcher’s pref-

erences. Hence, such computers are without “innate” 

learning capability, although they allow implementing 

adaptive and even self-learning algorithms. All such 

computers have hardware implementation; see the ref-

erences in Table 3. 

Most researchers still consider artificial immune 

systems as a set of heuristic algorithms. In 1998, an 

attempt was undertaken to base such systems on the 

formal peptide model [35], but this formalism is not 

yet generally accepted. Perhaps this circumstance hin-

ders the development of software modules for imple-

menting artificial immune systems-based solutions: 

several software products found by the authors (see 

Table 3) are not being developed at the moment. Im-

mune networks have the “innate” learning capability 

and are comparable by the potential to artificial neural 

networks; for example, see [53]. 

Swarm intelligence algorithms do not rest on a sin-

gle formal model of a swarm’s element (particle, 

agent, etc.). They are united by the principle of local 

interaction of elements with each other and the envi-

ronment. Accordingly, such algorithms cannot be 

trained, although some prediction problems are solved 

using swarm algorithms. The most popular representa-

tive of this family – the particle swarm method – has 

several software implementations in the form of plug-

ins for MATLAB [54] and SCILAB [55]. The other 

swarm algorithms are less common and usually im-

plemented by researchers to solve particular narrow 

problems. 

Amorphous computing also does not imply an un-

derlying formal model: it denotes a class of computing 

systems with a very high degree of parallelism. Spe-

cialized programming languages were developed to 

facilitate the programming of such systems (e.g., sen-

sor networks). For details, see Table 3. 
  



 

 
 

 

 
 

SURVEYS 

 

11 CONTROL SCIENCES   No. 4 ● 2021 

Table 3 

Natural computing methods and algorithms and their characteristics: the presence of formal model, its learning 

capability, and examples of technical implementation 

Form of natural computing Formalism Learning capability Technical implementation 

Cellular automata Yes [41] Adaptiveness [42] 
Software platform (Python, Wolfram 

Mathematica) 

Artificial neural networks Yes [43] Yes [44] 

Software implementations (PyTorch, 

TensorFlow, etc.) and hardware imple-

mentations (see the survey [45]) 

Computing with dynamic 

systems and chaos 
Yes [13] No 

Software implementation (MATLAB) 

and hardware implementation [18] 

Collision-based computing Yes [47] No Software implementation (MATLAB) 

Reaction-diffusion compu-

ting 
Yes [49, 50] 

No Software implementation (ReaDDy 

library for Python and Java [51]) 

Membrane computing (P 

systems) 
Yes [5] 

No Software implementation  

(P-lingua language [52]) 

DNA computing Yes [15] No DNA self-assembly [56] 

Bacterial computing No 
No Genetically modified E. Coli bacteria 

[9] 

Physarum computing No No Amoeba-based computing system [34] 

Artificial immune systems Yes [35] Yes [53] 

Software implementation (Jisys [57], 

iNet Framework [58] and libtissue [59] 

libraries) 

Swarm intelligence No No 
Software implementation  

for PSO [54, 55] 

Amorphous computing No No 
GPL (Growing Point Language) [60] 

and Proto language [61] 
 

 

 

6. RISK MANAGEMENT WITH NATURAL COMPUTING  

The formal analysis presented above identifies nat-

ural computing methods suitable for solving risk man-
agement problems in complex systems. These are cel-

lular automata, artificial neural networks, and artificial 
immune systems. 

To compare the prevalence of these approaches in 
fundamental and applied risk management problems  

for complex systems, we will consider the number of 
Google Scholar publications on the subject (search 

results for the requests containing the problem state-
ment with synonymous constructs and the method 

name; see Tables 4 and 6). Note that the effectiveness 
of the methods in particular problems will be neither 

assessed nor compared. The number of publications 
rather shows the “popularity” of the approach in the 

scientific community, indirectly characterizing the 

depth of development. 
The requests are structured as follows. The text of 

an appropriate publication should contain the problem 
statement (e.g., “identification” for the identification 

problem; “forecast OR prediction” for the prediction 
problem).  Also,   the  text  of  an  appropriate  publication 

should contain the corresponding natural computing 

method or model (e.g., “artificial immune system” for 
artificial immune systems): its full name or generally 

accepted abbreviation. Synonyms in the requests are 

separated by the OR operator. 
Note that the high results obtained for artificial 

neural networks could be even higher: Google Scholar 
limits the maximum execution time of each search 

request and stops viewing the publication index after 
it. Thus, this approach to risk management in complex 

systems is used much more often than the other artifi-
cial intelligence models. The conclusion concerns both 

fundamental and applied and technological problems 
(see Table 7). 

Cellular automata are inferior in the frequency of 
use to both neural and immune networks. Rare publi-

cations involve them in identifying anomalies or as a 
component of an information system. Nevertheless, 

anomaly detection is successfully solved by cellular 
automata. We mention the paper [67] among the mod-

ern research on this topic. 

Artificial immune networks have been developing 

since recently, showing themselves to be a rather 

promising approach. This explains their position be-

tween cellular automata and neural networks by the
 

 



 

 
 

 

 
 

SURVEYS 

 

12 CONTROL SCIENCES   No. 4 ● 2021 

Table 4 

Google Scholar publications on fundamental risk management problems for complex systems 

Class of problems Search requests and examples of search results 

Cellular automata 

Identification 

intext: “identification” allintitle: “by cellular automata” OR “cellular automata for” – “identification 

of cellular automata” – “identification of optimal cellular automata” – “identification number”  

[62, 63] 

Behavior modeling 

allintext: “behavior” “activity” “modeling” OR “simulation” allintitle: “by cellular automata” OR 

“cellular automata for”   

[64, 65] 

Anomaly detection 
allintext: “anomaly detection” allintitle: “by cellular automata” OR “cellular automata for” 

[66, 67] 

Prediction 
allintext: “forecast” OR “prediction” allintitle: “by cellular automata” OR “cellular automata for”  

[68, 69] 

Artificial neural networks 

Identification 

identification “artificial neural network” OR “neural network” OR “deep learning” – “identification 

of ANN” – “identification of neural network” – “identification number” – “neural network identifi-

cation”   

[70, 71] 

Behavior modeling 

behavior activity (simulation OR modelling) AND (“artificial neural network” OR “neural network” 

OR “deep learning”) – “neural network dynamics” – “neural network training”   

[72, 73] 

Anomaly detection 
“anomaly detection” AND (“artificial neural network” OR “neural network” OR “deep learning”) 

[74, 75] 

Prediction 
(forecast OR prediction) AND (“artificial neural network” OR “neural network” OR “deep learning”) 

[76, 77] 

Artificial immune networks 

Identification 

allintext: “identification” “computing” “artificial immune system” allintitle: “AIS” OR “immune 

system” OR “artificial immune” – “identification of AIS” – “identification of artificial immune sys-

tem” – “identification number” – “immune system identification”   

[78, 79] 

Behavior modeling 

allintext: “behavior” “activity” “modeling” OR “simulation” “artificial immune system” allintitle: 

“AIS” OR “immune system”   

[80, 81] 

Anomaly detection 
allintext: “anomaly detection” “artificial immune system” allintitle: “AIS” OR “immune system”   

[82, 83] 

Prediction 

allintext: “forecast” OR “prediction” “artificial immune system” allintitle: “AIS” OR “immune sys-

tem”   

[84, 85] 

 
number of publications on the same classes of prob-

lems.  However,  their  use  in  information  systems is  

constrained by the absence of a generally accepted 

formalism and, accordingly, software implementation 

in the form of a software library. 

Again, the search engine results for the requests (Ta-

bles 5 and 7) do not substantiate the comparative 

“suitability” of the model for a particular class of 

problems but rather describe the distribution of the 

scientific community’s preferences. A relatively small 

number of references indicates that a particular meth-

od or model is less popular. The reasons may be insuf-

ficient studies of the model and the lack of convenient 

software tools for its use. 

 

 

Table 5 

Using artificial intelligence models and methods  

in fundamental risk management problems  

for complex systems  

(by the number of Google Scholar publications)  

Problem 
Cellular 

automata 

Artificial 

neural net-

works 

Artificial 

immune 

networks 

Identification 2 390 17 800 5 720 

Behavior mod-

eling 
1 630 20 700 2 550 

Anomaly de-

tection 
56 17 200 4 170 

Prediction 4 220 18 000 7 520 

 



 

 
 

 

 
 

SURVEYS 

 

13 CONTROL SCIENCES   No. 4 ● 2021 

Table 6 

Google Scholar publications on applied and technological risk management problems for complex systems 

Class of problems Search requests 

Cellular automata 

Classification 
allintext: “classification of” allintitle: “by cellular automata” OR “cellular automata for” 

[86, 87] 

Decision  

support 

allintext: “decision support” allintitle: “by cellular automata” OR “cellular automata for” 

[88, 89] 

Development of information 

and control systems 

allintext: “information system development” OR “software development” “control” allinti-

tle:  

[96, 97] 

Artificial neural networks 

Classification 

“classification of” AND (“artificial neural network” OR “neural network” OR “deep learn-

ing”) – “ANN classification” – “neural network classification” – “classification of neural” 

[92, 93] 

Decision  

support 

“decision support” AND (“artificial neural network” OR “neural network” OR “deep learn-

ing”) 

[94, 95] 

Development of information 

and control systems 

“control” AND (“software development” OR “system development”) AND (“artificial neu-

ral network” OR “neural network” OR “deep learning”) 

[96, 97] 

Artificial immune networks 

Classification 

allintext: “classification of” “artificial immune system” allintitle: “AIS” OR “immune sys-

tem” – “AIS classification” – “classification of artificial immune” – “classification of im-

mune” – “immune system classification” 

[98, 99] 

Decision  

support 

allintext: “decision support” “artificial immune system” allintitle: “AIS” OR “immune sys-

tem” 

[100, 101] 

Development of information 

and control systems 

allintext: “information system development” OR “software development” “control” “artifi-

cial immune system” allintitle: “AIS” OR “immune system” 

[102, 103] 

 

 

 

Table 7 

Using artificial intelligence models and methods  

in applied and technological risk  

management problems for complex systems  

(by the number of Google Scholar publications) 

Problem 
Cellular 

automata 

Artificial 

neural net-

works 

Artificial 

immune 

networks 

Classification 4 330 18 200 4 780 

Decision  

support 
1 050 17 800 2 210 

Development of 

information and 

control systems 

242 17 300 628 

 

CONCLUSIONS  

The use of analytical methods for risk management 

in complex systems shows predictable results. Howev-

er, control performance directly depends on the struc-

ture of the controlled system. For multi-agent hetero-

geneous open systems, an analytical solution of risk 

management problems can take a long time. Moreo-

ver, the resulting solution is often effective only in a 

small domain of the state space. 

Natural computing solutions are interesting due to 

high adaptiveness, a consequence of the complexity of 

natural systems. Nevertheless, not all of these ap-

proaches have the required level of abstractness, adap-

tiveness, and learning capability. 

This paper has analyzed the known natural compu-

ting models and methods with application to both fun-



 

 
 

 

 
 

SURVEYS 

 

14 CONTROL SCIENCES   No. 4 ● 2021 

damental and applied and technological risk manage-

ment problems in complex systems. Three models 

have been identified that fully meet all the criteria: 

artificial neural networks, cellular automata, and arti-

ficial immune networks. 

Artificial neural networks have been used for risk 

management in complex systems for many years and 

have proven their effectiveness. The other two ap-

proaches are less common, but their potential cannot 

be considered lower. The most probable reasons hin-

dering their development are no generally accepted 

formalism for artificial immune networks and no 

learning capability for cellular automata. 

It seems promising to develop risk management 

methods for complex systems based on cellular au-

tomata and artificial immune systems. 

REFERENCES 

1. Handbook of Natural Computing, Rozenberg, G., Bäck, T., and 

Kok, J.N., Eds., Berlin: Springer Berlin Heidelberg, 2012. 

2. Kalashnikov, A.O., Managing the Information Risks of Organi-

zational Systems: A General Problem Statement, Informatsiya i 

Bezopasnost’, 2016, vol. 19, no. 1, pp. 36–45. (In Russian.) 

3. Kononov, D.A., Studying the Security of Control Systems by 

Analyzing Their System Parameters, Materialy 28-oi Mezhdu-

narodnoi konferentsii “Problemy upravleniya bezopasnost’yu 

slozhnykh sistem” (Proceedings of 28th International Confer-

ence on Complex Systems Security Control), December 16, 

2020, Moscow, Kalashnikov, A.O. and Kul’ba, V.V., Eds., 

Moscow: Trapeznikov Institute of Control Sciences, 2020, pp. 

102–108. (In Russian.) 

4. Nemade, M.N. and Rane, M.D., A Review on Bio-Inspired 

Computing Algorithms and Application, Proceedings of Na-

tional Conference on Recent Trends in Computer Science and 

Information Technology (NCRTCSIT-2016), Nagpur, 2016, 

pp. 12–19. 

5. Paun, G., Introduction to Membrane Computing, in Applications 

of Membrane Computing, Ciobanu, G., Paun, G., and Perez-

Jimenez, M.J., Eds., Berlin–Heidelberg: Springer, 2006, pp. 1–

42. 

6. Goel, N.S. and Goodwin, M.D., Symbolic Computation Using 

L-systems, Applied Mathematics and Computation, 1991, 

vol. 42, no. 3, pp. 223–253. 

7. Adleman, L.M., Molecular Computation of Solutions to Combi-

natorial Problems, Science, 1994, vol. 266, no. 5187, pp. 1021–

1024. 

8. Adamatzky, A., Physarum Machines: Computers from Slime 

Mould, vol. 74, Singapore: World Scientific, 2010. 

9. Haynes, K., Broderick, M., Brown, A., et al., Engineering Bac-

teria to Solve the Burnt Pancake Problem, Journal of Biological 

Engineering, 2008, vol. 2, article no. 8. 

10. Poet, J.L., Campbell, A.M., Eckdahl, T.T., and Heyer, L.J., 

Bacterial Computing, XRDS: Crossroads, The ACM Magazine 

for Students, 2010, vol. 17, no. 1, pp. 10–15. 

11. Codd, E.F., Cellular Automata, New-York: Academic Press, 

2014. 

12. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, 

Cambridge: The MIT Press, 2016. 

13. Ditto, W.L., Miliotis, A., Murali, K., and Sinha, S., The Chaos 

Computing Paradigm, in Reviews of Nonlinear Dynamics and 

Complexity, Schuster, H.G., Ed., Weinheim, Germany: Wiley-

VCH, 2010, pp. 1–35. 

14. Paun, G., Rozenberg, G., and Salomaa, A., DNA Computing. 

New Computing Paradigma, Berlin–Heidelberg: Springer, 

1998. 

15. Krasinski, T. and Sakowski, S., A Theoretical Model of the 

Shapiro Finite State Automaton Built on DNA, Theoretical and 

Applied Informatics, 2006, vol. 18, pp. 161–174. 

16. Hadeler, K.-P. and Müller, J., Cellular Automata: Analysis and 

Applications, Cham: Springer, 2017. 

17. Makarenko, A.V., Deep Neural Networks: Origins, Develop-

ment, Current Status, Control Sciences, 2020, no. 2, pp. 3–19. 

(In Russian.) 

18. Ditto, W.L., Miliotis, A., Murali, K., et al., Chaogates: Morph-

ing Logic Gates That Exploit Dynamical Patterns, Chaos: An 

Interdisciplinary Journal of Nonlinear Science, 2010, vol. 20, 

no. 3, article no. 037107. 

19. Smith, A., Simple Computation-Universal Cellular Spaces, 

Journal of the ACM, 1971, vol. 18, no. 3, pp. 339–353. 

20. Siegelmann, H. and Sontag, E., Turing Computability with 

Neural Nets, Appl. Math. Lett., 1991, vol. 4, no. 6, pp. 77–80. 

21. Munakata, T., Sinha, S., and Ditto, W.L., Chaos Computing: 

Implementation of Fundamental Logical Gates by Chaotic El-

ements, IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, 2002, vol. 49, no. 11, 

pp. 1629–1633. 

22. Adamatzky, A., Collision-Based Computing, London: Spring-

er-Verlag, 2002. 

23. Durand-Lose, J., About the Universality of the Billiard Ball 

Model, Multiple-Valued Logic, 1998, vol. 6, no. 5, pp. 118–

132. 

24. Adamatzky, A., Programming Reaction-Diffusion Processors, 

in Unconventional Programming Paradigms, Berlin–

Heidelberg: Springer, 2005, pp. 33–46. 

25. Gorecki, J., Gizynski, K., Guzowski, J., et al., Chemical Com-

puting with Reaction-Diffusion Processes, Philosophical 

Transactions of the Royal Society A: Mathematical, Physical 

and Engineering Sciences, 2015, vol. 373, no. 2046, 

pp. 20140219. 

26. Adamatzky, A., de Lacy Costello, B., and Shirakawa, T., Uni-

versal Computation with Limited Resources: Belousov–

Zhabotinsky and Physarum Computers, International Journal 

of Bifurcation and Chaos, 2008, vol. 18, no. 8, pp. 2373–2389. 

27. Alhazov, A., Margenstern, M., Rogozhin, V., et al., Communi-

cative P Systems with Minimal Cooperation, The International 

Workshop on Membrane Computing (WMC5), Milan, 2004. 

Revised papers published in LNCS, vol. 3365, Berlin: Springer, 

2005, pp. 162–178. 

28. Freund, R., Kari, L., Oswald, M., and Sosik, P., Computation-

ally Universal P Systems without Priorities: Two Catalysts Are 

Sufficient, Theoretical Computer Science, 2005, vol. 330, no. 2, 

pp. 251–266. 

29. Aman, B. and Ciobanu, G., Turing Completeness Using Three 

Mobile Membranes, in Unconventional Computation (UC 

2009), Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., and 

Rozenberg, G., Eds., Lecture Notes in Computer Science, vol. 

5715, Berlin–Heidelberg: Springer-Verlag, 2009, pp. 42–55. 

30. Lindenmayer, A., Mathematical Models for Cellular Interac-

tion in Development I-II, J. Theoret. Biology, 1968, no. 18, 

pp. 280–315. 

31. Goel, N. and Rozehnal, I., A High-Level Language for L-

systems and Its Applications, in Lindenmayer Systems: Impacts 

on Theoretical Computer Science, Computer Graphics, and 

Developmental Biology, Rozenberg, G. and Salomaa, A., Eds., 

Berlin: Springer-Verlag, 1992, pp. 231–251. 



 

 
 

 

 
 

SURVEYS 

 

15 CONTROL SCIENCES   No. 4 ● 2021 

32. Winfree, E., Yang, X., and Seeman, N.C. Universal Computa-

tion via Self-assembly of DNA: Some Theory and Experiments, 

Proceedings of the 2nd DIMACS Workshop on DNA Based 

Computers, June 10–12, 1996, Princeton, 1996, pp. 191–213. 

33. Currin, A., Korovin, K., Ababi, M., et al., Computing Expo-

nentially Faster: Implementing a Non-Deterministic Universal 

Turing Machine Using DNA, Journal of the Royal Society. In-

terface, 2017, vol. 14, no. 128, article no. 20160990. 

34. Zhu, L., Kim, S.-J., Hara, M., and Aono, M., Remarkable 

Problem-Solving Ability of Unicellular Amoeboid Organism 

and Its Mechanism, Royal Society Open Science, 2018, vol. 5, 

no. 12, article no. 180396. 

35. Tarakanov, A. and Dasgupta, D., A Formal Model of an Artifi-

cial Immune System, Biosystems, 2000, vol. 55, no. 1-3, 

pp. 151–158. 

36. Gong, M., Jiao, L., and Zhang, X., A Population-Based Artifi-

cial Immune System for Numerical Optimization, Neurocompu-

ting, 2008, vol. 72, no. 1–3, pp. 149–161.  

37. Ülker, E. and Arslan, A., Automatic Knot Adjustment Using 

an Artificial Immune System for B-Spline Curve Approxima-

tion, Information Sciences, 2009, vol. 179, no. 10, pp. 1483–

1494.  

38. Chakraborty, A. and Kar, A.K., Swarm Intelligence: A Review 

of Algorithms, in Nature-Inspired Computing and Optimiza-

tion. Modeling and Optimization in Science and Technologies, 

Patnaik, S., Yang, X.S., and Nakamatsu, K., Eds., vol. 10, 

Cham: Springer, 2017, pp. 475–494. 

39. Wiedermann, J., Computability and Non-computability Issues 

in Amorphous Computing, in Theoretical Computer Science 

(TCS 2012), Lecture Notes in Computer Science, 

Baeten, J.C.M., Ball, T., and de Boer, F.S., Eds., vol. 7604, 

Berlin– Heidelberg: Springer, 2012, pp. 1–9. 

40. Wiedermann, J. and Petrů, L., On the Universal Computing 

Power of Amorphous Computing Systems, Theory of Compu-

ting Systems, 2009, vol. 45, no. 4, pp. 995–1010.  

41. Hedlund, G.A., Endomorphisms and Automorphisms of the 

Shift Dynamical System, Mathematical Systems Theory, 1969, 

vol. 3, no. 4, pp. 320–375. 

42. Lee, Y.C., Qian, S., Jones, R.D., et al., Adaptive Stochastic 

Cellular Automata: Theory, Physica D: Nonlinear Phenomena, 

1990, vol. 45, no. 1–3, pp. 159–180. 

43. Kleene, S.C., Representation of Events in Nerve Nets and Fi-

nite Automata, in Automata Studies (AM-34), vol. 34, Prince-

ton: Princeton University Press, 1956, pp. 3–42. 

44. Rosenblatt, F., The Perceptron – a Perceiving and Recognizing 

Automaton, Report 85–460–1, Cornell Aeronautical Laborato-

ry, 1957. 

45. Schuman, C.D, Potok, T.E., Patton, R.M., et al., A Survey of 

Neuromorphic Computing and Neural Networks in Hardware, 

arXiv:1705.06963, 2017. 

46. Ditto, W.L., Sinha, S., and Murali, K., Method and Apparatus 

for a Chaotic Computing Module Using Threshold Reference 

Signal Implementations, US Patent WO/2005/036353, 2006. 

47. Adamatzky, A. and Durand-Lose, J., Collision-Based Compu-

ting, in Handbook of Natural Computing, Rozenberg, G., et al., 

Eds., Berlin–Heidelberg: Springer-Verlag, 2012, pp. 1950–

1978. 

48. Toth, R., Stone, C., de Lacy Costello, B., et al., Simple Colli-

sion-Based Chemical Logic Gates with Adaptive Computing, 

International Journal of Nanotechnology and Molecular Com-

putation, 2009, vol. 1, no. 3, pp. 1–16. 

49. Kolmogorov A.N., Petrovskii I.G., and Piskunov, N.S., Exam-

ining the Equation of a Diffusion Related to an Increase in Mat-

ter and Its Application to a Biological Problem, Byull. Mosk. 

Gos. Univ. Ser. A. Mat. Mekh., 1937, no. 1, pp. 1–26. (In Rus-

sian.) 

50. Vanag, V.K. and Epstein, I.R., Stationary and Oscillatory Lo-

calized Patterns, and Subcritical Bifurcations, Physical Review 

Letters, 2004, vol. 92, no. 12, article no. 128301. 

51. Hoffmann, M, Fröhner, C, and Noé, F., ReaDDy 2: Fast and 

Flexible Software Framework for Interacting-Particle Reaction 

Dynamics, PLOS Computational Biology, 2019, vol. 15, no. 2, 

article no. e1006830. 

52. Garcia-Quismondo, M., Gutiérrez-Escudero, R., Martínez-del-

Amor, M.A., et al., P-Lingua 2.0: A Software Framework for 

Cell-Like P Systems, International Journal of Computers, 

Communications & Control, 2009, vol. 4, no. 3, pp. 234–243. 

53. Dasgupta, D., Artificial Neural Networks and Artificial Im-

mune Systems: Similarities and Differences, Proceedings of 

IEEE 1997 International Conference on Computational Cyber-

netics and Simulation: Systems, Man, and Cybernetics, vol. 1, 

Orlando, 1997, pp. 873–878. 

54. Birge, B., PSOt – a Particle Swarm Optimization Toolbox for 

Use with Matlab, Proceedings of the 2003 IEEE Swarm Intelli-

gence Symposium (SIS'03), Indianapolis, 2003, pp. 182–186. 

55. Qi, R., Hu, B., and Cournède, P., PSOTS: A Particle Swarm 

Optimization Toolbox in Scilab, Proceedings of IEEE 2009 In-

ternational Workshop on Open-source Software for Scientific 

Computation (OSSC), Guiyang, 2009, pp. 107–114. 

56. Woods, D., Doty, D., Myhrvold, C., et al., Diverse and Robust 

Molecular Algorithms Using Repro-Grammable DNA Self-

Assembly, Nature, 2019, vol. 567, no. 7748, pp. 366–372. 

57. Hunt, J., Timmis, J., Cooke, D., et al., Jisys: Development of 

an Artificial Immune System for Real World Applications, in 

Artificial Immune Systems and Their Applications, Dasgup-

ta, D., Ed., Berlin: Springer-Verlag, 1998, pp. 157–186. 

58. Shen, X, Gao, X.Z., Bie, R, and Jin, X., Artificial Immune 

Networks: Models and Applications, Proceedings of the Inter-

national Conference on Computational Intelligence and Securi-

ty (ICCIAS 2006), Guangzhou, 2006, pp. 394–397. 

59. Twycross, J. amd Aickelin, U., Libtissue - Implementing In-

nate Immunity, Proceedings of IEEE 2006 International Con-

ference on Evolutionary Computation (CEC), Vancouver, 2006, 

pp. 499–506. 

60. Coore, D., Botanical Computing: A Developmental Approach 

to Generating Interconnect Topologies on an Amorphous Com-

putting, PhD thesis, MIT, 1999. 

61. Beal, J. and Bachrach, J., Infrastructure for Engineered Emer-

gence on Sensor/Actuator Networks, IEEE Intelligent Systems, 

2006, vol. 21, no. 2, pp. 10–19. 

62. Secco, J., Farina, M., Demarchi, D., et al., Memristor Cellular 

Automata for Image Pattern Recognition and Clinical Applica-

tions, Proceedings of IEEE 2016 International Symposium on 

Circuits and Systems (ISCAS), Montreal, 2016, pp. 1378–1381. 

63. Miranda, G., Machicao, J., and Bruno, O., Exploring Spatio-

temporal Dynamics of Cellular Automata for Pattern Recogni-

tion in Networks, Scientific Reports, 2016, vol. 6, pp. 37329–

37329-15. 

64. Partanen, J., An Urban Cellular Automata Model for Simulat-

ing Dynamic States on a Local Scale, Entropy, 2017, vol. 19, 

no. 1, article no. 12. 

65. Das, A.K. and Chattaraj, U., Heterogeneous Traffic Simulation 

for Urban Streets Using Cellular Automata, Arabian Journal 

for Science and Engineering, 2019, vol. 44, no. 10, pp. 8557–

8571. 

66. Sree, P.K. and Babu, I.R., Towards a Cellular Automata Based 

Network Intrusion Detection System with Power Level Metric 

in Wireless Adhoc Networks (IDFADNWCA), Proceedings of 



 

 
 

 

 
 

SURVEYS 

 

16 CONTROL SCIENCES   No. 4 ● 2021 

the 2008 International Conference on Advanced Computer 

Theory and Engineering (ICACTE), Phuket, 2008, pp. 1071–

1075. 

67. Nisha, V.M. and Jeganathan, L., A Symmetry Based Anomaly 

Detection in Brain Using Cellular Automata for Computer Aid-

ed Diagnosis, Indonesian Journal of Electrical Engineering and 

Computer Science, 2019, vol. 14, no. 1, pp. 471–477. 

68. Kabli, F., Hamou, R.M., and Amine, A., DNA Data Clustering 

by Combination of 3D Cellular Automata and N-Grams for 

Structure Molecule Prediction, International Journal of Bioin-

formatics Research and Applications, 2016, vol. 12, no. 4, 

pp. 299–311. 

69. Berberoğlu, S., Akın, A., and Clarke, K.C., Cellular Automata 

Modeling Approaches to Forecast Urban Growth for Adana, 

Turkey: A Comparative Approach, Landscape and Urban 

Planning, 2016, vol. 153, pp. 11–27. 

70. Shen, L., Shen, Y., Song, C., et al., A Novel Power System 

Anomaly Data Identification Method Based on Neural Network 

and Affine Propagation, Proceedings of the International Con-

ference on Artificial Intelligence and Security (ICAIS), New 

York, 2019, pp. 499–508. 

71. Ishitaki, T., Oda, T., and Barolli, L., A Neural Network Based 

User Identification for Tor Networks: Data Analysis Using 

Friedman Test, Proceedings of the IEEE 2016 30th Interna-

tional Conference on Advanced Information Networking and 

Applications Workshops (WAINA), Crans-Montana, 2016, 

pp. 7–13. 

72. Tobiyama, S., Yamaguchi, Y., Shimada, H., et al., Malware 

Detection with Deep Neural Network Using Process Behavior, 

Proceedings of the IEEE 40th Annual Computer Software and 

Applications Conference (COMPSAC), vol. 2, Atlanta, 2016, 

pp. 577–582. 

73. Manoj, K. and Charul, B., Hybrid Tracking Model and GSLM 

Based Neural Network for Crowd Behavior Recognition, Jour-

nal of Central South University, 2017, vol. 24, no. 9, pp. 2071–

2081. 

74. Raman, M.G., Somu, N., and Mathur, A.P., Anomaly Detec-

tion in Critical Infrastructure Using Probabilistic Neural Net-

work, Proceedings of the International Conference on Applica-

tions and Techniques in Information Security, Tamil Nadu, 

2019, pp. 129–141. 

75. Yuan, F., Cao, Y., and Shang, Y., Insider Threat Detection 

with Deep Neural Network, Proceedings of the International 

Conference on Computational Science, Wuxi, 2018, pp. 43–54. 

76. Jiang, Y., Li, C.H, Yu, L.S., and Bao, B., On Network Security 

Situation Prediction Based on RBF Neural Network, Proceed-

ings of the IEEE 2017 36th Chinese Control Conference 

(CCC), Liaoning, 2017, pp. 4060–4063. 

77. Pang, Y., Xue, X., and Wang, H., Predicting Vulnerable Soft-

ware Components through Deep Neural Network, Proceedings 

of the 2017 International Conference on Deep Learning Tech-

nologies, Chengdu, 2017, pp. 6–10. 

78. Poteralski, A., Hybrid Artificial Immune Strategy in Identifica-

tion and Optimization of Mechanical Systems, Journal of Com-

putational Science, 2017, vol. 23, pp. 216–225. 

79. Lima, F.P, Chavarette, F.R, Souza, S.S, and Lopes, M.L., 

Monitoring and Fault Identification in Aeronautical Structures 

Using an Wavelet-Artificial Immune System Algorithm, in 

Probabilistic Prognostics and Health Management of Energy 

Systems, Ekwaro-Osire, S., Gonçalves, A., and Alemayehu, F., 

Eds., Cham: Springer, 2017, pp. 203–219. 

80. Purbasari, A., Supriana, I., Santoso, O.S., and Mandala, R., 

Designing Artificial Immune System Based on Clonal Selec-

tion: Using Agent-Based Modeling Approach, Proceedings of 

the IEEE 2013 7th Asia Modelling Symposium, Hong Kong, 

2013, pp. 11–15. 

81. Liu, Y., Ding, Y., Hao, K., and Chen, L., An Immune System-

Inspired Information Diffusion Model, Proceedings of the IEEE 

2017 36th Chinese Control Conference (CCC), Liaoning, 2017, 

pp. 11238–11243. 

82. Vasilyev, V. and Shamsutdinov, R., Distributed Intelligent 

System of Network Traffic Anomaly Detection Based on Arti-

ficial Immune System, Proceedings of the 7th Scientific Con-

ference on Information Technologies for Intelligent Decision 

Making Support (ITIDS 2019), Ufa: Atlantis Press, 2019, pp. 

40–45. 

83. Jiang, Q. and Chang, F., A Novel Antibody Population Opti-

mization Based Artificial Immune System for Rotating Equip-

ment Anomaly Detection, Journal of Mechanical Science and 

Technology, 2020, vol. 34, no. 9, pp. 3565–3574. 

84. Wang, M., Ge, J., Zhang, D., and Zhang, F., An Improved 

Artificial Immune System Model for Link Prediction, Proceed-

ings of the Pacific Rim International Conference on Artificial 

Intelligence (PRICAI), Nanjing, 2018, pp. 1–9. 

85. Günay, M., Orman, Z., Ensari, T., et al., Diagnosis of Lung 

Cancer Using Artificial Immune System, Proceedings of IEEE 

2019 Scientific Meeting on Electrical-Electronics & Biomedical 

Engineering and Computer Science (EBBT), Istanbul, 2019, 

pp. 1–4. 

86. Maji, P., Shaw, C., Ganguly, N., et al., Theory and Application 

of Cellular Automata for Pattern Classification, Fundamenta 

Informaticae, 2003, vol. 58, no. 3–4, pp. 321–354. 

87. Zhou, L. and Yang, M., A Classifier Build around Cellular 

Automata for Distributed Data Mining, Proceedings of the 

IEEE 2008 International Conference on Computer Science and 

Software Engineering, vol. 4, Wuhan, 2008, pp. 312–315. 

88. Chang, H., Baek, S., Kim, H., et al., Development of Distribut-

ed Real-Time Decision Support System for Traffic Manage-

ment Centers Using Microscopic CA Model, Iranian Journal of 

Science & Technology, Transaction B, Engineering, 2007, 

vol. 31, no. B2, pp. 155–166. 

89. Benhacine, F.Z., Atmani, B., Benamina, M., et al., A Visual 

Decision Making Support System for the Diabetes Prevention, 

in Advances in Data Science, Cyber Security and IT Applica-

tions, Alfaries, A., Mengash, H., Yasar, A., and Shakshuki, E., 

Eds., Proceedings of the 1st International Conference on Com-

puting (ICC 2019), Part II, Riyadh, 2019, pp. 81–92. 

90. Liu, Y. and He, J., Developing a Web-Based Cellular Automa-

ta Model for Urban Growth Simulation, Proceedings of the In-

ternational Symposium on Spatial Analysis, Spatial-Temporal 

Data Modeling, and Data Mining, SPIE, vol. 7492, Wuhan, 

2009, article no. 74925C. 

91. Wainer, G., Developing a Software Toolkit for Urban Traffic 

Modeling, Software: Practice and Experience, 2007, vol. 37, 

no. 13, pp. 1377–1404. 

92. Li, Y., Zhang, H., and Shen, Q., Spectral–Spatial Classification 

of Hyperspectral Imagery with 3D Convolutional Neural Net-

work, Remote Sensing, 2017, vol. 9, no. 1, pp. 67– 88. 

93. Jia, F., Lei, Y., Lu, N., and Xing, S., Deep Normalized Convo-

lutional Neural Network for Imbalanced Fault Classification of 

Machinery and Its Understanding via Visualization, Mechani-

cal Systems and Signal Processing, 2018, vol. 110, pp. 249–

367. 

94. Beşikçi, E.B., Arslan, O., Turan, O., and Ölçer, A.I., An Artifi-

cial Neural Network Based Decision Support System for Ener-

gy Efficient Ship Operations, Computers & Operations Re-

search, 2016, vol. 66, pp. 393–401. 

95. Boonpeng, S. and Jeatrakul, P., Decision Support System for 

Investing in Stock Market by Using OAA-Neural Network, 

Proceedings of the IEEE 2016 8th International Conference on 

Advanced Computational Intelligence (ICACI), Chiang 

Mai, 2016, pp. 1–6. 



 

 
 

 

 
 

SURVEYS 

 

17 CONTROL SCIENCES   No. 4 ● 2021 

96. Tang, G. and Zeng, H., Chemical Production Information 

Management System Based on Artificial Intelligence Neural 

Network Algorithm, Chemical Engineering Transactions, 2018, 

vol. 66, pp. 967–972. 

97. Elechi, P., Improved Ghost Worker Fraud Detection System 

Using Artificial Neural Network, Journal of Electrical Engi-

neering, Electronics, Control and Computer Science, 2019, 

vol. 5, no. 1, pp. 17–24. 

98. Magna, G., Casti, P., Jayaraman, S.V., et al., Identification of 

Mammography Anomalies for Breast Cancer Detection by an 

Ensemble of Classification Models Based on Artificial Immune 

System, Knowledge-Based Systems, 2016, vol. 101, pp. 60–70. 

99. Aldhaheri, S., Alghazzawi, D., Cheng, L., et al., DeepDCA: 

Novel Network-Based Detection of IoT Attacks Using Artifi-

cial Immune System, Applied Sciences, 2020, vol. 10, no. 6, 

pp. 1909–1909-23.  

100. Mnif, S., Elkosantini, S., Darmoul, S., and Said, L.B., An 

Immune Multi-agent Based Decision Support System for the 

Control of Public Transportation Systems, Proceedings of the 

International Conference on Practical Applications of Agents 

and Multi-Agent Systems, Seville, 2016, pp. 187–198. 

101. Berquedich, M., Kamach, O., Masmoudi, M., and Des-

hayes, L., Agile Decision Support System for the Management 

of Tensions in Emergency Services Using AIS Techniques, 

Proceedings of the 2017 IEEE International Colloquium on 

Logistics and Supply Chain Management (LOGISTIQUA), Ra-

bat, 2017, pp. 118–123.  

102. do Nascimento Alves, H., Machado, R.C., and Bergê, I.G., 

Design and Development of a Software for Fault Diagnosis in 

Radial Distribution Networks, Proceedings of the IEEE/IAS 9th 

International Conference on Industry Applications (IN-

DUSCON 2010), São Paulo, 2010, pp. 1–6. 

103. Chitra, M.E. and Rajaram, M., A Software Reliability Estima-

tion Tool Using Artificial Immune Recognition System, Pro-

ceedings of the International MultiConference of Engineers and 

Computer Scientists (IMECS 2008), vol. 1, Hong Kong, 2008, 

pp. 967–975. 

 
This paper was recommended for publication  

by V.V. Kul’ba, a member of the Editorial Board. 

 

Received January 28, 2021, and revised March 31, 2021. 
Accepted April 6, 2021. 

 

Author information 

Shiroky, Aleksandr Aleksandrovich. Cand. Sci. (Phys.–Math.), 

Trapeznikov Institute of Control Sciences, Russian Academy of 

Sciences, Moscow, Russia,  shiroky@ipu.ru 

Kalashnikov, Andrei Olegovich. Dr. Sci. (Eng.), Trapeznikov 

Institute of Control Sciences, Russian Academy of Sciences, Mos-
cow, Russia,  aokalash@ipu.ru   

Cite this article 

Shiroky, A.A., Kalashnikov, A.O., Natural Computing with Appli-

cation to Risk Management in Complex Systems. Control Scienc-
es 4, 2–17 (2021). http://doi.org/10.25728/cs.2021.4.1 

Original Russian Text © Shiroky, A.A., Kalashnikov, A.O., 2021, 

published in Problemy Upravleniya, 2021, no. 4, pp. 3–20. 

 

 

mailto:shiroky@ipu.ru
mailto:aokalash@ipu.ru
http://doi.org/10.25728/cs.2021.4.1

