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Abstract. This paper considers the topical issue of ensuring the availability of unmanned vehicles
(agents) in a dynamic technical system (DTS) within an intelligent transport environment. The
problem of uneven load distribution among agents, causing inefficient energy consumption and
reducing the total operating time of the system, is studied. This problem is solved by proposing an
optimization model that includes an objective function (maximizing the total operating time of the
entire DTS) and a set of constraints describing the available energy of each agent. The key aspect
of the model is to ensure the uniform distribution of the energy load among all agents. The opti-
mization problem is solved using the CP-SAT Boolean Satisfiability algorithm with integer con-
straints. According to the experimental results with the CP-SAT algorithm, there is an interesting
phenomenon, i.e., a correlation between the sampling step (the time interval during which the
algorithm searches for an acceptable solution) and the execution time of the optimization pro-
gram. Based on this correlation, a heuristic method for changing the sampling step is proposed.
The study is primarily focused on the performance of the model and optimization algorithm in
real conditions of robotic transport systems with exogenous disturbances. According to the testing
results, the model demonstrates good performance on virtual agents with completely known sys-
tem parameters and on a group of real agents (wheeled robots), where the system parameters are
subject to disturbances.
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INTRODUCTION

The development of models and methods for im-
proving the efficiency of a group of autonomous de-
vices (agents) in a dynamic technical system (DTS)
within an intelligent transport environment is an im-
portant field in robotics. This includes the current
tasks of controlling the energy resources of individual
agents and the entire group: the efficiency of task ful-
fillment, functionality, and autonomous operation time
of the system directly depend on its energy and the
scenarios for using this energy. The technical feasibil-
ity of reassigning tasks or exchanging resources be-
tween agents in a group motivates researchers to de-
velop approaches where the energy reserve and tasks
fulfilled by an individual agent within a DTS are treat-
ed as a single distributed asset.

One area of application for such approaches could
be intelligent DTSs involved in the industrial process
of an enterprise. Their important characteristics are
functional safety and availability. According to GOST
R IEC 61508-4-2012 [1], functional safety is “part of
the overall safety relating to the EUC [equipment un-
der control] and the EUC control system which de-
pends on the correct functioning of the E/E/PE [elec-
trical/electronic/programmable electronic] safety-
related systems, other technology safety-related sys-
tems and external risk reduction facilities.” Availabil-
ity is “the ability of an object to perform the required
functions under specified conditions, at a specified
time or during a specified period, given that all neces-
sary external resources are provided”; see GOST R
27.102-2021 [2]. In this paper, an inoperable state of
an unmanned vehicle (UV) is understood as a state in
which it cannot fulfill tasks due to energy depletion.
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Availability directly affects the completeness of
DTS safety [3]. Let us explain this statement with an
example. Suppose that the energy of a UV fulfilling a
task in a robotic transport system of an enterprise is
close to zero (e.g., the batteries are almost discharged).
In this case, the UV becomes inoperable (unavailable),
and one should urgently remove all tasks from it and
transfer it to a safe state, since an abnormal termina-
tion of the task may have dangerous consequences.

On the other hand, for economic reasons, it is de-
sirable that the downtime of a UV in the system be
minimal, i.e., the DTS operation scenarios should be
aimed at increasing the utilization factor [2] of vehi-
cles. In this paper, the downtime of a UV is under-
stood as a state in which the vehicle cannot fulfill
tasks due to energy depletion or because it has not
been assigned a suitable task in terms of resource utili-
zation. Thus, the energy-efficient distribution of tasks
among mobile agents in the DTS of an enterprise is
important, both for ensuring the safety of the DTS and
for increasing the economic efficiency of the entire
enterprise.

Depending on the problem specifics, it can be for-
mulated as a mathematical assignment problem, a
knapsack problem, a bin packing problem, etc. The
problem belongs to the class of NP-complete ones.
Algorithms for solving such problems are known (e.g.,
dynamic programming algorithms); given a definite
set of constraints and an objective function, the algo-
rithms yield a solution in a reasonable time (if the so-
lution exists), considering the agent’s resources and
constraints on the problem parameters.

Current research is mainly focused on specifying
the type of objective functions and constraints, as well
as on selecting effective optimization algorithms. For
example, optimal task assignment among mobile ro-
bots in order to optimize the charge-discharge cycle of
individual agents was investigated in [4], taking into
account weather conditions and their routes. The mod-
el developed therein includes such parameters as ve-
locity, acceleration, and payload. Gradient methods for
global optimization [5] and a heuristic “auction proce-
dure” for local optimization were used as optimization
algorithms. As concluded by the authors, the local ap-
proach based on predicting operating time and energy
reserve has higher flexibility and is less computation-
ally intensive. Hence, this approach is preferable for
complex scenarios. The energy consumption of a ro-
botic cell system in an enterprise was considered in
[6]. The model covers the velocity of the robots, their
placement within the cell, the energy-saving modes
supported, and possible operation chains. The optimi-
zation problem was solved using mixed-integer linear
programming (MILP) and hybrid heuristics for large

systems based on the Gurobi library [7]. According to
the experiments conducted on a real system, energy
consumption can be reduced by 20% by optimizing
the sequence of operations and applying energy-saving
modes. A simulation model of a group of robots ful-
filling tasks with the redistribution of energy resources
between them was studied in [8]. The model was
transformed into an assignment problem with an ob-
jective function that minimizes the total task fulfill-
ment time in the form of a linear norm; the Hungarian
algorithm [9] was applied for optimization.

In addition, there are sufficiently many surveys of
the subject, which emphasize the mass scale and topi-
cality of energy optimization. Methods for improving
energy efficiency in robotic and mechatronic systems
were systematically reviewed in [10]. The main atten-
tion was paid to reducing the dimension of optimiza-
tion problems by using approximate models. As noted,
in most real systems, it is impossible to obtain an exact
solution of the optimization problem.

The above review of methods for ensuring the en-
ergy efficiency of robotic systems was complemented
in [11], albeit with the focus on objective functions
and the expected gain of optimization rather than on
the mathematical aspects of solving the corresponding
optimization problem. The authors described in detail
methods for optimizing robotic systems and temporal
and sequential planning approaches to minimize ener-
gy consumption. Particular attention was paid to issues
of controlling the robot’s hardware and software envi-
ronment and the need for their joint analysis to im-
prove energy efficiency.

All publications emphasize the importance of
choosing an adequate model for applying mixed-type
algorithms with heuristics (which reflect the structure
of the object or objective function) in order to reduce
the search space when solving the optimization prob-
lem.

This paper considers optimization issues for energy
consumption in a DTS, where UVs fulfill a certain set
of tasks. Tasks are assigned to DTS agents by a con-
trol center, with which UVs exchange information.
UVs operate independently of each other. Each task
requires certain UV resources (e.g., load capacity for
transporting cargo or tank volume for transporting lig-
uids). A resource characterizes the task but not the UV
fulfilling the latter, and the UV resources involved in
the task are independent. The system is open in terms
of the number of agents, tasks, and resources, i.e., the
number of UVs and tasks in the system and the UV
resources available to fulfill a task at the next discrete
time instant may change. (An example of a change in a
UV resource is the installation of a tank of a different
volume.)
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We proceed to another important assumption. Let
the DTS under consideration be compact, i.e., the
characteristic scale of the system is much smaller than
the path traveled by the UVs during operation. Then it
is possible to neglect the issues related to the spatial
location of agents (e.g., the implementation of task
transfer between UVs) and focus on various static
constraints on task fulfillment by an agent.

The objective function in an optimization problem
depends on the system usage scenario, and this paper
considers a scenario aimed at maximizing the utiliza-
tion factor of the DTS.

Theoretical approaches to solving such problems
are well-known, but they are often tested only on
computer models; at the same time, the behavior of a
real system can significantly differ from an idealized
computer model. The goal of this work is to test
known optimization algorithms on a real DTS model,
i.e., to develop a system energy consumption model
that is applicable to a wide range of DTS agent param-
eters and requires no special tuning for each agent.

As underlined in the literature, the MILP algorithm
[12] is an effective optimization algorithm for such
problems. In this paper, we use the MILP implementa-
tion in the OR-TOOLS library [13]. The MILP algo-
rithm is supplemented with a heuristic block that esti-
mates the sampling step based on indirect characteris-
tics; according to the authors’ observations, this ap-
proach reduces the amount of computations and inter-
ference in the system operation. The constraints are
the minimum and maximum values of resources con-
sumed when fulfilling tasks on DTS agents, the “affin-
ity” of tasks with each other, and restrictions on the
launch of tasks on certain agents. The objective func-
tion is a concave (quadratic) function with a restriction
that the variables are integers [14].

In addition to the main problem (optimizing energy
consumption), the partial problem solved is to distrib-
ute tasks among DTS agents during the initial task
assignment. In this case, to accelerate computations,
some constraints may be discarded, or optimization
may be skipped; as a result, the problem can be solved
using linear programming methods.

This paper considers a mathematical model for
controlling a group of DTS agents (ground robots)
with task reassignment among them. The control mod-
el ensures the system’s availability for a long time by
optimizing the energy consumption of individual UVs
and maximizing the availability factor. The model
takes into account constraints on task fulfillment, both
in terms of fundamental feasibility and in terms of the
necessary resources available to UVs.

A distinctive feature of this work is that the math-
ematical model is tested not only on virtual agents but
also on an experimental mock-up, i.e., a group of
wheeled robots. This approach allows assessing the
applicability of the model for practical needs and iden-
tifying the characteristics of real DTSs that should be
included in the model.

1. PROBLEM STATEMENT AND SYSTEM MODEL

When building a DTS model, various requirements
may be imposed on it, depending on both the object
and the experience of the model developer. But the
main requirement should be the model’s capability to
reflect the intra-system interaction of those agents that
influence the energy characteristics of the system [15].
The model presented below follows this principle.

1.1. Basic Provisions

Let a DTS Z consist of a finite set of agents
S ={s;},i=1,..., B, which fulfill a certain set of tasks
®={¢},1=1..., N, at each time instant. To fulfill
these tasks, the agents have certain divisible resources
of different types at their disposal: R={r;}, r; >0,
i=1...,B, j=1...,M, where i and j denote the
agent’s number and the resource type, respectively. In
the general case, for each set, several static constraints
can be defined on the admissible range D for the sys-
tem.

A definite amount of resources of different types is
needed to fulfill each task, which is described by a

mapping
Q(d)) :d >R @
The tasks are reassigned in the system using some
impact (control) U ={u;}, i=1...,N, so for clarity,

we will equip the mapping of the tasks set @ into the
agents set S with the subscript u:

L,(¢):® S, 2)

The mappings Q and L, may include definite

static constraints on resource use and task assignment.
At any time instant, the state of this system is giv-
en by the tuple

E=(S,R,Q L,). ®3)

We will consider the memoryless system, i.e., a
system where the mapping L, (¢) is determined only
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by the current state of the system, regardless of the
history of transitions to this state.

Given an initial state =, of the system, optimal

control consists in selecting such an impact U that
will optimize an objective function of certain phase
coordinates (parameters) of the system. As the only
parameter of the system, we will take the vector

E={e},i=1...,N, which represents the energy of

this system. The energy of a UV in a physically realiz-
able system is a smooth or piecewise smooth function;
therefore, it is possible to pass from continuous to dis-
crete time, compute the energy on a certain grid, and
then approximate the result.

Let the system states at time instants k+1 and k
be related by

Eva= FD (Ek’ Uk+1) d (4)

where the subscript D means that the constraints are
taken into account.
We define a mapping

9(E)>E, (5)

which allows computing the change in the system en-
ergy under a known task assignment among agents.

By assumption, given the state of the system = at
time instant k, its state at time instant k+1 is de-
scribed by the difference equation

E.=E +0g(E,), 0<a<l, (6)

We introduce a control efficiency function of the
form
f(Eq, Uyan): ()
At each time instant, an optimal decision is made
to transition the system to the next state, and the over-
all control optimality criterion is calculated as the sum
of the ones at each time instant. Then the optimization
is additive, and the objective function takes the form

Z =iminD(f(Ei,UM)). (8)

According to the operating scenario (see the Intro-
duction), the utilization factor of UVs should be high
enough; therefore, control should distribute the load
evenly among all UVs in the system. The load is cal-
culated as the ratio of the agent’s energy to the energy
consumed for all tasks assigned to the agent. In this
case, it is logical to take the minimum energy variance
across the agents in the system as an estimate of the
control efficiency f. This is defined by a quadratic

form of the objective function, ECE", with a symmet-

ric matrix C =0 of dimensions nxn. For a suffi-
ciently small o, the objective function has a unique
fixed point to which the solution will converge [16],
and the convergence rate is linear.

Owing to the assumption of independent tasks and
resource types, optimization can be carried out sepa-
rately for each resource type.

In most real cases, this optimization problem can-
not be solved analytically [17], and there are also
known difficulties in assessing the stability and con-
vergence of the algorithm due to the presence of dis-
turbances. Nevertheless, as practice shows, numerical
optimization methods quickly yield a very small value
of the error function [18, p. 153].

There exist established algorithms for the numeri-
cal solution of such problems; some of them were
overviewed in [19, 20]. To solve the optimization
problem of the above class, in this paper, we choose
the well-proven MILP method [13] with heuristics
considering the features of the controlled object and
the objective function.

1.2. Model Description

Using the formalism introduced by equations (1)—
(8), we consider the system Z of UVs capable of ful-
filling certain tasks. The UVs in the model are not
supposed to be homogeneous: each vehicle has indi-
vidual technical characteristics. Additional constraints
may be imposed on resources and UVs intended for
fulfilling certain tasks, i.e., not all UVs are equally
suitable for fulfilling specific tasks. In real UVs, con-
straints can be both quantitative (e.g., each UV has an
individual maximum load capacity) and qualitative,
related, e.g., to the absence of a particular sensor or
equipment on the UV. In the method developed, con-
straints can be considered by specifying an admissible
range D for resources and tasks (see Table 1). By
assumption, each task is characterized by an individual
set of resources consumed.

At the initial time instant, each UV (agent) has a
certain initial energy reserve (e.g., battery charge);
during the DTS operation, this reserve does not in-
crease (i.e., batteries are not recharged or replaced). It
is necessary to assign tasks among UVs by maximiz-
ing the time during which all UVs will have a positive
energy reserve.

Suppose that there are B UVs and N tasks. Un-
less otherwise specified, the subscripts b and i will
denote the UV number and the task number, respec-
tively.
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We introduce the following notation:
e E (t) is the UV’s energy at time instant t.
Since no energy comes to the system, E, (t) is a non-

increasing function.
1if task i isfulfilled

by UVb at time instantt
0 otherwise.

o h(i,b,t)=

e D, is the specific power (per unit of resource)
consumed when fulfilling task i. For simplicity, as-
sume that p; is independent of the resource value.

e 0, isthe current consumption of a given type of

resource on the UV when fulfilling the taski .

Let us divide the operating time of the system into
intervals t, =t ., —t,, k=1..., K, so that during each
interval, the energy consumed to fulfill task i is de-

scribed by the simple linear relation [21]
Aty = =P, (tea —t)-

During the time interval 7, the change in the en-
ergy of an individual UV can be written as

N
By (ta) — B (t) = ZAeibkh(i’ b, t, ),

i=1

k=1..., K,

and the change in the energy of the entire DTS during
the time interval © takes the form

B N

E(tea) - E(t) =2 D Aeyh(i b, ),

b=1 i=1

k=1..., K.

To define the mappings (1) and (2), we introduce
the following additional designations:

e I, is the minimum resource value required to
fulfill the task (e.g., the minimum load that the UV
must carry or the background load of computing
units).

e Ry, is the maximum resource value when ful-
filling the task.

e C, is the UV resource specifications (load ca-
pacity, onboard processor frequency, etc.).

e «;, =0.8C, is the setting for a high load level.

e Ay, =0.1C, is the setting for a low load level.

o A(gy,)=H (ki —0y)+H(dp —K;) is the set-
ting function, where H(x) indicates the Heaviside
function.

e S; is the coefficient reflecting the priority of the
task.

Table 1 presents the constraints D on the distribu-
tion of resources and tasks among agents.

As mentioned above, the objective function is con-
vex, but for a real system it has a more complex form

and includes a set of Boolean functions depending on
the system parameters (Table 2).

Table 1
The list of constraints implemented in the model
No. Constraint Comment
1 N The energy consumed by all tasks during time t
ZAeibkh(i, b, t )< Ep (t) does not exceed the agent’s available energy
i=1 Eb(t)
2 The UV’s characteristics allow the task to be

N
Z fp <Gy
i1

fulfilled. The minimum resources required by
all tasks assigned to the agent do not exceed the
latter’s available resources.

Without this constraint, the system may have
“overloading” during operation.

number of agents in the DTS

3 | The constraint on the number of agents involved in task reassign-
ment at each time instant, expressed as a percentage of the total -

4 | The constraint on the type of tasks that a given agent can fulfill

The list of agents that can or cannot fulfill the
specified task

5 | The constraints on the joint fulfillment of tasks

For each task, a list of other tasks can be speci-
fied with which it must/must not be jointly ful-
filled.
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Table 2

The list of partial objective functions of the model

Partial objective function

Comment No.

3000 B, i

For all agents b, minimize the risk that if all tasks require the maximum possible | (9)
resource value, the resource will not be enough for UVs considering the priority

i=1 b=1

i=1 of the task
D(Eb (tj , r)) s min Minimize the energy consumption variance (10)
N I, . Strive to assign tasks with greater resource consumption to agents with a higher | (11)
;h(" b, t)C_ —> min reserve of that type of resource
i= b
A(qib) —smin Avoid overloading an agent above level 1 and keep it loaded below level 2 (12)
N B Avoid keeping completely unused agents. (13)
D> (1-h(i, b, t)) > min

> R} min

B
b=0

transfer, etc.

Avoid reassigning tasks that consume significant resources, as such a reassign- | (14)
ment can be difficult in practice.

The constraint implicitly considers the fact that it is generally impossible to in-
stantly remove a task from one agent and assign it to another. The duration and
“cost” of task reassignment may depend on the type of task, the method of task

The general objective function (8) for the DTS
model has the form

z =(ivi min Fi} (15)
i=0

where F; are the partial optimization problems from

Table 2; v; is the weight for the partial optimization

problem under all the constraints from Table 1; finally,
arg means the parameters of optimization.

1.3. An Energy Consumption Optimization Procedure
for the DTS

Finding an exact solution of the optimization prob-
lem (15) is not mandatory; we use an approximate so-
lution obtained in a definite time instead. The algo-
rithm for solving this problem is iterative since the
system = being optimized is dynamic in its nature.
However, by assumption, changes in the system—e.g.,
the emergence of new tasks or the termination of those
fulfilled previously—are discrete. The sampling step is
selected depending on the rate of change of the param-
eters.

The partial objective functions and constraints
specified in Tables 1 and 2 are considered or not, de-
pending on the use scenario of the system being opti-
mized.

In general terms, the solution can be described by
the following sequence of actions.

Step 1. Initialization and initial assignment of tasks
to DTS agents. The initial task assignment algorithm
may neglect some constraints and objective functions
to accelerate the start of the system. With “fast” ini-
tialization, all constraints from Table 1, except for the
third, and the objective function (9) are taken into ac-
count. In this form, the optimization problem is a spe-
cial case of the knapsack problem, which is often
solved using integer linear programming methods.
Some solution methods for such problems were pre-
sented in [12, 22, 23].

If we neglect some partial objective functions and,
accordingly, avoid full optimization, limiting our-
selves to a suitable solution that satisfies the con-
straints from Table 1 and the objective functions (12)
and (13), the assignment problem will reduce to a sys-
tem of linear equations.

Step 2. The main step of the algorithm. It consists
in optimizing task assignment among agents under all
constraints (Table 1) and the objective functions (9)—
(14) (Table 2) of the system. The objective function
(10) is quadratic and has the greatest weight in the
general objective function, i.e., the total value repre-
sents a nonnegative definite quadratic form. For prac-
tical reasons (e.g., due to the presence of disturbances
in the system), it is unnecessary to obtain an exact so-
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lution of the optimization problem; therefore, we use
the Boolean Satisfiability Problem (SAT) algorithm
[24]. It yields an acceptable solution for objective
functions with constraints.

Step 3. Checking the algorithm’s termination crite-
rion (the arrival of new tasks to be assigned among
agents and changes in the number of agents in the sys-
tem). If new tasks appear or the number of agents
changes, then the algorithm returns to Step 1; other-
wise (the composition of agents or tasks remains the
same), it returns to Step 2.

The termination criterion depends on the objective
function specified. For example, if all agents must be
preserved in the system, the termination criterion will
be the depletion of energy for at least one agent; if the
goal is to maximize the utilization factor of UVs, the
termination criterion will be the lack of sufficient en-
ergy to fulfill all tasks at the next time instant.

At all steps of the general algorithm, the CP-SAT
library [25] is used to solve the Boolean Satisfiability
Problem. To simplify the optimization problem at Step
1 of the algorithm and meet the requirements for using
the library [25], the quadratic function is linearized by
introducing auxiliary variables and constraints. A
similar approach was described in [26, 27].

2. MODEL’S PERFORMANCE ASSESSMENT

Assessing the performance of the residual energy
control model for the DTS represents a challenge, as
the performance criteria for real DTSs are largely sub-
jective [17]. To evaluate the quality of this model, test
scenarios were implemented both for virtual agents
(mainly to assess control performance in known “ide-
al” conditions) and for an experimental mock-up, i.e.,
a group of real agents (wheeled robots) with disturb-
ances and parametric uncertainties.

The initial assessment was carried out for groups
of virtual agents in two trivial scenarios to easily de-
sign optimal control in terms of a given objective
function and verify the correctness of the model.

Example 2.1. The DTS consists of homogeneous
agents, all tasks are identical, and the number of tasks is a
multiple of the number of agents. Obviously, the optimal
solution for ensuring even system load with the maximum
system lifetime is the uniform task assignment among
agents.

Example 2.2. The DTS consists of agents, one of which
has significantly higher energy resources than the others.
All other agents are homogeneous, all tasks are identical,
and the number of tasks is greater than the number of

agents. The optimal solution for ensuring even system load
with the maximum system lifetime is to load the agent with
the highest energy reserve as much as possible and assign
the remaining tasks evenly among the agents until equaliz-
ing the residual energy of the agents. When the system
reaches this state, the problem will be reduced to that of
Example 2.1. ¢

For all trivial cases, the algorithm proposed and the
program developed demonstrated good performance.
The solution was found in a reasonable time, deter-
mined by the characteristic time constant of the sys-
tem, during which the system (presumably) remained
stationary.

After the model’s tests on trivial examples, com-
plex tasks were considered. The parameters of the cor-
responding examples and their discussion are given
below. Both the virtual and physical agents were taken
in the DTS.

In all examples, the termination criterion was the
system’s incapability to fulfill the required tasks due
to a lack of energy.

2.1. Algorithm's Performance Assessment
Using Virtual Agents

Example 2.3. This example is a complication of Exam-
ple 2.1. There are five agents (DTS1-DTS5) and 15 tasks
(VMO0-VM14). In this system, one of the agents (DTS5) has
a significantly higher energy reserve compared to the others
(by approximately an order of magnitude higher), while the
energy reserves of the latter vary, with a spread not exceed-
ing 400% in absolute value. The energy and resource de-
mands for fulfilling the tasks are also different: tasks VM5
and VM7 consume approximately 20 times more energy
than the others. In general, according to an expert estimate,
the solution for ensuring uniform system load and maximiz-
ing its lifetime is to load agents with high energy reserves as
much as possible; agents with low energy reserves should
have a small load.

Figures 1 and 2 show task assignment among agents and
the ratio of agents’ resources to the tasks assigned to them
as a result of control using the objective function (15). Here,
as well as in Figs. 3 and 4, the free energy reserve of an
agent is indicated by “Free resource.” Obviously, the con-
sumption of the first and second types of resources has an
uneven ratio for different tasks, complicating optimization.

According to Figs. 1 and 2, in general, most of the ener-
gy-intensive tasks are assigned to the agent with the highest
energy reserve. The constraint is the availability of the re-
sources necessary to fulfill the task (constraints 2-5 in Ta-
ble 1). For example, agent DTS5, which has a significant
energy reserve, is assigned task VM7 (see Fig. 1), which
requires the largest energy consumption and satisfies the
resource constraints.
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Fig. 1. Task assignment among agents for the first type of resource. All
resource values are normalized by the resource maximum.

Fig. 3. Task assignment among agents at the start of the system
operation. All resource values are normalized by the resource maximum.

Fig. 2. Task assignment among agents for the second type of resource.
All resource values are normalized by the resource maximum.

Next, Figs. 3 and 4 show the ratio of agents’ energy to
that required for fulfilling the tasks at the start of the system
operation (a full energy charge) and at the final stage (ener-
gy depletion).

Finally, the energy dynamics of the system agents are
presented in Fig. 5.

Obviously, owing to the control of task assignment, the
agents’ energies are gradually equalized, except for DTS1
(see label 1 in Fig. 5). The control effect for “equalization”
is evident for agent DTS5, which initially has the highest
energy reserve. This control strategy is optimal in terms of
ensuring the maximum utilization of agents throughout the
entire lifetime of the system.

Fig. 4. Task assignment among agents at the final stage of the system
operation (energy depletion). All resource values are normalized by the
resource maximum.

& 40

0 10 20 30 40 50
Time, min

Fig. 5. The energy dynamics of system agents during operation. The
horizontal axis corresponds to the time of day whereas the vertical axis to
the UV energy (in J). The sampling step is 60 s.

%
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2.2, Algorithm’s Performance Assessment
on Experimental Mock-Ups

The behavior and performance of the algorithm
were also analyzed on an experimental mock-up of
robotic systems. As a rule, control ideas and algo-
rithms are mainly tested using virtual agents. There are
many models that have been validated only on com-
puter simulators [21, 28, 29]. Obviously, virtual agents
do not provide a complete picture of all physical pro-
cesses in a system, but due to the high cost and com-
plexity, only a small part of the previous R&D work
could be tested on experimental mock-ups [30]. The
current stage in the development of robotic systems is
characterized by cost reduction, mass supply, and high
availability of components for creating intelligent ro-
botic DTSs. Therefore, a significant amount of tests
can now be carried out in laboratory conditions using
comparatively cheap experimental mock-ups, as
demonstrated in this work.

The block diagram of a real agent (wheeled robot)
is provided in Fig. 6, and its components are specified
in Table 3. A general view of the robot can be found in
Fig. 7. The experimental mock-up consists of five ro-
bots (Fig. 8). The system’s Size was determined not by
the computational limitations of the model or the la-
boratory’s conditions but by the ultimate goal (an ex-
pert estimate of control efficiency): for a human, it is
difficult to test a larger number of UVs. The robots
were designed on the ESP32 platform and controlled
by a central computer (including data processing from
all robots and task assignment among them).

Table 3

The list of robot’s components in the experimental
mock-up of the DTS

Designation Purpose Model
in Fig. Fig.
M; and M, | Actuating electric mo- TT motor
tors 36V
U, Ultrasonic sensor HC-SR04
D, Motor driver L9110S
Ki Processing board ESP32DEV
A; Current- and voltage- MCU-219
measuring board
L, LED panel, 256 LEDs MAX7219
E;and E, Rechargeable battery 18650 3.7 V
F, Voltage converter LM2596S

The compactness of the system was ensured as fol-
lows: the robots moved inside boxes, and the distance
to the box walls was measured using ultrasonic sen-
sors; when approaching the walls, the robot randomly
changed its direction of movement.

As in the virtual agents, two types of resources
were used in the tasks: LEDs on the LED panel (with
specifying the number of LEDs lit) and the rotation
speed of the robot’s electric motors. Despite its sim-
plicity, this scenario is common in real systems [4].

Due to technical limitations of the experimental
study, it was impossible to implement differentiated
energy consumption by each resource of a given type
(e.g., use LEDs of different power); therefore, in-situ
experiments were conducted only for scenarios with
uniform consumption of energy by resources of one

=

Fig. 6. The block diagram of a robot for the experimental mock-up of a DTS.
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Fig. 7. A robot of the experimental mock-

Fig. 8. The experimental mock-up with five robots.

up: an enlarged photo.

type per unit of resource (similar to Examples 2.1and
2.2).

Before the experiments began, the specific energy
consumption for both types of resources was meas-
ured, and the energy stored in the batteries was esti-
mated. In particular, the assumption of a linear de-
pendence of energy consumption on the consumed
resource, adopted in most computer simulators [21],
was checked. The energy consumption of each agent
was measured using a special microchip. According to
the measurement results, there is a rather high variance
in specific energy consumption by agents for both
types of resources, comparable to the absolute value of
the measured quantity; however, this is acceptable for
assessing the performance of the algorithm.

The results of the in-situ experimental study are
provided in Figs. 9-12 below. In particular, Fig. 9
shows the average power of agents DTS1-DTS5 when
loaded with several units of the first type of resource
(the number of active LEDs). Similarly, Fig. 10 pre-
sents the average power of agents, over a long period
of time, when using only the second type of resource
(the rotation speed of electric motors). The confidence
intervals correspond to level . To justify the form of
the difference function (6) for the power consumption
values measured, a linear regression was built, with
the number of load units taken as the independent var-
iable.

Note that, unlike the first type of resource (Fig. 9),
“flattening” was observed for the second type of re-

= Linear approximation

0.5

[
50 100 150 200 250
Resource consumption, units

Fig. 9. The dependence of the average power consumption of agents on
their load in resource units when fulfilling a task of type 1.

source at high loads, and the function has a pro-
nounced S-shape. However, for the comparability of
the results with the virtual agents, the linear approxi-
mation was retained.

In the course of the experiments, the linear nature
of energy consumption when fulfilling several tasks
simultaneously was checked. Note that the linear na-
ture of the dependence was confirmed.

Example 2.4. To assess the performance of the algo-
rithm, control was applied to the DTS with real agents (ro-
bots) and, simultaneously, to that with virtual agents with
the same parameters. Figures 11 and 12 show the energy
dynamics of the system with virtual and real agents, respec-
tively, at successive time instants.
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1.6 = Lincar approximation

50 100 150 200 250
Resource consumption, units

During testing on the mock-up, a series of similar exper-
iments were conducted; they showed the repeatability of the
results and the good performance of the algorithm under a
significant spread of DTS parameters (battery capacity, en-
ergy consumption by motors, etc.).

3. A HEURISTIC METHOD FOR CHANGING
THE SAMPLING STEP

Fig. 10. The dependence of the average power consumption of agents
on their load in resource units when fulfilling a task of type 2.

\ — DTSI
25 S DTS2
5 \ DTS3

~ DTS4

. 2 S DTSS
&

Energy, J
»
/
[

Time, min

Fig. 11. The energy dynamics of system agents during operation (the
DTS with virtual agents). The sampling step is 60 s.
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Fig. 12. The energy dynamics of system agents during operation (the
DTS with real agents). The sampling step is 60 s.

According to these figures, in both cases, controlling
task assignment among agents ensured a comparable life-
time (about 15 minutes) for the DTS.

In both cases, control was intended to equalize the ener-
gies of the agents. However, for the simulation model, con-
trol is more “adequate” in the sense of system behavior: at
the junction point of the trajectories (point 1 in Fig. 11), the
energies of all agents are reduced to one level, and the vari-
ance of the system energy is optimized. In a real system,
this does not happen due to the nonlinearity in the energy
consumption characteristics of the second type of resource
(see Fig. 10), errors in determining the specific power, dif-
ferences in the technical characteristics of agents, and other
disturbances.

The convergence and stability of dynamic pro-
gramming algorithms are determined, in particular, by
the choice of the sampling step at which the system is
supposed to be stationary. If the system is described
by a differential equation, this step can be calculated
by specifying an estimate of the local error, e.g., using
Euler’s method. However, during experiments with
the CP-SAT algorithm, we observed a feature of the
algorithm that can be used to conclude on the station-
arity of the system for a given sampling step; as a re-
sult, a heuristic approach can be applied to select the
sampling step.

The heuristic approach consists in the following.
For each sampling step, a time limit for finding a solu-
tion by the CP-SAT algorithm is specified; if the algo-
rithm terminates much earlier than the time limit, the
sampling step is increased; otherwise, it is reset to a
certain default value. This approach is based on the
following considerations: if the state of the system is
stationary during the sampling step, then the values
obtained at the previous time instant are a good ap-
proximation of the initial values for the system param-
eters optimized (task assignment among agents) at the
next time instant, and the algorithm quickly converges
to the optimal solution; otherwise, a lengthy search is
required.

To verify the heuristic approach, the experiments
from Examples 2.3and 2.4 (conducted previously with
a fixed sampling step) were repeated using the algo-
rithm with a dynamically changing step as described
above.

Figure 13 shows the energy consumption for the
DTS with virtual agents (see Example 2.3) with a dy-
namically changing sampling step.

Clearly, the sampling step was small at the start of
the system and after point 1 (the junction of the trajec-
tories). Compared to the uniform step (see Fig. 5), the
number of time instants (the number of interventions
in the behavior of the system) decreased by almost
80%.

The operation of the algorithm for the system from
Example 2.4showed a similar picture, both for virtual
(Fig. 14) and real (Fig. 15) agents.
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Fig. 13. The energy dynamics of virtual agents during operation. The sampling step is T = [30, 480] (s). DTS1-DTS5 are the energy reserve curves of the

corresponding agents, and the orange line shows the dynamic sampling step.
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Fig. 14. The energy dynamics of real agents during operation. The sampling step is T = [60, 180] (s). DTS1-DTSS5 are the energy reserve curves of the

corresponding agents, and the orange line shows the dynamic sampling step.
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Fig. 15. The energy dynamics of real agents during operation. The sampling step is T = [60, 180] (s). DTS1-DTSS5 are the energy reserve curves of the

corresponding agents, and the orange line shows the dynamic sampling step.
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A comparison of Figs. 11 and 14, as well as Figs.
12 and 15, shows that the main control quality pa-
rameter—the system lifetime—differs little between
them, but the number of control instants in the second
case is almost 1.5 times smaller.

CONCLUSIONS AND DISCUSSION

This paper has considered the practical problem of
the optimal assignment of tasks among UVs in an en-
terprise’s intelligent DTS environment in terms of en-
ergy consumption to ensure the availability of this sys-
tem and increase the utilization factor of individual
UVs. It is important both for providing the functional
safety of DTSs and for improving the economic effi-
ciency of the entire enterprise.

To solve this problem, an optimization-based
mathematical model has been developed and imple-
mented, including a special objective function and a
set of constraints on the parameters of the system and
individual UVs. The model assigns tasks among UVs
with the necessary resources and ensures uniform en-
ergy consumption by individual agents. The optimiza-
tion problem has been solved using dynamic pro-
gramming methods with the application of the CP-
SAT Boolean Satisfiability algorithm with integer
constraints [24]. This algorithm has proven effective
in solving such problems if approximate solutions can
be accepted.

The performance of the model has been assessed
both on virtual agents (computer simulations) and on
an experimental mock-up representing a group of
wheeled robots (see Fig. 8). Experience shows that the
current low cost and availability of components make
it possible to quickly create experimental mock-ups in
laboratory conditions, and we believe that testing
models on such mock-ups will become widespread.
Testing on an experimental mock-up is extremely im-
portant since the characteristics of real systems would
hardly be taken into account during computer simula-
tions: all UVs, even from the same batch, differ, and
their characteristics will vary over time; the character-
istic curves for UV parameters included in the model
may differ from the real ones, etc.

Experiments on a real system have confirmed the
effectiveness of control even under a significant varia-
tion in the parameters of same-type agents in the DTS.
The controlled energy dynamics of UVs in the real
system (see Fig. 12) have not converged to a single
trajectory, unlike the computer model (see Fig. 11).
This is probably due to two features of real UVs. First,
although UVs are of the same type, the specific power
per unit of resource varies considerably between them,

even within the same batch. Second, the model as-
sumption on the linearity of energy consumption de-
pending on the resource value is not always true (see
Figs. 9 and 10), and additional calibration of this de-
pendence is required.

While working with the optimization algorithm,
we have discovered the feasibility of tuning the sam-
pling step depending on the algorithm’s time to find an
acceptable solution under all constraints: a reduction
in the running time of the optimization program indi-
cates the possibility of increasing the sampling step.
This heuristic technique requires further research, as it
depends on the system type and the choice of initial
values for the algorithm. However, it seems notewor-
thy: in addition to reducing computational cost, this
technique significantly restricts the control center’s
intervention in the system’s behavior.

On a modern average-speed computer, the model
has demonstrated good performance with a sampling
step (control cycle) of about 15 minutes for a system

with 10* agents and 10° tasks, which is more than
sufficient for an enterprise-level DTS.

A possible direction for further research is to de-
velop adaptive self-tuning algorithms, e.g., a dynami-
cally changing set of components of the objective
function or constraints based on the DTS state data, in
order to improve the efficiency of control.

Optimizing the distribution of DTS energy re-
sources can also be part of the general safety monitor-
ing problem of DTSs [31]. The optimal distribution of
energy resources ceases to be a “black box” for the
safety system, providing it with valuable information
about the current state and its closeness to critical con-
ditions. As a result, the safety monitor can pass from
reactive to predictive safety analysis. In turn, the safe-
ty monitor can act as a meta-regulator that dynamical-
ly adapts admissible ranges in the energy resource op-
timization problem, ensuring that the system finds the
most effective solution within the safe state space.
Such an integrated approach is a prerequisite for creat-
ing complex and simultaneously reliable DTSs.
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