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Abstract. This paper considers the topical issue of ensuring the availability of unmanned vehicles 

(agents) in a dynamic technical system (DTS) within an intelligent transport environment. The 

problem of uneven load distribution among agents, causing inefficient energy consumption and 

reducing the total operating time of the system, is studied. This problem is solved by proposing an 

optimization model that includes an objective function (maximizing the total operating time of the 

entire DTS) and a set of constraints describing the available energy of each agent. The key aspect 

of the model is to ensure the uniform distribution of the energy load among all agents. The opti-

mization problem is solved using the CP-SAT Boolean Satisfiability algorithm with integer con-

straints. According to the experimental results with the CP-SAT algorithm, there is an interesting 

phenomenon, i.e., a correlation between the sampling step (the time interval during which the 

algorithm searches for an acceptable solution) and the execution time of the optimization pro-

gram. Based on this correlation, a heuristic method for changing the sampling step is proposed. 

The study is primarily focused on the performance of the model and optimization algorithm in 

real conditions of robotic transport systems with exogenous disturbances. According to the testing 

results, the model demonstrates good performance on virtual agents with completely known sys-

tem parameters and on a group of real agents (wheeled robots), where the system parameters are 

subject to disturbances.  
 

Keywords: dynamic technical system, availability, optimization, distribution of energy resources, unmanned 

vehicle, safety.  
 

 

 

INTRODUCTION  

The development of models and methods for im-

proving the efficiency of a group of autonomous de-

vices (agents) in a dynamic technical system (DTS) 

within an intelligent transport environment is an im-

portant field in robotics. This includes the current 

tasks of controlling the energy resources of individual 

agents and the entire group: the efficiency of task ful-

fillment, functionality, and autonomous operation time 

of the system directly depend on its energy and the 

scenarios for using this energy. The technical feasibil-

ity of reassigning tasks or exchanging resources be-

tween agents in a group motivates researchers to de-

velop approaches where the energy reserve and tasks 

fulfilled by an individual agent within a DTS are treat-

ed as a single distributed asset.  

One area of application for such approaches could 

be intelligent DTSs involved in the industrial process 

of an enterprise. Their important characteristics are 

functional safety and availability. According to GOST 

R IEC 61508-4-2012 [1], functional safety is “part of 

the overall safety relating to the EUC [equipment un-

der control] and the EUC control system which de-

pends on the correct functioning of the E/E/PE [elec-

trical/electronic/programmable electronic] safety-

related systems, other technology safety-related sys-

tems and external risk reduction facilities.” Availabil-

ity is “the ability of an object to perform the required 

functions under specified conditions, at a specified 

time or during a specified period, given that all neces-

sary external resources are provided”; see GOST R 

27.102-2021 [2]. In this paper, an inoperable state of 

an unmanned vehicle (UV) is understood as a state in 

which it cannot fulfill tasks due to energy depletion. 
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Availability directly affects the completeness of 

DTS safety [3]. Let us explain this statement with an 

example. Suppose that the energy of a UV fulfilling a 

task in a robotic transport system of an enterprise is 

close to zero (e.g., the batteries are almost discharged). 

In this case, the UV becomes inoperable (unavailable), 

and one should urgently remove all tasks from it and 

transfer it to a safe state, since an abnormal termina-

tion of the task may have dangerous consequences. 

On the other hand, for economic reasons, it is de-

sirable that the downtime of a UV in the system be 

minimal, i.e., the DTS operation scenarios should be 

aimed at increasing the utilization factor [2] of vehi-

cles. In this paper, the downtime of a UV is under-

stood as a state in which the vehicle cannot fulfill 

tasks due to energy depletion or because it has not 

been assigned a suitable task in terms of resource utili-

zation. Thus, the energy-efficient distribution of tasks 

among mobile agents in the DTS of an enterprise is 

important, both for ensuring the safety of the DTS and 

for increasing the economic efficiency of the entire 

enterprise.  

Depending on the problem specifics, it can be for-

mulated as a mathematical assignment problem, a 

knapsack problem, a bin packing problem, etc. The 

problem belongs to the class of NP-complete ones. 

Algorithms for solving such problems are known (e.g., 

dynamic programming algorithms); given a definite 

set of constraints and an objective function, the algo-

rithms yield a solution in a reasonable time (if the so-

lution exists), considering the agent’s resources and 

constraints on the problem parameters.  

Current research is mainly focused on specifying 

the type of objective functions and constraints, as well 

as on selecting effective optimization algorithms. For 

example, optimal task assignment among mobile ro-

bots in order to optimize the charge-discharge cycle of 

individual agents was investigated in [4], taking into 

account weather conditions and their routes. The mod-

el developed therein includes such parameters as ve-

locity, acceleration, and payload. Gradient methods for 

global optimization [5] and a heuristic “auction proce-

dure” for local optimization were used as optimization 

algorithms. As concluded by the authors, the local ap-

proach based on predicting operating time and energy 

reserve has higher flexibility and is less computation-

ally intensive. Hence, this approach is preferable for 

complex scenarios. The energy consumption of a ro-

botic cell system in an enterprise was considered in 

[6]. The model covers the velocity of the robots, their 

placement within the cell, the energy-saving modes 

supported, and possible operation chains. The optimi-

zation problem was solved using mixed-integer linear 

programming (MILP) and hybrid heuristics for large 

systems based on the Gurobi library [7]. According to 

the experiments conducted on a real system, energy 

consumption can be reduced by 20% by optimizing 

the sequence of operations and applying energy-saving 

modes. A simulation model of a group of robots ful-

filling tasks with the redistribution of energy resources 

between them was studied in [8]. The model was 

transformed into an assignment problem with an ob-

jective function that minimizes the total task fulfill-

ment time in the form of a linear norm; the Hungarian 

algorithm [9] was applied for optimization. 

In addition, there are sufficiently many surveys of 

the subject, which emphasize the mass scale and topi-

cality of energy optimization. Methods for improving 

energy efficiency in robotic and mechatronic systems 

were systematically reviewed in [10]. The main atten-

tion was paid to reducing the dimension of optimiza-

tion problems by using approximate models. As noted, 

in most real systems, it is impossible to obtain an exact 

solution of the optimization problem. 

The above review of methods for ensuring the en-

ergy efficiency of robotic systems was complemented 

in [11], albeit with the focus on objective functions 

and the expected gain of optimization rather than on 

the mathematical aspects of solving the corresponding 

optimization problem. The authors described in detail 

methods for optimizing robotic systems and temporal 

and sequential planning approaches to minimize ener-

gy consumption. Particular attention was paid to issues 

of controlling the robot’s hardware and software envi-

ronment and the need for their joint analysis to im-

prove energy efficiency. 

All publications emphasize the importance of 

choosing an adequate model for applying mixed-type 

algorithms with heuristics (which reflect the structure 

of the object or objective function) in order to reduce 

the search space when solving the optimization prob-

lem. 

This paper considers optimization issues for energy 

consumption in a DTS, where UVs fulfill a certain set 

of tasks. Tasks are assigned to DTS agents by a con-

trol center, with which UVs exchange information. 

UVs operate independently of each other. Each task 

requires certain UV resources (e.g., load capacity for 

transporting cargo or tank volume for transporting liq-

uids). A resource characterizes the task but not the UV 

fulfilling the latter, and the UV resources involved in 

the task are independent. The system is open in terms 

of the number of agents, tasks, and resources, i.e., the 

number of UVs and tasks in the system and the UV 

resources available to fulfill a task at the next discrete 

time instant may change. (An example of a change in a 

UV resource is the installation of a tank of a different 

volume.)  
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We proceed to another important assumption. Let 

the DTS under consideration be compact, i.e., the 

characteristic scale of the system is much smaller than 

the path traveled by the UVs during operation. Then it 

is possible to neglect the issues related to the spatial 

location of agents (e.g., the implementation of task 

transfer between UVs) and focus on various static 

constraints on task fulfillment by an agent. 

The objective function in an optimization problem 

depends on the system usage scenario, and this paper 

considers a scenario aimed at maximizing the utiliza-

tion factor of the DTS. 

Theoretical approaches to solving such problems 

are well-known, but they are often tested only on 

computer models; at the same time, the behavior of a 

real system can significantly differ from an idealized 

computer model. The goal of this work is to test 

known optimization algorithms on a real DTS model, 

i.e., to develop a system energy consumption model 

that is applicable to a wide range of DTS agent param-

eters and requires no special tuning for each agent.  

As underlined in the literature, the MILP algorithm 

[12] is an effective optimization algorithm for such 

problems. In this paper, we use the MILP implementa-

tion in the OR-TOOLS library [13]. The MILP algo-

rithm is supplemented with a heuristic block that esti-

mates the sampling step based on indirect characteris-

tics; according to the authors’ observations, this ap-

proach reduces the amount of computations and inter-

ference in the system operation. The constraints are 

the minimum and maximum values of resources con-

sumed when fulfilling tasks on DTS agents, the “affin-

ity” of tasks with each other, and restrictions on the 

launch of tasks on certain agents. The objective func-

tion is a concave (quadratic) function with a restriction 

that the variables are integers [14]. 

In addition to the main problem (optimizing energy 

consumption), the partial problem solved is to distrib-

ute tasks among DTS agents during the initial task 

assignment. In this case, to accelerate computations, 

some constraints may be discarded, or optimization 

may be skipped; as a result, the problem can be solved 

using linear programming methods.  

This paper considers a mathematical model for 

controlling a group of DTS agents (ground robots) 

with task reassignment among them. The control mod-

el ensures the system’s availability for a long time by 

optimizing the energy consumption of individual UVs 

and maximizing the availability factor. The model 

takes into account constraints on task fulfillment, both 

in terms of fundamental feasibility and in terms of the 

necessary resources available to UVs. 

A distinctive feature of this work is that the math-

ematical model is tested not only on virtual agents but 

also on an experimental mock-up, i.e., a group of 

wheeled robots. This approach allows assessing the 

applicability of the model for practical needs and iden-

tifying the characteristics of real DTSs that should be 

included in the model. 

1. PROBLEM STATEMENT AND SYSTEM MODEL  

When building a DTS model, various requirements 

may be imposed on it, depending on both the object 

and the experience of the model developer. But the 

main requirement should be the model’s capability to 

reflect the intra-system interaction of those agents that 

influence the energy characteristics of the system [15]. 

The model presented below follows this principle. 

 

1.1. Basic Provisions 

Let a DTS Ξ  consist of a finite set of agents 

 , 1, , ,iS s i B    which fulfill a certain set of tasks 

 Φ 1,…,l , l N   , at each time instant. To fulfill 

these tasks, the agents have certain divisible resources 

of different types at their disposal:  ,ijR r 0,ijr 

1, , ,i B  1, , ,j M   where i and j denote the 

agent’s number and the resource type, respectively. In 

the general case, for each set, several static constraints 

can be defined on the admissible range D  for the sys-

tem. 

A definite amount of resources of different types is 

needed to fulfill each task, which is described by a 

mapping 

  : .Q R                             (1) 

The tasks are reassigned in the system using some 

impact (control)  , 1, , ,iU u i N    so for clarity, 

we will equip the mapping of the tasks set Φ  into the 

agents set S  with the subscript u: 

( ) : .uL S                             (2) 

The mappings Q  and uL  may include definite 

static constraints on resource use and task assignment. 

At any time instant, the state of this system is giv-

en by the tuple 

, , , .uS R Q L                          (3) 

We will consider the memoryless system, i.e., a 

system where the mapping  uL   is determined only 



 

 
 

 

 
 

72 CONTROL SCIENCES  No. 6 ● 2025  

CONTROL OF TECHNICAL SYSTEMS AND INDUSTRIAL PROCESSES 

by the current state of the system, regardless of the 

history of transitions to this state. 

Given an initial state 0  of the system, optimal 

control consists in selecting such an impact U  that 

will optimize an objective function of certain phase 

coordinates (parameters) of the system. As the only 

parameter of the system, we will take the vector 

 , 1,…, ,iE e i N   which represents the energy of 

this system. The energy of a UV in a physically realiz-

able system is a smooth or piecewise smooth function; 

therefore, it is possible to pass from continuous to dis-

crete time, compute the energy on a certain grid, and 

then approximate the result.  

Let the system states at time instants 1k   and k  

be related by 

 1 1,k D k kF U    ,                      (4) 

where the subscript D  means that the constraints are 

taken into account. 

We define a mapping 

 g E  ,                             (5) 

which allows computing the change in the system en-

ergy under a known task assignment among agents.  

By assumption, given the state of the system   at 

time instant k , its state at time instant 1k   is de-

scribed by the difference equation 

 1 α , 0  α 1k k kE E g      .               (6) 

We introduce a control efficiency function of the 

form 

1( , ).k kf E U                              (7) 

At each time instant, an optimal decision is made 

to transition the system to the next state, and the over-

all control optimality criterion is calculated as the sum 

of the ones at each time instant. Then the optimization 

is additive, and the objective function takes the form 

  1

1

min , .
k

D i i

i

Z f E U 



                  (8) 

According to the operating scenario (see the Intro-

duction), the utilization factor of UVs should be high 

enough; therefore, control should distribute the load 

evenly among all UVs in the system. The load is cal-

culated as the ratio of the agent’s energy to the energy 

consumed for all tasks assigned to the agent. In this 

case, it is logical to take the minimum energy variance 

across the agents in the system as an estimate of the 

control efficiency .f  This is defined by a quadratic 

form of the objective function, 
TECE , with a symmet-

ric matrix 0C  of dimensions n n . For a suffi-

ciently small α,  the objective function has a unique 

fixed point to which the solution will converge [16], 

and the convergence rate is linear. 

Owing to the assumption of independent tasks and 

resource types, optimization can be carried out sepa-

rately for each resource type. 

In most real cases, this optimization problem can-

not be solved analytically [17], and there are also 

known difficulties in assessing the stability and con-

vergence of the algorithm due to the presence of dis-

turbances. Nevertheless, as practice shows, numerical 

optimization methods quickly yield a very small value 

of the error function [18, p. 153]. 

There exist established algorithms for the numeri-

cal solution of such problems; some of them were 

overviewed in [19, 20]. To solve the optimization 

problem of the above class, in this paper, we choose 

the well-proven MILP method [13] with heuristics 

considering the features of the controlled object and 

the objective function.  
 

1.2. Model Description 

Using the formalism introduced by equations (1)–

(8), we consider the system   of UVs capable of ful-

filling certain tasks. The UVs in the model are not 

supposed to be homogeneous: each vehicle has indi-

vidual technical characteristics. Additional constraints 

may be imposed on resources and UVs intended for 

fulfilling certain tasks, i.e., not all UVs are equally 

suitable for fulfilling specific tasks. In real UVs, con-

straints can be both quantitative (e.g., each UV has an 

individual maximum load capacity) and qualitative, 

related, e.g., to the absence of a particular sensor or 

equipment on the UV. In the method developed, con-

straints can be considered by specifying an admissible 

range D  for resources and tasks (see Table 1). By 

assumption, each task is characterized by an individual 

set of resources consumed.  

At the initial time instant, each UV (agent) has a 

certain initial energy reserve (e.g., battery charge); 

during the DTS operation, this reserve does not in-

crease (i.e., batteries are not recharged or replaced). It 

is necessary to assign tasks among UVs by maximiz-

ing the time during which all UVs will have a positive 

energy reserve. 

Suppose that there are B  UVs and N  tasks. Un-

less otherwise specified, the subscripts b  and i  will 

denote the UV number and the task number, respec-

tively. 
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We introduce the following notation: 

  bE t  is the UV’s energy at time instant t . 

Since no energy comes to the system,  bE t  is a non-

increasing function. 

  

1 if  task  is fulfilled 

, , by UV   at time instant 

0 otherwise.

 i

h i b t b t




 



 

 ip  is the specific power (per unit of resource) 

consumed when fulfilling task i . For simplicity, as-

sume that ip  is independent of the resource value.  

 ibq  is the current consumption of a given type of 

resource on the UV when fulfilling the task i  . 

Let us divide the operating time of the system into 

intervals 1 , 1, ,k k kt t k K     , so that during each 

interval, the energy consumed to fulfill task i is de-

scribed by the simple linear relation [21] 

 1 .ibk i ib k ke p q t t     

During the time interval τ , the change in the en-

ergy of an individual UV can be written as  

     1

1

, , ,

1, , ,

N

b k b k ibk k

i

E t E t e h i b t

k K





  

 


 

and the change in the energy of the entire DTS during 

the time interval τ  takes the form  

     1

1 1

, , ,

1, , .

B N

k k ibk k

b i

E t E t e h i b t

k K



 

  

 


 

To define the mappings (1) and (2), we introduce 

the following additional designations: 

  ibr  is the minimum resource value required to 

fulfill the task (e.g., the minimum load that the UV 

must carry or the background load of computing 

units).  

 ibR  is the maximum resource value when ful-

filling the task. 

 bC  is the UV resource specifications (load ca-

pacity, onboard processor frequency, etc.). 

 0κ 8ib b. C  is the setting for a high load level. 

 0.1ib bC   is the setting for a low load level. 

      ib ib ib ib ibA q H q H q      is the set-

ting function, where  H x  indicates the Heaviside 

function. 

 iS  is the coefficient reflecting the priority of the 

task. 

Table 1 presents the constraints D  on the distribu-

tion of resources and tasks among agents. 

As mentioned above, the objective function is con-

vex, but for a real system it has a more complex form 

and includes a set of Boolean functions depending on 

the system parameters (Table 2). 

 
 Table 1 

The list of constraints implemented in the model 

No. Constraint Comment 

1 
   

1

, ,

N

ibk k b k

i

e h i b t E t



   

The energy consumed by all tasks during time τ 

does not exceed the agent’s available energy 

Eb(t). 

2 

1

N

ib b

i

r C



  

The UV’s characteristics allow the task to be 

fulfilled. The minimum resources required by 

all tasks assigned to the agent do not exceed the 

latter’s available resources. 

Without this constraint, the system may have 

“overloading” during operation. 

3 The constraint on the number of agents involved in task reassign-

ment at each time instant, expressed as a percentage of the total 

number of agents in the DTS 

– 

4 The constraint on the type of tasks that a given agent can fulfill The list of agents that can or cannot fulfill the 

specified task 

5 The constraints on the joint fulfillment of tasks For each task, a list of other tasks can be speci-

fied with which it must/must not be jointly ful-

filled.  
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Table 2 

The list of partial objective functions of the model 

Partial objective function Comment No. 

 
1

, , min

N
ib

i
bi

R
h i b t S

C


 
  

 
  

For all agents b, minimize the risk that if all tasks require the maximum possible 

resource value, the resource will not be enough for UVs considering the priority 

of the task 

(9) 

  , minb jD E t    
Minimize the energy consumption variance (10) 

 
1

min
N

ib

i b

r
h i, b, t

C

  
Strive to assign tasks with greater resource consumption to agents with a higher 

reserve of that type of resource 

(11) 

 A minibq   Avoid overloading an agent above level 1 and keep it loaded below level 2 (12) 

  
1 1

1 , , min

N B

i b

h i b t

 

   

Avoid keeping completely unused agents. (13) 

0

min

B
j

b

b

R



  

Avoid reassigning tasks that consume significant resources, as such a reassign-

ment can be difficult in practice.  

The constraint implicitly considers the fact that it is generally impossible to in-

stantly remove a task from one agent and assign it to another. The duration and 

“cost” of task reassignment may depend on the type of task, the method of task 

transfer, etc. 

(14) 

  

The general objective function (8) for the DTS 

model has the form 

arg

0

min ,
N

i i

i

Z v F


 
  
 
                     (15) 

where iF  are the partial optimization problems from 

Table 2; iv  is the weight for the partial optimization 

problem under all the constraints from Table 1; finally, 

arg  means the parameters of optimization. 

 

1.3.  An Energy Consumption Optimization Procedure  

for the DTS 

Finding an exact solution of the optimization prob-

lem (15) is not mandatory; we use an approximate so-

lution obtained in a definite time instead. The algo-

rithm for solving this problem is iterative since the 

system   being optimized is dynamic in its nature. 

However, by assumption, changes in the system—e.g., 

the emergence of new tasks or the termination of those 

fulfilled previously—are discrete. The sampling step is 

selected depending on the rate of change of the param-

eters.  

The partial objective functions and constraints 

specified in Tables 1 and 2 are considered or not, de-

pending on the use scenario of the system being opti-

mized.  

In general terms, the solution can be described by 

the following sequence of actions. 

Step 1. Initialization and initial assignment of tasks 

to DTS agents. The initial task assignment algorithm 

may neglect some constraints and objective functions 

to accelerate the start of the system. With “fast” ini-

tialization, all constraints from Table 1, except for the 

third, and the objective function (9) are taken into ac-

count. In this form, the optimization problem is a spe-

cial case of the knapsack problem, which is often 

solved using integer linear programming methods. 

Some solution methods for such problems were pre-

sented in [12, 22, 23].  

If we neglect some partial objective functions and, 

accordingly, avoid full optimization, limiting our-

selves to a suitable solution that satisfies the con-

straints from Table 1 and the objective functions (12) 

and (13), the assignment problem will reduce to a sys-

tem of linear equations. 

 Step 2. The main step of the algorithm. It consists 

in optimizing task assignment among agents under all 

constraints (Table 1) and the objective functions (9)–

(14) (Table 2) of the system. The objective function 

(10) is quadratic and has the greatest weight in the 

general objective function, i.e., the total value repre-

sents a nonnegative definite quadratic form. For prac-

tical reasons (e.g., due to the presence of disturbances 

in the system), it is unnecessary to obtain an exact so-
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lution of the optimization problem; therefore, we use 

the Boolean Satisfiability Problem (SAT) algorithm 

[24]. It yields an acceptable solution for objective 

functions with constraints.  

Step 3. Checking the algorithm’s termination crite-

rion (the arrival of new tasks to be assigned among 

agents and changes in the number of agents in the sys-

tem). If new tasks appear or the number of agents 

changes, then the algorithm returns to Step 1; other-

wise (the composition of agents or tasks remains the 

same), it returns to Step 2.  

The termination criterion depends on the objective 

function specified. For example, if all agents must be 

preserved in the system, the termination criterion will 

be the depletion of energy for at least one agent; if the 

goal is to maximize the utilization factor of UVs, the 

termination criterion will be the lack of sufficient en-

ergy to fulfill all tasks at the next time instant. 

At all steps of the general algorithm, the CP-SAT 

library [25] is used to solve the Boolean Satisfiability 

Problem. To simplify the optimization problem at Step 

1 of the algorithm and meet the requirements for using 

the library [25], the quadratic function is linearized by 

introducing auxiliary variables and constraints. A 

similar approach was described in [26, 27].  

2. MODEL’S PERFORMANCE ASSESSMENT 

Assessing the performance of the residual energy 

control model for the DTS represents a challenge, as 

the performance criteria for real DTSs are largely sub-

jective [17]. To evaluate the quality of this model, test 

scenarios were implemented both for virtual agents 

(mainly to assess control performance in known “ide-

al” conditions) and for an experimental mock-up, i.e., 

a group of real agents (wheeled robots) with disturb-

ances and parametric uncertainties. 

The initial assessment was carried out for groups 

of virtual agents in two trivial scenarios to easily de-

sign optimal control in terms of a given objective 

function and verify the correctness of the model. 

Example 2.1. The DTS consists of homogeneous 

agents, all tasks are identical, and the number of tasks is a 

multiple of the number of agents. Obviously, the optimal 

solution for ensuring even system load with the maximum 

system lifetime is the uniform task assignment among 

agents.  

Example 2.2. The DTS consists of agents, one of which 

has significantly higher energy resources than the others. 

All other agents are homogeneous, all tasks are identical, 

and the number of tasks is greater than the number of 

agents. The optimal solution for ensuring even system load 

with the maximum system lifetime is to load the agent with 

the highest energy reserve as much as possible and assign 

the remaining tasks evenly among the agents until equaliz-

ing the residual energy of the agents. When the system 

reaches this state, the problem will be reduced to that of 

Example 2.1. ♦ 

For all trivial cases, the algorithm proposed and the 

program developed demonstrated good performance. 

The solution was found in a reasonable time, deter-

mined by the characteristic time constant of the sys-

tem, during which the system (presumably) remained 

stationary. 

After the model’s tests on trivial examples, com-

plex tasks were considered. The parameters of the cor-

responding examples and their discussion are given 

below. Both the virtual and physical agents were taken 

in the DTS. 

In all examples, the termination criterion was the 

system’s incapability to fulfill the required tasks due 

to a lack of energy. 
 

2.1.  Algorithm's Performance Assessment  

Using Virtual Agents 

Example 2.3. This example is a complication of Exam-

ple 2.1. There are five agents (DTS1–DTS5) and 15 tasks 

(VM0–VM14). In this system, one of the agents (DTS5) has 

a significantly higher energy reserve compared to the others 

(by approximately an order of magnitude higher), while the 

energy reserves of the latter vary, with a spread not exceed-

ing 400% in absolute value. The energy and resource de-

mands for fulfilling the tasks are also different: tasks VM5 

and VM7 consume approximately 20 times more energy 

than the others. In general, according to an expert estimate, 

the solution for ensuring uniform system load and maximiz-

ing its lifetime is to load agents with high energy reserves as 

much as possible; agents with low energy reserves should 

have a small load. 

Figures 1 and 2 show task assignment among agents and 

the ratio of agents’ resources to the tasks assigned to them 

as a result of control using the objective function (15). Here, 

as well as in Figs. 3 and 4, the free energy reserve of an 

agent is indicated by “Free resource.” Obviously, the con-

sumption of the first and second types of resources has an 

uneven ratio for different tasks, complicating optimization. 

According to Figs. 1 and 2, in general, most of the ener-

gy-intensive tasks are assigned to the agent with the highest 

energy reserve. The constraint is the availability of the re-

sources necessary to fulfill the task (constraints 2–5 in Ta-

ble 1). For example, agent DTS5, which has a significant 

energy reserve, is assigned task VM7 (see Fig. 1), which 

requires the largest energy consumption and satisfies the 

resource constraints. 
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Fig. 1. Task assignment among agents for the first type of resource. All 

resource values are normalized by the resource maximum. 

 

 

 
Fig. 2. Task assignment among agents for the second type of resource. 

All resource values are normalized by the resource maximum. 

 
Next, Figs. 3 and 4 show the ratio of agents’ energy to 

that required for fulfilling the tasks at the start of the system 

operation (a full energy charge) and at the final stage (ener-

gy depletion). 

Finally, the energy dynamics of the system agents are 

presented in Fig. 5. 

Obviously, owing to the control of task assignment, the 

agents’ energies are gradually equalized, except for DTS1 

(see label 1 in Fig. 5). The control effect for “equalization” 

is evident for agent DTS5, which initially has the highest 

energy reserve. This control strategy is optimal in terms of 

ensuring the maximum utilization of agents throughout the 

entire lifetime of the system. 

  

 
Fig. 3. Task assignment among agents at the start of the system 

operation. All resource values are normalized by the resource maximum. 

 

 

 
Fig. 4. Task assignment among agents at the final stage of the system 

operation (energy depletion). All resource values are normalized by the 

resource maximum. 

 

 

 
Fig. 5. The energy dynamics of system agents during operation.   The 
horizontal axis corresponds to the time of day whereas the vertical axis to 

the UV energy (in J). The sampling step is 60 s.   
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2.2. Algorithm’s Performance Assessment 

on Experimental Mock-Ups 

The behavior and performance of the algorithm 

were also analyzed on an experimental mock-up of 

robotic systems. As a rule, control ideas and algo-

rithms are mainly tested using virtual agents. There are 

many models that have been validated only on com-

puter simulators [21, 28, 29]. Obviously, virtual agents 

do not provide a complete picture of all physical pro-

cesses in a system, but due to the high cost and com-

plexity, only a small part of the previous R&D work 

could be tested on experimental mock-ups [30]. The 

current stage in the development of robotic systems is 

characterized by cost reduction, mass supply, and high 

availability of components for creating intelligent ro-

botic DTSs. Therefore, a significant amount of tests 

can now be carried out in laboratory conditions using 

comparatively cheap experimental mock-ups, as 

demonstrated in this work. 

The block diagram of a real agent (wheeled robot) 

is provided in Fig. 6, and its components are specified 

in Table 3. A general view of the robot can be found in 

Fig. 7. The experimental mock-up consists of five ro-

bots (Fig. 8). The system’s size was determined not by 

the computational limitations of the model or the la-

boratory’s conditions but by the ultimate goal (an ex-

pert estimate of control efficiency): for a human, it is 

difficult to test a larger number of UVs. The robots 

were designed on the ESP32 platform and controlled 

by a central computer (including data processing from 

all robots and task assignment among them).  

Table 3 

The list of robot’s components in the experimental 

mock-up of the DTS 

Designation 

in Fig. Fig. 

Purpose Model 

M1 and M2 Actuating electric mo-

tors 

TT motor  

3–6  V 

U1 Ultrasonic sensor HC-SR04 

D1 Motor driver L9110S 

K1 Processing board ESP32DEV 

A1 Current- and voltage-

measuring board 

MCU-219 

L1 LED panel, 256 LEDs MAX7219 

E1 and E2 Rechargeable battery 18650 3.7 V 

F1 Voltage converter LM2596S 

 

The compactness of the system was ensured as fol-

lows: the robots moved inside boxes, and the distance 

to the box walls was measured using ultrasonic sen-

sors; when approaching the walls, the robot randomly 

changed its direction of movement. 

As in the virtual agents, two types of resources 

were used in the tasks: LEDs on the LED panel (with 

specifying the number of LEDs lit) and the rotation 

speed of the robot’s electric motors. Despite its sim-

plicity, this scenario is common in real systems [4]. 

Due to technical limitations of the experimental 

study, it was impossible to implement differentiated 

energy consumption by each resource of a given type 

(e.g., use LEDs of different power); therefore, in-situ 

experiments were conducted only for scenarios with 

uniform consumption of energy by resources of one  

 

 
 

 
Fig. 6. The block diagram of a robot for the experimental mock-up of a DTS.  
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Fig. 7. A robot of the experimental mock-

up: an enlarged photo. 

 
Fig. 8. The experimental mock-up with five robots. 

 

type per unit of resource (similar to Examples 2.1and 

2.2). 

Before the experiments began, the specific energy 

consumption for both types of resources was meas-

ured, and the energy stored in the batteries was esti-

mated. In particular, the assumption of a linear de-

pendence of energy consumption on the consumed 

resource, adopted in most computer simulators [21], 

was checked. The energy consumption of each agent 

was measured using a special microchip. According to 

the measurement results, there is a rather high variance 

in specific energy consumption by agents for both 

types of resources, comparable to the absolute value of 

the measured quantity; however, this is acceptable for 

assessing the performance of the algorithm.  

The results of the in-situ experimental study are 

provided in Figs. 9–12 below. In particular, Fig. 9 

shows the average power of agents DTS1–DTS5 when 

loaded with several units of the first type of resource 

(the number of active LEDs). Similarly, Fig. 10 pre-

sents the average power of agents, over a long period 

of time, when using only the second type of resource 

(the rotation speed of electric motors). The confidence 

intervals correspond to level σ. To justify the form of 

the difference function (6) for the power consumption 

values measured, a linear regression was built, with 

the number of load units taken as the independent var-

iable.  

Note that, unlike the first type of resource (Fig. 9), 

“flattening” was observed for the second type of re- 

 

 
Fig. 9. The dependence of the average power consumption of agents on 

their load in resource units when fulfilling a task of type 1.  

 

source at high loads, and the function has a pro-

nounced S-shape. However, for the comparability of 

the results with the virtual agents, the linear approxi-

mation was retained. 

In the course of the experiments, the linear nature 

of energy consumption when fulfilling several tasks 

simultaneously was checked. Note that the linear na-

ture of the dependence was confirmed.  
Example 2.4. To assess the performance of the algo-

rithm, control was applied to the DTS with real agents (ro-

bots) and, simultaneously, to that with virtual agents with 

the same parameters. Figures 11 and 12 show the energy 

dynamics of the system with virtual and real agents, respec-

tively, at successive time instants.  
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Fig. 10. The dependence of the average power consumption of agents 

on their load in resource units when fulfilling a task of type 2. 

 

 

 
Fig. 11. The energy dynamics of system agents during operation (the 

DTS with virtual agents). The sampling step is 60 s.  

 

 

 
Fig. 12. The energy dynamics of system agents during operation (the 

DTS with real agents). The sampling step is 60 s.  

 

According to these figures, in both cases, controlling 

task assignment among agents ensured a comparable life-

time (about 15 minutes) for the DTS.  

In both cases, control was intended to equalize the ener-

gies of the agents. However, for the simulation model, con-

trol is more “adequate” in the sense of system behavior: at 

the junction point of the trajectories (point 1 in Fig. 11), the 

energies of all agents are reduced to one level, and the vari-

ance of the system energy is optimized. In a real system, 

this does not happen due to the nonlinearity in the energy 

consumption characteristics of the second type of resource 

(see Fig. 10), errors in determining the specific power, dif-

ferences in the technical characteristics of agents, and other 

disturbances.  

During testing on the mock-up, a series of similar exper-

iments were conducted; they showed the repeatability of the 

results and the good performance of the algorithm under a 

significant spread of DTS parameters (battery capacity, en-

ergy consumption by motors, etc.).   

3. A HEURISTIC METHOD FOR CHANGING  

THE SAMPLING STEP 

The convergence and stability of dynamic pro-

gramming algorithms are determined, in particular, by 

the choice of the sampling step at which the system is 

supposed to be stationary. If the system is described 

by a differential equation, this step can be calculated 

by specifying an estimate of the local error, e.g., using 

Euler’s method. However, during experiments with 

the CP-SAT algorithm, we observed a feature of the 

algorithm that can be used to conclude on the station-

arity of the system for a given sampling step; as a re-

sult, a heuristic approach can be applied to select the 

sampling step.  

The heuristic approach consists in the following. 

For each sampling step, a time limit for finding a solu-

tion by the CP-SAT algorithm is specified; if the algo-

rithm terminates much earlier than the time limit, the 

sampling step is increased; otherwise, it is reset to a 

certain default value. This approach is based on the 

following considerations: if the state of the system is 

stationary during the sampling step, then the values 

obtained at the previous time instant are a good ap-

proximation of the initial values for the system param-

eters optimized (task assignment among agents) at the 

next time instant, and the algorithm quickly converges 

to the optimal solution; otherwise, a lengthy search is 

required.  

To verify the heuristic approach, the experiments 

from Examples 2.3and 2.4 (conducted previously with 

a fixed sampling step) were repeated using the algo-

rithm with a dynamically changing step as described 

above.  

Figure 13 shows the energy consumption for the 

DTS with virtual agents (see Example 2.3) with a dy-

namically changing sampling step.  

Clearly, the sampling step was small at the start of 

the system and after point 1 (the junction of the trajec-

tories). Compared to the uniform step (see Fig. 5), the 

number of time instants (the number of interventions 

in the behavior of the system) decreased by almost 

80%. 

The operation of the algorithm for the system from 

Example 2.4showed a similar picture, both for virtual 

(Fig. 14) and real (Fig. 15) agents. 
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Fig. 13. The energy dynamics of virtual agents during operation. The sampling step is T = [30, 480] (s). DTS1–DTS5 are the energy reserve curves of the 

corresponding agents, and the orange line shows the dynamic sampling step.  

 
 

 
 

 
Fig. 14. The energy dynamics of real agents during operation. The sampling step is T = [60, 180] (s). DTS1–DTS5 are the energy reserve curves of the 

corresponding agents, and the orange line shows the dynamic sampling step. 

 
 

 
 

 
Fig. 15. The energy dynamics of real agents during operation. The sampling step is T = [60, 180] (s). DTS1–DTS5 are the energy reserve curves of the 

corresponding agents, and the orange line shows the dynamic sampling step.  
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A comparison of Figs. 11 and 14, as well as Figs. 

12 and 15, shows that the main control quality pa-

rameter—the system lifetime—differs little between 

them, but the number of control instants in the second 

case is almost 1.5 times smaller.  

CONCLUSIONS AND DISCUSSION  

This paper has considered the practical problem of 

the optimal assignment of tasks among UVs in an en-

terprise’s intelligent DTS environment in terms of en-

ergy consumption to ensure the availability of this sys-

tem and increase the utilization factor of individual 

UVs. It is important both for providing the functional 

safety of DTSs and for improving the economic effi-

ciency of the entire enterprise. 

To solve this problem, an optimization-based 

mathematical model has been developed and imple-

mented, including a special objective function and a 

set of constraints on the parameters of the system and 

individual UVs. The model assigns tasks among UVs 

with the necessary resources and ensures uniform en-

ergy consumption by individual agents. The optimiza-

tion problem has been solved using dynamic pro-

gramming methods with the application of the CP-

SAT Boolean Satisfiability algorithm with integer 

constraints [24]. This algorithm has proven effective 

in solving such problems if approximate solutions can 

be accepted.  

The performance of the model has been assessed 

both on virtual agents (computer simulations) and on 

an experimental mock-up representing a group of 

wheeled robots (see Fig. 8). Experience shows that the 

current low cost and availability of components make 

it possible to quickly create experimental mock-ups in 

laboratory conditions, and we believe that testing 

models on such mock-ups will become widespread. 

Testing on an experimental mock-up is extremely im-

portant since the characteristics of real systems would 

hardly be taken into account during computer simula-

tions: all UVs, even from the same batch, differ, and 

their characteristics will vary over time; the character-

istic curves for UV parameters included in the model 

may differ from the real ones, etc.  

Experiments on a real system have confirmed the 

effectiveness of control even under a significant varia-

tion in the parameters of same-type agents in the DTS. 

The controlled energy dynamics of UVs in the real 

system (see Fig. 12) have not converged to a single 

trajectory, unlike the computer model (see Fig. 11). 

This is probably due to two features of real UVs. First, 

although UVs are of the same type, the specific power 

per unit of resource varies considerably between them, 

even within the same batch. Second, the model as-

sumption on the linearity of energy consumption de-

pending on the resource value is not always true (see 

Figs. 9 and 10), and additional calibration of this de-

pendence is required. 

While working with the optimization algorithm, 

we have discovered the feasibility of tuning the sam-

pling step depending on the algorithm’s time to find an 

acceptable solution under all constraints: a reduction 

in the running time of the optimization program indi-

cates the possibility of increasing the sampling step. 

This heuristic technique requires further research, as it 

depends on the system type and the choice of initial 

values for the algorithm. However, it seems notewor-

thy: in addition to reducing computational cost, this 

technique significantly restricts the control center’s 

intervention in the system’s behavior. 

On a modern average-speed computer, the model 

has demonstrated good performance with a sampling 

step (control cycle) of about 15 minutes for a system 

with 410  agents and 510  tasks, which is more than 

sufficient for an enterprise-level DTS. 

A possible direction for further research is to de-

velop adaptive self-tuning algorithms, e.g., a dynami-

cally changing set of components of the objective 

function or constraints based on the DTS state data, in 

order to improve the efficiency of control.  

Optimizing the distribution of DTS energy re-

sources can also be part of the general safety monitor-

ing problem of DTSs [31]. The optimal distribution of 

energy resources ceases to be a “black box” for the 

safety system, providing it with valuable information 

about the current state and its closeness to critical con-

ditions. As a result, the safety monitor can pass from 

reactive to predictive safety analysis. In turn, the safe-

ty monitor can act as a meta-regulator that dynamical-

ly adapts admissible ranges in the energy resource op-

timization problem, ensuring that the system finds the 

most effective solution within the safe state space. 

Such an integrated approach is a prerequisite for creat-

ing complex and simultaneously reliable DTSs. 
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