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Abstract. The Defender–Attacker problem is often employed as a mathematical framework in 

risk management. In this problem, the above players with opposite goals allocate limited re-

sources to system elements to minimize or maximize a risk function. It has been well-studied un-

der the assumption of independent system elements. However, in complex systems, elements in-

teract, causing significant differences between the measured and predicted risks. Although models 

with the interdependence of system elements are regularly considered in the literature, no com-

prehensive understanding has been formed of how the structure of a complex system influences 

its overall risk. We address this issue in a series of papers by investigating system structures of 

increasing complexity. Chains and stars have been analyzed previously; in this paper, the findings 

are extended to arbitrary trees. We optimize the placement of elements within a tree to minimize 

risk; derive upper bounds for the relative error of an approximate algorithmic solution of this 

problem for trees with a few branches and leaves; and explore the dynamics of these bounds 

when increasing the number of leaves and branches. As demonstrated, the resulting upper bounds 

do not exceed their counterparts for stars from the previous works. 
 

Keywords: complex systems, risk, system structure, risk management, risk minimization algorithms, the 

problem of optimal element placement. 
 

 

 

INTRODUCTION 

The complexity of risk management is primarily 

connected with its multidisciplinarity. For example, 

the authors of the book [1] identified 15 dimensions of 

risk management, which include both relatively nar-

row fields (risk management in supply chains, finan-

cial risk management) and global ones (e.g., ethics in 

risk management). The second part of the book con-

sidered six cross-disciplines that partially overlap all 

fields, namely, risk culture, risk-based decision 

making, risk leadership in complexity, resilience, 

communication uncertainty, and organizational 

change management and risk. This classification is 

neither complete nor the only possible one. It illus-

trates that risk management can be discussed in rela-

tion to the specifics of a particular controlled system 

and with application to processes and properties char-

acteristic of whole classes of systems. In this case, the 

models and methods, terminology, and even the defi-

nition of risk used will differ. 

Without an accepted universal risk management 

model, the unifying role is played by basic principles 

valid for any controlled system. It is reflected in the 

ISO standard [2], offering a fairly general definition of 

risk due to uncertainty influencing goal achievement. 

As noted, the consequence of this influence should be 

understood as a deviation from the expected result or 

event (positive and (or) negative). To use such a defi-

nition in practice, one has to measure goals, uncertain-

ty, and the deviations caused by it. Hence, it is neces-

sary to investigate quantitative relationships for risk 

management using an appropriate mathematical appa-

ratus. 

Based on the character of risk management intend-

ed to minimize deviations, the mathematical problem 

of risk management should belong to the class of op-

timization problems. (In the case of players with stra-

tegic behavior in the system, the problem can be 

game-theoretic; for example, see [3–5].) However, an 

attempt to find studies devoted to mathematical mod-

els of risk management not related to a particular ob-
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ject, class, or field is likely to fail. The reason is that if 

a research work deals with mathematical models of 

optimization applied to risk management, it will be-

long to the corresponding branch of mathematics, not 

to risk management. If the matter concerns risk man-

agement, the controlled object will be described ex-

plicitly, which binds the research work to its specifics. 

Nevertheless, one may suppose the existence of 

models universal enough to consider in quantitative 

terms the general principles of risk management with-

out binding to particular controlled objects, systems, 

or their classes. As it seems, this criterion is best met 

by the model of a protected system in the form of a 

weighted directed graph: the vertices are system ele-

ments (arbitrary objects), and the arcs with assigned 

weights characterize the direction and strength of con-

nections between these elements that are important for 

risk management. 

Note that such a graph is a complex network of ar-

bitrary topology. The control object modeled (a pro-

tected system) can be a social network [6], a network 

of organizations [7], a computer network [8], or even 

belong to another class. In this paper, we consider a 

purely mathematical problem statement. In other 

words, the structure of a protected system does not 

necessarily reflect exactly the physical or organiza-

tional structure of the object modeled. At the same 

time, the arcs of a corresponding digraph show the 

mutual influence of elements. For example, when re-

ducing the risks of aviation accidents in a region, the 

model will reflect rather the structure of causal rela-

tions between the types of accidents, their precondi-

tions, and influence factors than the connections be-

tween the elements of the air traffic control infrastruc-

ture. If all system elements are independent from the 

viewpoint of risk transfer to each other, an adequate 

model will be a special case of an edgeless graph. 

The general problem of risk management in com-

plex networks can be formulated as follows. 

Consider a protected system consisting of a finite 

set of elements (arbitrary objects): S 

 1,...,   ,... , ,i ns s s   1,..., ,i N n   .n  Suppose 

the existence of two actors (also arbitrary for the time 

being), which will be called players A and D (the At-

tacker and Defender, respectively). They have oppo-

site interests regarding the state of system S. 

Let player D possess some resource amount X ≥ 0 

to be allocated, in an arbitrary way, among the ele-

ments of system S:  1  ,  ,  nx x x  , 0ix  , i N , 

1

n

i

i

x X


 . Similarly, player A also has some resource 

amount    0Y    to be arbitrarily allocated among the 

elements of system S:  1  ,  ,  ny y y  , 0iy  , i N ,

1

n

i

i

y Y


 . 

The model under consideration involves any meas-

urable and arbitrarily divisible resource that can be 

represented by a nonnegative real number. Depending 

on the context, the resource can be capital, labor, time, 

production capacity, etc. (e.g., costs). 

Suppose that the risk transfer influence is de-

scribed by a weighted digraph  , ,G S W ,W S S 

 ,  , ,ij i jw s s W i j N   . Let functions 

0 0: , : ,s W      

be defined on  ,G S W , where , i i N  , is the 

weight of vertices (the current value of local risk) and 

,  , ,ij i j N   is the weight of arcs (the intensity of risk 

transfer between system elements). The matrix 

Σ ij   represents the degree (or strength) of influ-

ence of the ith element of S on the jth one. The initial 

value of the functions i  at 0t  ,  , ,i i x y t   

 , , 0i x y t   , is determined by the resource alloca-

tions x  and y . The subsequent values of the weights 

i  (for 0t  ) depend only on the time-preceding val-

ues of these functions. Due to the mutual influence of 

system elements, their weights vary as follows: 

 
1

( ) ( 1) ,  

0, 1, ; .

( 1) ( )

( 0)

n

i i ik i i

k

i i

tt t

t

t

t



       

   



 


      (1) 

The arguments x  and y  in the above formula are 

omitted for the sake of compactness. 

Let ( )X  and (Y)  denote the sets of admissible 

allocations of the resource amounts X and Y, respec-

tively, among the elements of system S by players D 

and A: 

 1

1

( ) =  ,...,      :     0,      ,    ,
n

n
n i i

i

X x x x i N x X



 
    

 


 

 1

1

( ) =  ,...,       :     0,      ,    .

n

n
n i i

i

Y y y y i N y Y



  
    

  


 

Then, the problem of player D (the Defender’s 

problem) is to find a resource allocation 
*x X  min-

imizing the overall risk (i.e., the risk characterizing the 
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vulnerability of the entire system). It can be formally 

written as

  

 

*

1

  Argmin lim ,  ,  

argmin lim ,  ,  .

tx X

n

i
tx X i

x x y t

x y t



 

 

 
                 (2) 

This problem with constraints imposed on the ei-

genvalues of the mutual influence matrix of elements 

was solved in the paper [8]. For the problem statement 

under consideration, it is required to identify, with suf-

ficient accuracy, the current values of local risks and 

the functional dependencies  ,  , x y   and, moreover, 

to quantitatively characterize the mutual influence of 

local risks. These tasks can be extremely labor-

intensive and even impossible for real systems. There-

fore, a topical problem is to find general risk manage-

ment principles for a complex network system in order 

to achieve risk reduction even under incomplete in-

formation. The paper is devoted to solving this prob-

lem for trees. 

The remainder of this paper is organized as fol-

lows. Section 1 briefly reviews mathematical models 

of failure propagation in complex networks. Next, 

Section 2 provides a general statement of the risk 

management problem in a complex system with a tree 

structure. A suboptimal solution of this problem is 

proposed in Section 3. The prospects of further re-

search are discussed in the Conclusions. 

1.  MATHEMATICAL MODELS OF FAILURE PROPAGATION 

IN COMPLEX NETWORKS: A BRIEF REVIEW 

In the most general case, the structure of a complex 

system can be considered a complex network of arbi-

trary topology. A successful attack on some element of 

a system (in other words, its failure) will be compre-

hended as the occurrence of an event under which this 

element ceases functioning. For the sake of simplicity, 

we analyze only the binary case in this paper: an ele-

ment can be completely functional or nonfunctional. 

Many models have been developed to investigate vari-

ous destructive effects (including targeted attacks on 

vertices and edges) in such networks, and new ones 

are proposed regularly. Risk assessment models of 

failure propagation are widely used when studying 

various complex systems, such as cyber-physical     

[9–17], computational [18–19], and social-medical 

[20–22]. 

Early models described the development of failures 

caused by non-targeted (e.g., random) influences. 

Among them, the best-known ones are the error resili-

ence model [23–25], the forest fire model [26–28] and 

its derivatives, cellular automata-based models [29–

32], and percolation models with random attacks [33]. 

The latter have several modifications in which destruc-

tive influences on network vertices and edges are tar-

geted. These include percolations with targeted attacks 

[34–36], percolations with localized attacks [37–40], 

and k-core percolations [41–43]. 

The above failure propagation models combine 

well with the classical models of risk management in 

complex Defender–Attacker networks [44–46]. Recall 

that such models describe a conflict between two 

players (the Defender and Attacker) with opposite 

goals concerning the system under consideration. The 

Attacker spends available resources from some limited 

pool to disable the system. In turn, the Defender at-

tempts to counteract the Attacker. In classical formula-

tions, the Defender optimally allocates the resources 

among system elements to minimize its overall risk. 

However, this player can alternatively modify the sys-

tem structure to achieve the same goal. Other models 

are required to describe such a scenario. 

For example, the models of cascading error propa-

gation [47, 48] cover structural changes, but such 

changes are not supposed targeted. The possibility of 

an intentional structure change is envisioned in models 

modified to the case of two interconnected networks 

[49–51]; meanwhile, this possibility applies only to 

the edges connecting the networks to each other. 

Thus, the existing modeling apparatus is insuffi-

cient to manage the structure of a complex system, 

including minimization of its overall risk. In this paper 

and several previous studies, we focus on calculating 

the influence of the structure on risk, without regard to 

the resources allocated. 

For this purpose, the basic problem (2) has been re-

formulated: the search for an optimal resource alloca-

tion to the elements of a fixed-structure system has 

been replaced by the search for an optimal placement 

of elements in some given structure and comparison of 

the structures. Dealing with this problem head-on 

seems impractical due to its high computational com-

plexity, so we find approximate solutions for various 

structures in ascending order of their complexity, 

namely: 

1) simple chain (see the analytical solution in [52]), 

2) star (see an approximate solution with a guaran-

teed error in [53]), 

3) tree (considered here), 

4) an arbitrary structure (the solution will be con-

structed by generalizing the results established for 

simpler structures). 

Note that the general efficient management prob-

lem of a complex system under uncertainty is equiva-
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lent to the problem of risk minimization, where risk is 

understood as a measurable deviation from the maxi-

mum effective (target) mode of functioning of this 

system [2]. The mathematical equivalence of the prob-

lems was shown, e.g., in the paper [54]. No doubt, the 

problem of synthesizing or improving the structure of 

a controlled system (in particular, an organizational 

system) does not come to resource allocation, and risk 

is only one of the key performance indicators of its 

functioning. Nevertheless, when achieving the goals of 

a control system, risk should be considered the most 

significant indicator. 

2.  RISK CONTROL IN A COMPLEX SYSTEM WITH A TREE 

STRUCTURE: PROBLEM STATEMENT 

Suppose that a protected system includes n ele-

ments 1,..., ,ns s S n  . Let two numbers be as-

signed to each element:  0 0, 1ip  , denoting the eigen 

probability of a successful attack on the ith element, 

and 0, ,iu u    denoting the damage amount in-

flicted in case of a successful attack on the ith element. 

Definition 1. The eigen risk of the ith element is 

the value 
0 0.
is i iu p   ♦ 

We define a structure  , , ,mW G V E T T V    , 

where  ,G V E  is a directed graph with a vertex set V 

and an arc set E, and T is a subset of V (further called 

the perimeter). This paper considers structures with a 

perimeter consisting of exactly one vertex. 

Definition 2. A vector sequence 

   

   
 

0 101 0 11 1

1 1

, , , , , , ,

, , , , , , ,

, , , 0 ,

l L

q q

l lq L Lq

l

B b b b b

b b b b

b L q l

   

  

  

 

is said to define a directed tree with m leaves if:  

 The number  , 1,..., ,li lb i q  indicates the number 

of outgoing arcs for the corresponding vertex. 

 The number L  is the length of the maximum path. 

 The number , ,lq l L  determines the number of 

vertices at layer l  (the path from the tree root to such 

vertices has length l );  

 
1

0 ( 1)

1

1;   0;
lq

l l i L

i

q q b l q m






     ; 

 1 2 ... 0
LL L Lqb b b    . ♦ 

Definition 3. The system structure generated by a 

sequence B is a tree with m leaves, denoted by 

 , ,mW G V E T   , if 

     

 

01 11

( 1)1

0 0 0

1 1 1

0...

1 1

...

... ;

i

L iL

b bq

j ij

j i j

bq

ij

i j

V v v v

v



  

 


   



 



 

   

   

01 11

( 1)1

0

0.

1

..

0 0 0

1 1

0... 0

1 1

( ( ...

... ( ; .

, ) , )

, )

i

L iL

j

ij

b bq

i ij

j i j

bq

i

i j

E v

v

v v v

v T v


  

 


  



  



 

Figure 1 shows a tree with four leaves at the third 

layer as one example. Note that a special case of a tree 

with 1,    , 0li lb q m l L l     , is a star with m rays. 

The corresponding types of structures have been con-

sidered previously in [53]. 

 
 

 

 
Fig. 1. A tree with m = 4 and L = 3. Vertex numbers are unique and 

reflect a simple path to the perimeter: it includes all vertices with numbers 

representing the subrows of the vertex number under consideration. 

 

Definition 4. A bijective mapping 
1 :M S V   is 

called a placement of elements of S in a tree mW . The 

corresponding inverse mapping :M V S  is called 

the projection of the tree mW  into the set of elements 

S. ♦ 

Note that such a mapping exists only if the number 

of vertices in the graph G(V, E) is equal to the number 

of elements in the protected system. In the case of an 

infinite number of vertices, the sets V and S must be 

countable. 



 

 
 

 

 
 

MATHEMATICAL PROBLEMS OF CONTROL 

 

26 CONTROL SCIENCES   No. 2 ● 2025 

Definition 5. The overall risk of a system with a 

set of elements S, placed in a tree mW  via a bijective 

mapping 1 : ,M S V   is the value 

     

 

 

 

01

0

111 1

0 0...

1

1

1 1 1 1

, , ‍

‍. ... ‍. .

o j

L ii L

ij ij

b

m M v M v
j

bbq q

M v M v
i j i j

S W M







   

     

     



  

        (3) 

Let the protected system include a set of elements

 1 2, ,..., , ,nS s s s n   with the corresponding eig-

en probabilities of successful attack, 

 
1 2

0 0 0, ,
ns s sP p p p , and damage amounts 

 
1 2
, ,..., .

ns s sU u u u  Suppose also that possible at-

tack paths are given by a tree ( , ),mW G V E T , 

where 
1

.
L

l

l

q n


  Then the overall risk minimization 

problem of the protected system is to find a placement 

M
 -1 

of elements of S in the structure Wm  such that 

1( , , ) min.mS W M                       (4) 

For the special case m = 1, the exact solution has 

been described in [52]. For the case 

1 , 0q m l L l    , a suboptimal solution with an a 

priori bound of the relative error has been obtained in 

[53]. In this paper, we similarly derive such a bound 

for trees. 

3. THE OPTIMAL PLACEMENT OF ELEMENTS IN A TREE 

STRUCTURE: AN APPROXIMATE SOLUTION 

Suppose that for all system elements, the damage 

amounts in case of a successful attack are equally es-

timated:     1,...,
is

u u i n   . Then problem (4) takes 

the form 

     

    

0 0...

0... 0

1
1

0 1 1

min.

, ,

....

k ki

ij

i

q bL

m M v M v
k i j

M v M v

S W M u p p

p p




  


   




   


 (5) 

In addition, we require that the expression 

        0 0... 00...

1

0 1 1

....
k ki

iij

bL

M v M v M vM v
k i j

q

p p p p


  

    

is finite for any values of L and Lm q . For this pur-

pose, let the eigen risks of all system elements be 

bounded above by a value called the marginal eigen 

risk; see the definition below and [53]. 

Definition 6. The marginal eigen risk of an ele-

ment of a protected system placed in a structure 

 , ,mW G V E T    is the value 

0
max

1

u

m
 


. ♦ 

Note that under the constraint 
0
max

1

1
ip p

m
 


, 

we have the inequality 

 

 

1

1
1

0 0
max max

0 1 1

, ,

.

kik

m

bqL
k

k i j

S W M

u p p u






  

 

 
   
 
 

 
         (6) 

In formula (6), equality is achieved at L = ∞ for 

any finite m. Due to the construction of (6), the upper 

bounds on the increment of the overall risk for a star 

[53, Table 2] when moving away from the perimeter 

will remain true for trees as well. This fact is im-

portant: as expected, the upper bounds of the relative 

deviation from the optimal solution in the case of an 

arbitrary placement of elements in the structure at a 

fixed distance from the perimeter (given in [53]) can 

be used for trees. 

To confirm this, we carry out a series of numerical 

experiments by analogy with [53]. Let us impose the 

following constraints: 

     

     

   

0... 0...

0...

0...

0 0
( ) ( )

1 ( 1)

0
( )

1

0
( )

1

1,..., , 1,..., , 0,..., 1

1,..., , 1,..., , 0,..., 2

1,..., , 1,..., .

0

1

1

i ij

ij

ij

ш

M v M v

M v

l

M

k ki

k ki

L L i

v

l L

u

i q j b k L

i q j b k L

i q

p p

u
p

m

u
p

m

j b



 



 




 



 




  

 

 





    




   


 


 

   We generate the expressions (3) for all placements 

obtained by permuting elements at a fixed distance k 

from the perimeter, starting from k = 1 (the first and 

farther layers). For each k, it is necessary to consider 

the cases 2,...,kq m  corresponding to trees with kq  

vertices of the kth layer. Then we analyze all possible 

absolute values for the difference of these expressions 

and find a global maximum for each of them. Dividing 

the resulting value by the minimum of the difference  
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of these two expressions yields the relative deviation. 

The maximum of such deviations is an upper bound on 

the relative error of the solution of problem (5). 

The table represents the resulting values of the rel-

ative error for small trees. 

Figure 2 shows the behavior of the relative error 

values at layers 1–4 depending on the number of out-

going arcs at the current layer and the number of 

leaves in the tree. These are the subsets 01

0 1{ }
b

j jv   

(Fig. 2a),  
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(Fig. 2c), and  
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 (Fig. 2d). Note that it is 

similar to the behavior demonstrated by the values of 

the maximum risk increase under a given value of the 

marginal eigen risk. (For details, see Table 2 of the 

paper [53].) Namely, at the first layer the error grows 

with the number of leaves in the tree. At the second 

and farther layers, when the number of leaves is m ≥ 5, 

the error decreases monotonically. Monotonicity is 

violated for a small number of leaves. This phenome-

non was briefly described in [53]. We will not investi-

gate this issue in more detail: the main objective is to 

develop risk management methods for complex net-

work structures with thousands of vertices and edges. 

Note that the experimental values of the relative 

deviation decrease monotonically with the distance to 

the perimeter. Therefore, to construct a system with an 

overall risk not exceeding the minimum possible one 

by more than 6.07% (the upper bound in Fig. 2b), it 

suffices to select, in an optimal way, an element for 

placing in the perimeter vertex and elements for plac-

ing in the first layer’s vertices. Under the above condi-

tion     1,...,
is

u u i n   , these are the vertices with 

the smallest eigen risks. Such an error is acceptable for 

a wide class of systems. When a higher level of pro-

tection is required, one should select 2q  additional 

elements from the unplaced ones with the smallest 

eigen risks and place arbitrarily the remaining ele-

ments in the vertices 

     
01 11
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\ ‍
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. Then one should 

find the optimal placement of the selected elements in 

the vertices  
11

0

1 1

ibq

ij

i j

v
 

, e.g., by calculating 3 !q  val-

ues of the overall risk for all possible permutations of 

elements at the second layer. In this case, the error of 

the resulting solution will be below 1.32%.   
 

The estimated relative error of solving the problem of optimal element placement  

in vertex subsets of a tree structure. The values are rounded up to the fourth decimal. 

The number of 

vertices in the 

subset 

Vertex subset 
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Three leaves (m = 3) 

2 0.3095 0.0585 0.0119 0.0030 

3 0.1548 0.0434 0.0088 0.0022 

Four leaves (m = 4) 

2 0.3750 0.0571 0.0107 0.0025 

3 0.2500 0.0461 0.0086 0.0020 

4 0.2000 0.0607 0.0107 0.0024 

Five leaves (m = 5) 

2 0.4223 0.0553 0.0097 0.0021 

3 0.3168 0.0468 0.0082 0.0018 

4 0.2563 0.0591 0.0098 0.0021 

5 0.1709 0.0515 0.0085 0.0018 

Six leaves (m = 6) 

2 0.4588 0.0535 0.0089 0.0018 

3 0.3671 0.0466 0.0077 0.0016 

4 0.2997 0.0574 0.0090 0.0018 

5 0.2248 0.0512 0.0080 0.0016 

6 0.1899 0.0607 0.0091 0.0018 
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(a)  

 

 

(b)  
 

 

(c)  

 

 

(d)  

 
Fig. 2. The estimated relative deviation from the optimal element placement in subsets of a tree structure depending on the number of its leaves:  

the upper bounds in the vertex subset of the first layer (Fig. 2a) correspond to the maximum risk increment in the star structure (i.e., when the number of 

branches and leaves coincide); the upper bounds for the vertex subsets of layers 2–4 (Figs. 2b–2d) are the values obtained in [53] for a star structure with four 

rays (Fig. 2b) and two rays (Figs. 2c and 2d). 

 

 

CONCLUSIONS 

This paper continues a series of research works de-

voted to the influence of the internal structure of a 

complex system on its overall risk. To achieve the ob-

jective of the study, the problem of optimally placing 

protected system’s elements in a given structure has 

been formulated. This problem statement allows con-

sidering the influence of the system structure on its 

risk regardless of the resources allocated (as in the 

classical Attacker–Defender problem). A direct meth-

od to solve this problem seems ambiguous, and we 

have decided to analyze different structures sequen-

tially in ascending order of their complexity. 

Chains have been considered in [52]. The general 

solution presented therein is a preference criterion to 

select a system element for placing in the vertex of a 

simple chain depending on its position to the perime-

ter. A star structure (one perimeter vertex and an arbi-

trary finite number of simple outgoing chains, particu-

larly of infinite length) has been investigated in [53]. 

Upper bounds have been derived for the relative error 

of the problem solution under an arbitrary placement 

of elements starting from some distance to the perime-

ter. 

In this paper, the upper bounds for star structures 

have been generalized to arbitrary trees. For this pur-

pose, we have introduced a vertex designation system 

to indicate explicitly the path to the current vertex 

from the perimeter; have formulated the problem of 

optimal placement of system elements in the tree 

structure; and have calculated upper bounds for the 

relative error of the problem solution for trees with a 

small number of branches and leaves. Also, the behav-

ior of these bounds has been analyzed when increasing 

the number of leaves and branches. According to the 

conclusions, the solution errors do not exceed the up-

per bounds obtained previously for star structures. 

The results of this paper can be applied, e.g., in 

risk management for computer networks with variable 

topology, such as fog computers [55] or wireless mesh 

networks [56], in security system design [57], and 

many other fields. The approach proposed allows as-

sessing to what extent rearranging the topology of a 

computer network (in another example, the structure 

of a security system) influences its overall protection; 
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the upper bounds derived allow estimating the overall 

risk of the system. 

The next stage of research works will deal with ar-

bitrary-topology structures with a single-vertex perim-

eter. 
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