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Abstract. This paper proposes an approach to reducing significantly the computational com-

plexity of optimization problems in the design of integrated rating mechanisms (IRMs). The 

background concepts are introduced. The representability of a given discrete function as some 

IRM is proved. The decomposition procedure for a particular training example on some parti-

tion of input parameters is considered, and the following results are established under some re-

strictive conditions. First, an IRM matrix for a particular example of an input data set can be 

designed by maximizing a certain polynomial. Second, a set of given examples can be imple-

mented by some IRM matrix. Third, an IRM can be implemented on a training data set in a cer-

tain complete binary tree based on the decomposition method. Fourth, some discrete function is 

implemented through a given complete binary tree if the discrete functions represented by con-

volution matrices are implemented in each node of this tree. All these results are rigorously 

formulated and proved. An illustrative example of the decomposition procedure based on a 

complete binary tree on three leaves is given. We propose a method for finding IRMs that im-

plement a given training set in the space of all possible complete binary trees based on the 

branch table. In addition, we describe the decomposition procedure according to the branch ta-

ble for each partition of input parameters. Finally, the advantages of the proposed method are 

outlined.  
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Training models based on precedents is a well-
known practice [1–3] going beyond the field of ma-
chine learning. In recent years, the development of 
training procedures for integrated rating mechanisms 
(IRMs) has attracted the attention of researchers. 

IRMs are widely used as multidimensional assess-
ment and ranking systems for management and control 
in organizational and production systems [4–9]. When 
used for complex systems (e.g., organizational and 
production systems), the integrated rating procedure 
allows dealing with the typical difficulties of complex 
object assessment [10, 11]. The basic application of 
IRMs is ordinal ranking or classification with a prede-
termined number of classes for a finite set of mul-
ticriteria alternatives [12–14]. The main components 
of IRMs are a binary tree and convolution matrices, 
which yield a complex assessment based on the values 

of several input indicators. Recently, several ap-
proaches have been proposed to design (in other 
words, identify) convolution matrices by a particular 
binary tree [15, 16]. This paper introduces a design 
approach that further develops the method outlined in 
[15]. The approach under consideration is intended to 
settle the difficulties associated with the complexity of 
solving the optimization problem during IRM matrix 
design. For this purpose, we adopt the decomposition 
method of discrete functions. Also, a topical problem 
is finding a set of IRMs implementing a given data set. 

Many researchers showed interest in the possibility 
of functional decomposition. For example, A.N. Kol-
mogorov [17] and V.I. Arnold [18] studied the de-
composability of continuous functions. For the class of 
discrete functions, V.S. Vykhovanets [19] constructed 
the decomposition procedure of algebraic functions 
and analyzed the identification problem of a discrete 
system using a spectral decomposition; for example, 
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see [20]. The complexity of the representation of 
Boolean functions was investigated by S.V. Ya-
blonsky [21]. In the paper [22], A.V. Kuznetsov con-
sidered repetition-free Boolean functions. Also, we 
emphasize the work [23] on multicriteria assessment 
by V.A. Glotov and V.V. Pavel’ev; the authors de-
scribed the application of decomposition to construct a 
criterion-target structure. V.N. Burkov and I.V. 
Burkova with colleagues studied the dichotomous 
function representation [24, 25] in terms of solving 
discrete optimization problems, including application 
to complex assessment. 

 

Consider a finite set of indicators L ⊂ ℕ, |L| = l, to 
rate some object on a discrete scale or rank several 
objects. For the IRM identification problem, assume 

that there is a finite set Ki ⊂ ℕ of possible values of 

each indicator i ∊ L, where ki ∊ Ki is an assessment of 
an individual parameter. The vector k = (k1,..., kl)

T
, the 

set of all assessments, describes any possible state of 

the assessed objects. Also, there is a finite set KL ⊂ ℕ 

of possible integral values (ranks or classes) kL ∊ KL 
for any k. Thus, we have some discrete function 

( ) : D Lf K K  . Here, 1 2 ...D lK K K K     is the 

(definitional) domain, with × denoting the Cartesian 

product of sets, and LK  is the codomain (range) of the 

function. This paper focuses on the discrete scales of 
indicators and values obtained in the nodes of a convo-
lution tree [12]. A function f defined on a set KD and 
taking values in a set KL is a mapping of KD into KL 
such that each element x of the domain KD is related to 
at most one element of the codomain KL.  

Definition 1. An IRM with a binary tree and ma-

trix convolutions is a function ( ) : D Lf K K   for 

which indicators L are leaves of a complete binary 
tree, i.e., a digraph G = (V, E): 

 ˆV L L  , where ˆ { 1,...,2 1}L l l   . 

 { }ijE e V V   :  

– \{2 1}i V l   ˆ! \{ }j L i   1ije  , \t V j 

0ite  ; 

– j L  i V  0ije  ; 

– ˆj L  !{ , } \{ } \{ }r c V j V j   : 1rje   , 1cje   ; 

and ˆj L   (an inner node of the tree, including its 

root):  

o a finite set Kj ⊂ ℕ with possible values kj ∊ Kj, 
K2l-1 = KL, and 

o a convolution matrix

{0,..., 1}, {0,..., 1}
[ ]

l r
j jrc j r K c K

M m K
   

  ,

{ , } \{ } \{ }r c V j V j   : 1lje  , 1rje  , are giv-

en. ♦  

Potentially, this definition can be extended to fuzzy 
[26] or continuous scales. For some IRM, by analogy 

with [15], let Mf = {Mj}j∊L denote the set of all its con-
volution matrices. This paper is devoted to IRMs with 

a single scale such that ∀ j ∊ V Kj = KL. For L ⊂ ℕ, we 
introduce the following notations: Г2(L) is the set of all 
complete binary trees on named leaves from the indi-
cator set L; IRML,2 is the set of all IRMs for any par-

ticular binary tree G ∊ Г2(L); IRML,G ⊆ IRML,2 is the 
set of all IRMs with such a tree. According to Defini-
tion 1, a complete binary tree in this paper is under-
stood as a tree in which each node has either none or 
two child nodes. 

Based on the definitions given in [15], we denote 
by q = (k, kL) an individual training example consisting 
of the assessments for each indicator and the integrat-
ed rating for a given set of indicator values and by Q 

⊂ KD   KL a training set of the provided examples. A 

training set is compatible if { , }q q Q   k k . A 

training set is complete if Dk K   :q Q 

( , )Lq k k . A training set is given in a single scale if 

∀ i ∊ L Ki = KL. For arbitrary elements { , } Dk k K ,  

the relation k k  means i L   i ik k . For an arbi-

trary set Q ⊂ KD   KL, we present key notions con-

cerning the identification problem. First of all, we 
formalize the implementability problem of a training 
set. 

Definition 2. A function f(·) ∊ IRML,2 implements 

a set Q if and only if ∀ q ∊ Q f(k) = kL. ♦  
We introduce the following notations: IRML,2(Q) is 

the set of all IRMs implementing a set Q; IRML,G(Q) is 
the set of all IRMs that implement Q and are based on 

a binary tree G ∊ Г2(L). If IRML,2(Q) ≠ ∅, then the set  

is implementable based on an IRM; if IRML,G(Q) ≠ ∅, 
then the set Q is implementable based on an IRM with 
a structure G. Definition 2 can be narrowed to one par-

ticular training example: a function f(·) ∊ IRML,2 im-

plements some example q  Q if and only if f(k) = kL; 
the sets IRML,2(q) and IRML,G(q) are defined by analo-
gy. 

For some finite set K ⊂ ℕ, we write its normalized 

representation: {0,..., }K s , 1s K  . Then x K   

the unitary representation is given by 
T(0,...,0,1,0,...,0)

x s x

x


 . This paper deals with IRMs 

with a single scale. Then for any pair 2{ , } {0,..., }x y K , 

where x and y are the chosen matrix column and row, 
respectively, the convolution result with a matrix

2{ , }
[ ]rc r c K

M m K


   is described by the matrix equation 



 

 
 

 

 
 

y Mx . Below, we also adopt the so-called quadratic 

representation ( , )Mx y , simplifying it to Mxy . 

 

The paper [15] proposed an approach to identify-
ing IRMs with a training mechanism on discrete data. 
It involves a mechanism for constructing an optimiza-
tion functional based on input data and a complete 
binary tree. This approach to the identification prob-
lem causes difficulties when solving the optimization 
problem with large-dimension input data. The degree 
of the optimization polynomial grows linearly with the 
number of input parameters, and the number of gen-
eral constraints of the optimization problem grows 

exponentially: 2κ _lCn ex num , where Cn is the 

number of general constraints; κ K  is the indicator 

value scale for the parameters in a single scale kL; 
ex_num is the number of examples in the set Q; final-
ly, l is the number of parameters. 

As an alternative, the identification problem can be 
solved in steps using the separating decomposition of 

the function 1 2( ) ( , ( ))f X X a X , where Σ  and a  

are some functions and 1X  ∩    = ∅ are the subsets 

resulting from the separation of the set X ; for details, 
see [19]. The decomposability of any continuous func-
tion of n variables into a superposition of continuous 
functions of fewer variables was studied by A.N. 
Kolmogorov and V.I. Arnold. In particular, for two 
variables, it was proved in [17, 18]. The paper [17] 
obtained the following theoretical result: any continu-

ous function of 3n   variables can be represented as 

a superposition of some continuous functions. V.A. 
Glotov and V.V. Pavel’ev [23] established the repre-
sentability of a discrete function of n variables in the 
binary (separating) form. In the case of IRMs, it is 
easy to show (see the Appendix) the decomposability 
of a given function in a complete binary tree under 

unfixed value scales ki ∊ Ki ∀ i ∊ {1,..., l – 1}: due to 
the finiteness of kL, the value scale of functions de-
composing a given discrete function is also finite. 
Thus, identification problems are sequentially formu-
lated and solved for the decomposition procedure in 
each node of the tree from the set Г2(L). 

Following [27], let the indicator decomposition 

structure of an arbitrary tree  2G L  be denoted by 

   1 1
Λ { }i i ,..,l

G L
 

 , where  1 1i ,...,l   iL L  is 

the set of leaves (indicators) of a subtree with root 

node i . Then 1L L  and  1 1i ,...,l    2iL  . 

Consider a given complete set Q  and a given tree 

 2G L . For any set  ΛiL G  such that 2iL   

and its subgroup    Λ :ir ic ir ic iL ;L G L L L  . 

Consider tuples 
   ir irL L

k ,k  and 
   ic icL L

k ,k  of any ad-

missible indicator values from the sets irL  and icL , 

respectively. For some subset of indicators L L , we 

denote by 
    λ
L L\L

k ,k  the partition of the tuple of 

indicators k  of some training example  Lq k ,k  into 

two tuples. Due to its complete binary structure, each 

tree from G ∊ Г2(L) can be assigned the set of indica-

tors Li; then      
ir ic

i L L
k , k   is the partition of the 

tuple of indicators in node i of the tree G. In each tree 
node, the component functions decomposing the dis-

crete function ( )( )
ii Lk  will be named in accordance 

with the partition and the numbering of matrices locat-
ed in the tree nodes implementing the component 

functions of ( )φ ( )
ii Lk . For example, consider the parti-

tion     1 2 3 4
λ

, ,
k ,k ; the components of the two sub-

functions are named as follows: 1 1 2φi _k k  and 

2 3 4φi _k k . For convenience, we may also name the 

components of the discrete function ( )φ ( )
ii Lk  in ac-

cordance with the partition λi  as ( )φ ( )
irr Lk  and 

( )φ ( )
iсc Lk . If the partition consists of an individual leaf 

and a group, i.e.,     1 3 4
λ

,
k ,k , we encode only the 

components 1 3 4φ ,i _k k  where {1,..., 1}i l  . Con-

sider an illustrative example for the proposed ap-
proach. 

Example 1. Consider the case |L| = 3, |KL| = 2 and the 
training example q = ((0, 0, 0), 0). The unitary representa-

tion is 
1 1 1 1

, , , .
0 0 0 0

q
         

          
         

 

First, we analyze the implementability of some discrete 

function 
1 1 2 3φ ( , , )k k k . Let the decomposition functions be 

named using the partition     1 1 2,3
λ ,k k  

0 0

00 01

1 10
00 012 _ 00

1 0 0
2 _ 00 10 11

1 1

10 11

1 1

1 1 1 1

0 01 1

1 1

m m

m m

m m

m m



     
     
         

                   
         

 

with the following unitary conditions: 
2{ , } {0, 1}i j 

0 11 1 1ij ijm m  , 1 {0,1}t

ijm  , 0 1

2_ 00 2_ 00 1   , 
2_ 00φ {0, 1},t   

{0,1}t  . Simple transformations lead to the system 

0 0 1 0

2_ 00 00 2_ 00 101 1 1m m   ,                       (1) 

0 1 1 1

2_ 00 00 2_ 00 101 1 0m m   .                       (2) 



 

 
 

 

 
 

System (1), (2) is easily solved using binarity con-

straints, e.g., 0

2 _ 00φ 1  and 
0

001 1m  . We have a part of the 

optimization problem corresponding to the example q = ((0, 

0, 0), 0). ♦ 

Let P( λi
, q) denote the function on the left-hand 

side of equation (1). Due to the unitary approach, there 
exists a unique such function for any example q. In 
addition, Qi is the data set obtained from the original 
one Q by selecting only the columns where the func-

tion 
( )φ ( )

ii Lk  is defined. 

Proposition 1. For any sets L ⊂ ℕ and K ⊂ ℕ and 
any possible example q in a single scale, there exists a 

homogeneous polynomial P( λi
, q) of a degree not 

exceeding 3 that can be represented as the sum of
φ_numk  unique components: 

_

1

λ( , )

num

i j
j

P q p


 


, _{1,..., }numj    , 

_

1

num

j j d

d

p m




    , {1,..., φ_ }d num  . 

Here, the notations are the following: φd  is the func-

tion components decomposing the function ( )φ ( )
ii Lk ; 

mj is one tuple component in some cell of the unitary 

encoded matrix 
iM ; q is an example from Qi; φ_ num  

= 1 when a branch and a leaf are connected to the 

matrix;φ_ num  = 2 when a branch pair is connected 

to the matrix; 

(λ , ) {0, 1}iP q  ; 

( )φ ( )
ii Lk  implements q ⇔ P( λi , q) = 1. 

The proof of Proposition 1 is given in the Appen-
dix. 

For the function ( )φ ( )
ii Lk , at each step of the de-

composition procedure, we form an appropriate set Qi 
from the set Q based on the leaves corresponding to 

the partition λi . 

Example 2.  Within the conditions of Example 1, we 

add another training example 2q  = ((0, 1, 0), 1) based on 

the same partition 
    1 1 2 3,

k ,k  . Its unitary representa-

tion is 2

1 1 1 1
, , ,

0 0 0 0
q

         
          

         

. Then we have the set 

of operations 

0 0

00 01

1 10
00 012 _ 00

1 0 0
2 _ 00 10 11

1 1

10 11

1 1

1 1 1 1

0 01 1

1 1

m m

m m

m m

m m



     
     
         

                   
         

,  

0 0

00 01

1 10
00 012 _ 00

1 0 0
2 _ 00 10 11

1 1

10 11

1 1

1 1 1 0

0 11 1

1 1

m m

m m

m m

m m



     
     
         

                   
         

 

with the following unitary conditions: 
2{ , } {0,1}i j   

0 11 1 1ij ijm m  , 1 {0,1}t

ijm  , 0 1

2_ 00 2_ 00 1   . A compari-

son of the equations written for the first and second training 

examples shows that the values 2_ 00φ  and 2_ 01φ  must be 

compatible. Therefore, when constructing the function 

( )φ ( )
ii Lk  implementing the examples 

1q  and 
2q  simultane-

ously, we require T

2_ 00 2_ 01 0   . ♦ 

Corollary 1.  For any sets L ⊂ ℕ and K ⊂ ℕ and 

any possible Qi ⊂ K
l+1

 with a single scale, the discrete 

function ( )( )
ii Lk  implements the set Qi if 

( , )
i

i i

q Q

P q Q


   for any possible example q in the 

single scale considering the compatibility of the func-

tions ( )φ ( )
irr Lk  and ( )φ ( )

iсc Lk  for all examples in the 

set Qi.  
The proof of Corollary 1 is given in the Appendix. 
If two branches join the matrix under considera-

tion, then φ_ num  = 2 and the compatibility of the 

functions ( )φ ( )
irr Lk  and ( )φ ( )

iсc Lk  should be verified 

for each branch. 

Proposition 2.  For any sets L ⊂ ℕ and K ⊂ ℕ, the 

mechanism 
,2 ( )GIRM q  is represented as a decomposi-

tion of the function 1( ,..., )lf k k  and implements a set 

Q ⊂ K
l+1

 if the function ( )φ ( )
ii Lk  for some partition 

sequence  Λ G  corresponding to the tree G imple-

ments the set Qi,  for i ∊ {1,..., l – 1}. 

Corollary 2. If (λ , )
i

i i

q Q

P q Q


 , ∀ i ∊ {1,...,         

l –1}, then IRMG,2(Q) = Ø. 
The proofs of Proposition 2 and Corollary 2 are 

given in the Appendix. 
Thus, if the optimization problem 

1

1
, ,

Argmax ( , )
rc r cm q Q

P q
  

  has a solution such that

1

1 1(λ , )
q Q

P q Q


 , we can continue the decomposition 

procedure to the next tree node with the found compo-

nents of the discrete function 
11 ( )φ ( )Lk . On this way, 

11 ( )φ ( )Lk  and the found values of the matrix M1 can be 

used for the decomposition procedure on the subtrees 

   1 1 Λr cL ;L G  on the indicator values  1rL
k  and 

 1cL
k , respectively. This approach sequentially yields 



 

 
 

 

 
 

the vectors ( )φ ( )
ii Lk  and the matrix Mi, ∀ i ∊ {1,...,         

l –1} for the structure  Λ G .  

Example 3. Consider the initial data below.  

Table 1 

Initial data for the decomposition procedure 

q 1k  
2k  

3k  
4k  

Lk  

1 0 0 0 0 0 

2 0 1 0 0 1 

3 1 1 0 0 0 

4 0 0 1 0 1 

5 1 1 1 0 1 

6 0 1 0 1 1 

7 1 0 1 1 0 

8 1 1 1 1 0 

 
First, we analyze the implementability of the function

1 1 2 2 3 4( , ( , , ))f k k k k   ; if 
11 ( )( )Lk  is available in the 

given scale 
Lk , we proceed to the implementation of the 

discrete function 
22 ( )φ ( )Lk . Let the first-step partition be 

    1 1 2 3 4
λ

, ,
k ,  k . The equations for the first example of 

the first step have the form 
0 0

00 01

1 10
00 012 _ 000

1 0 0
2 _ 000 10 11

1 1

10 11

1 1

1 1 1 1

0 01 1

1 1

m m

m m

m m

m m



     
     
         

                   
         

 

with the following unitary conditions: 
2{ , } {0,1}i j   

0 11 1 1,ij ijm m  1 {0, 1}t

ijm  , 0 1

2_ 000 2_ 000 1   , 

2 000 {0 1}t

_ ,  , {0,1}:t   

0 0 1 0

2_ 000 00 2_ 000 101 1 1,m m    

0 1 1 1

2_ 000 00 2_ 000 101 1 0.m m    

Next, using the scheme described in Example 1, we de-
rive equations for all examples: 

0 0 1 0

2_ 000 00 2_ 000 101 1 1m m   ; 0 1 1 1

2_100 00 2_100 101 1 1m m   ;

0 0 1 0

2_100 01 2_100 111 1 1m m   ; 0 1 1 1

2_ 010 00 2_ 010 101 1 1m m   ;

0 1 1 1

2_110 10 2_110 111 1 1m m   ; 0 1 1 1

2_101 00 2_101 101 1 1m m   ; 

0 0 1 0

2_ 011 01 2_ 011 111 1 1m m   ; 0 0 1 0

2_111 01 2_111 111 1 1.m m    

The corresponding optimization problem is 
0 0 1 0 0 1

2 _ 000 00 2 _ 000 10 2 _100 00

1 1 0 0

2 _100 10 2 _100 01

1 0 0 1 1 1 0 1

2 _100 11 2 _ 010 00 2 _ 010 10 2 _110 10

1 1 0 1 1 1 0 0

2 _110 11 2 _101 00 2 _101 10 2 _ 011 01

1 0 0 0

2 _ 011 11 2 _111 01 2 _11

1 1 1

1 1

1 1 1 1

1 1 1 1

1 1

m m m

m m

m m m m

m m m m

m m

    

  

      

      

    1 0

1 111 max.m 

   (3) 

In addition, there are constraints due to conflicts be-
tween equations for different steps. For example, from the 
expression 

0 0

00 01

1 10
00 012 _ 000

1 0 0
2 _ 000 10 11

1 1

10 11

1 1

1 1 1 1

0 01 1

1 1

m m

m m

m m

m m



     
     
         

                   
         

 

for the first example and  

0 0

00 01

1 10
00 012 _100

1 0 0
2 _100 10 11

1 1

10 11

1 1

1 1 1 0

0 11 1

1 1

m m

m m

m m

m m



     
     
         

                   
         

 

for the second one, we write 

0 0

2_ 000 2_100

1 1

2_ 000 2_100

1

0



      
              

 or 

2_ 000 2_100 0   ; 
2_ 000 2_ 010 0   ; 

2_110 2_100 0   ;

2_ 000 2_101 0   ; 
2_110 2_ 011 0   ; 

2_110 2_111 0   . 

The solution of problem (3) is the matrix 

1

1 0

0 1

0 1

1 0

M

    
    
    
    
    
     

 and the vector 

2

1 0 0 1 0 0 0
, , , , , , .

0 1 1 0 1 1 1

              
                

              
 Based on these 

values of the discrete function 
22 ( )φ ( )Lk , we compile a data 

table for the second step of the decomposition procedure of 

the function 
2 3 3 1 2( , ( , ))f k k k   , placing the values of 

the function 
22 ( )φ ( )Lk

 
in column 

Lk ; see Table 2. 

 

Table 2 

Data on the second step of the decomposition 

procedure  

q 
2k  

3k  
4k  

Lk  

1 0 0 0 0 

2 1 0 0 1 

3 0 1 0 1 

4 1 1 0 0 

5 1 0 1 1 

6 0 1 1 1 

7 1 1 1 1 

 

Let the second-step partition be 
    2 4 2 3

λ
,

k ,k . The 

equation for this partition has the form 



 

 
 

 

 
 

0 0

00 01

1 10
00 013_ 00

1 0 0
3_ 00 10 11

1 1

10 11

2 2

2 2 1 1
.

0 02 2

2 2

m m

m m

m m

m m



     
     
         

                   
         

 

with the following unitary conditions: 
2{ , } {0, 1}i j 
 

0 12 2 1ij ijm m  , 2 {0,1}t

ijm  , 0 1

3_ 00 3_ 00 1   , 

3_ 00φ {0, 1}t  , {0, 1}t  : 

0 0 1 0

3_ 00 00 3_ 00 102 2 1m m   ,  

0 1 1 1

3_ 00 00 3_ 00 10 0b b   . 

The resulting set of equations is 
0 0 1 0

3_ 00 00 3_ 00 102 2 1m m   ; 0 1 1 1

3_10 00 3_10 102 2 1m m   ; 

0 1 1 1

3_ 01 00 3_ 01 102 2 1m m   ; 0 0 1 0

3_11 00 3_11 102 2 1m m   ; 

0 1 1 1

3_10 10 3_10 112 2 1m m   ; 0 1 1 1

3_ 01 10 3_ 01 112 2 1m m   ; 

0 1 1 1

3_11 01 3_11 112 2 1m m   .  

The corresponding optimization problem has the form  
0 0 1 0 0 1

3_ 00 00 3_ 00 10 3_10 00

1 1 0 1 1 1

3_10 10 3_ 01 00 3_ 01 10

0 0 1 0 0 1

3_11 00 3_11 10 3_10 10

1 1 0 1 1 1

3_10 11 3_ 01 10 3_ 01 11

0 1 1 1

3_11 01 3_11 11

2 2 2

2 2 2

2 2 2

2 2 2

2 2 max.

m m m

m m m

m m m

m m m

m m

  

  

  

  

  

             (4) 

In addition, the analysis of conflicts between equations 
for different examples gives the constraints 

3_10 3_ 00 0   ; 3_ 01 3_ 00 0   ; 3_ 00 3_11   . 

The solution of problem (4) is the matrix 

2

1 0

0 1

0 0

1 1

M

    
    
    
    
    
     

 and the vector 3

1 0 0 1
, , , .

0 1 1 0

        
          

        
 

Obviously, the discrete function 
3 1 2( , )k k  needs no 

further decomposition. The result is 
3

1 0

0 1

0 1

1 0

M

    
    
    
    
    
     

. ♦ 

 

When finding all structures on l leaves from the set 
Г2(L), we should check equivalence groups; see the 
corresponding mechanism in [27]. Based on the analy-
sis results, the number of partitions at each step can be 
reduced by eliminating leaf combinations non-
implementable in a given scale kL. It is convenient to 
summarize the results in a branch table. This is a com-
pact step-by-step representation of leaf combinations 
for implementability analysis within the decomposi-
tion procedure.  

If some leaf combinations are admissible by the 
analysis results of equivalence groups, we compile the 
branch table starting from the groups with two leaves, 

2i| L | . Taking only the admissible leaf combinations 

reduces the number of structures considered. Thus, we 
list the checked groups of three leaves. If there are no 
two-leaf groups among the admissible ones, the fur-
ther procedure becomes pointless: it means that no 
terminal matrix (a matrix taking values of two leaves) 
can be designed within the given scale.  

The admissible groups are placed in the branch ta-
ble. The admissible groups consisting of two and indi-
vidual leaves form combinations of three leaves, 

3i| L | . The resulting branches are placed in the table 

column corresponding to their group name. Next, the 
admissible groups consisting of three, two, and indi-

vidual leaves form combinations with 4i| L | , yield-

ing branches of four leaves 4i| L | . Note that starting 

from 4i| L | , we consider the branches included in 

the equivalence group analysis results and placed in 
the branch table. In other words, the branches with 

2i| L |  are designed from the admissible branches 

with fewer leaves. The resulting branches are placed in 
the table column corresponding to their group name. 
The procedure continues until reaching the tree root, 

i| L | l . As a result, any tree  2G L  whose struc-

ture  Λ G  belongs to the list of admissible leaf 

groups must be considered in the IRM identification 
problem for the training set Q.  

A certain tree  2G L  consisting of admissible 

subbranches is considered using the branch table as 

follows. The partitions λi  are sequentially taken from 

the table column with the largest number. The optimi-

zation problem 
1

, ,

Argmax ( , )
rc r c

i
m q Q

P q
  

  is constructed for 

the set Q and each partition i . If it has a solution 

within the admissible scale, the matrix Mi is saved, 

and the resulting values of the functions ( )φ ( )
irr Lk  and

( )φ ( )
iсc Lk  are used to find a solution for the sub-

branches of the partitions λi . After examining all the 

partitions λi  in the table column with the largest 

number, the consideration proceeds to the column with 
the lower number.  

This approach has the following advantage: if the 

problem 
1

, ,

Argmax ( , )
rc r c

i
m q Q

P q
  

  is unsolvable, we can 

exclude from further consideration the entire family of 

subbranches generated by the partition λi . For exam-

ple, if there is no solution in the scale kL for 

    1 1 2 3 4
 λ

. .
k ,  k   (see Table 3),  we  can  exclude  the  



 

 
 

 

 
 

Table 3 

An example of the branch table 

# 0 1 2 3 4 5 

Li 1 2 2 3 3 4 1 2 4 2 3 4 1 2 3 4 

λi  1 2 2 3 3 4 4, 1 2 4, 2 3 3, 1 2 4 

  

    

2, 3 4 1, 2 3 4 

              1 2, 3 4 

 

 

structures M1l1M2l4M3l2l3 and M1l1M2l2M3l3l4, 

neglecting decompositions 
    2 3 1 2

λ
,

  k ,  k  and

    2 1 2 3
λ

,
  k , k . For details, we refer to the paper 

[27]. 

This paper has considered an approach to design-

ing integrated rating mechanisms based on separating 

decomposition. The branch table has been proposed as 

a decomposition scheme. In contrast to the approach 

described in [15], optimization problems are sequen-

tially constructed and solved for each IRM node; ac-

cording to Proposition 1, the optimization polynomial 

does not depend on the number of input parameters. 

In each node of the complete binary tree, the degree 

of the polynomial does not exceed 3. Due to these 

properties, the optimization problems are quickly 

solved by an optimizer. For example, Gurobi 9.5.0 

[28] solves the optimization problem with 8 quadratic 

constraints and 16 general constraints (the first step of 

the second example) in 30 ms on a PC with AMD 

Ryzen 7 4800H processor and 16GB RAM. The pro-

posed approach has another advantage as follows: if 

some step of the decomposition procedure of a dis-

crete function yields no solutions in a given scale, this 

procedure becomes pointless to continue (the problem 

will be unsolvable in this scale). Further research will 

deal with sorting the most promising solutions from 

the general solution pool for a given function. 

P r o o f (the separating decomposability of some dis-

crete function of n variables under unfixed parameter value 

scales). 

As mentioned above, in some complete binary tree, an 

IRM is defined through a set of convolution matrices Mf = 

{Mj}j∊L. In the IRM structure, the convolution operation

i i jM x y  is performed using each matrix Mi. Each individual 

matrix Mi implements some discrete function ( )φ ( )
ii Lk . For 

an arbitrary tree  2G L , the indicator decomposition 

structure consists of    1 1
Λ { }i i ,..,l

G L
 

  so that 

 1 1i ,...,l  
 iL L  is the set of leaves (indicators) of a 

subtree with the root node i . The set 
iL  has some sub-

groups    Λir ic ir ic iL ;L G : L L L  . In general, the 

dimension of the matrix
iM  required to implement the dis-

crete function ( )φ ( )
ii Lk  on the partition 

    
ir ic

i L L
k , k   is 

unknown. Based on the description of equivalence groups 

[27], the number of equivalence groups for the partition 

,i  and hence the corresponding dimension of the matrix

iM , cannot exceed the number of combinations encoded 

by the indicators of the subsets  ir ir
jL j L

K K


  and 

 iс iс
jL j L

K K


  for the subsets of row and column indica-

tors, respectively. It may be necessary to place examples in 

the matrix
iM  on different cells, each corresponding to a 

different equivalence group of the current decomposition 

step. That is, in the worst case, an individual matrix cell 

should be provided for each training example. In other 

words, any subset of variables for a discrete function con-

tains a finite number of combinations of their values; this 

number is an estimate of the maximum number of matrix 

rows or columns. Consequently, the dimension of some 

discrete function ( )φ ( )
ii Lk  will not exceed ( )iLK , 

ir ic iL L L . Thus, at each decomposition step of the func-

tion f, the dimension of the matrix
iM , i ∈ l – 1, is sufficient 

to implement the function ( )φ ( )
ii Lk  by construction. This 

matrix design approach ensures that the IRM constructed 

from any admissible complete binary tree will implement 

the given function f. ♦ 

P r o o f of Proposition 1.   

Due to the unitary notation, the operation within an 

IRM with an individual set of indicator values is represent-

ed as some stepwise function 0 1( ,..., )lf k k   
decomposable 

in some set of partitions  Λ G . At each decomposition 

step (at each node of the tree G), the discrete function 

( )φ ( )
ii Lk  is defined on a subset of leaves 

iL  in the partition 

i  based on an example set Qi  constructed from the set Q 



 

 
 

 

 
 

by selecting leaves of the corresponding subsets 
iL . There-

fore, the dimension ( )iLk  is determined based on the subset 

iL  where the function ( )φ ( )
ii Lk  is defined. The function 

( )φ ( )
ii Lk  is a matrix operation on an individual matrix, 

Ty Mx , where the vectors x  and y
 
have dimension   and 

the matrix M  have dimension κ κ . Obviously, each such 

operation yields a vector of dimension κ  ∊ ℕ containing 

the components of an individual matrix cell. An example of 

this operation on a matrix Mi is as follows: 

0 0

00 01

1 10 0
00 01

1 10 0

10 11

1 1

10 11

1 1

1 1( ) ( )

( ) ( )1 1

1 1

i i

i i

m m

m my q x q

y q x qm m

m m



    
    

       
    

       
   
    

.  

That is, the final result of the operation Ty Mx  will also 

be a vector of dimension κ . Each component of this vector 

will be represented by a homogeneous polynomial of de-

gree 3 since two branches join the matrix at each step. The 

vectors x  and y can be both some functions (the compo-

nents of ( )φ ( )
ii Lk ) and leaves, and the values of all leaves 

are given by unitary vectors. Hence, the final degree of the 

polynomial will not exceed 3, retaining only the terms not 

multiplied by the zero components of the leaf vector. Each 

polynomial term will have the form 
_

1

num

j d

d

m




 , where jm  

is one component of the tuple in some cell of the unitary 

encoded matrix M . The uniqueness of each term also fol-

lows from the essence of the described operation.  

The cells of all matrices must contain unitary vectors. 

Therefore, each component of the vector defined by the 

operation Ty Mx  can be either 0 or 1. With the scheme

Ty Mx  and the given values of the function f, we obtain the 

equations 

0 0

00 01

1 10 0 0
00 01

1 1 10 0

10 11

1 1

10 11

1 1

1 1( ) ( ) ( )

( ) ( ) ( )1 1

1 1

i i i

i i i

m m

m my q x q K q

y q x q K qm m

m m



    
    

         
      

         
   
    

. 

That the function ( )φ ( )
ii Lk  implements a single exam-

ple q from the set Qi actually means T φ ( ).i iy M x q  Since 

the vector φ ( )i q  is unitary, the resulting vector of the oper-

ation Ty Mx  has only one component equal to 1, the same 

as in the vectorφ ( )i q ; all others components must be 0. 

That is, T Tφ ( ) 1i q y Mx  .  

Denoting by P( λi
, q) the polynomial corresponding to 

the vector component determined by the function φ ( )i q  

(must equal 1), we establish all items of Proposition 1. ♦ 

P r o o f of Corollary 1. 

According to the proof of Proposition 1, the function 

( )φ ( )
ii Lk  implements some training example q ⇔ P( λi

,   

q) = 1. Hence, if all 
iQ  examples are implemented, we 

have ( , )
i

i i

q Q

P q Q


  . ♦ 

P r o o f Proposition 2. 

For any L ⊂ ℕ and K ⊂ ℕ, any set Q ⊂ K
l+1

 according 

to some sequence of partitions  G  on a tree G from the 

set of complete binary trees G2(L), and the function 

1( ,..., )lf k k  can be represented as a superposition of func-

tions of fewer variables ( )φ ( )
ii Lk , ∀ i ∊{1,.., l – 1}, defined 

on the datasets Qi obtained from the set Q. Indeed, all com-

ponents of the function ( )φ ( )
ii Lk , ( )φ ( )

irr Lk  and ( )φ ( )
icc Lk , 

are obtained from the function ( )φ ( )
ii Lk , ∀ i ∊{1,..., l – 1} 

by construction, and the values of the function 
11 ( )φ ( )Lk  are 

defined through the set Q. ♦ 

P r o o f of Corollary 2. 

By Proposition 2, the function
1( ,..., )lf k k  as a super-

position of functions of fewer variables ( )φ ( )
ii Lk , ∀ i 

∊{1,..., l – 1}, can be constructed through the sequential 

optimization max (λ , )
i

i

q Q

P q


  with finding at each step the 

function ( )φ ( )
ii Lk , ∀ i ∊ {1,..., l – 1}. We have the values of 

the function 
11 ( )φ ( )Lk  from the set Q; we calculate the val-

ues of the functions ( )φ ( )
irr Lk  and ( )φ ( )

iсc Lk , ∀ i ∊ {2,...,      

l – 1}, for each decomposable function based on the func-

tion ( )φ ( )
ii Lk . If the problem is unsolvable at any step i for 

some of the 
iQ  examples, it will have no solution for the 

components of the function ( )φ ( )
ii Lk  as well. Consequent-

ly, IRMG,2(Q) = Ø. ♦ 
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