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Abstract. This paper is devoted to the problem of applying cybersecurity updates (patches) for 

the software of instrumentation and control systems (ICS) with a long lifecycle. The problem is 

considered for the system operation stage. The main focus is on the large number of vulnerabili-

ties found in software, the complexity of analyzing the impact of a vulnerability on system securi-

ty, and the requirements for testing the compatibility of updates and software certification after 

changes have been made. Based on the Failure Mode and Effects Analysis (FMEA), a procedure 

is proposed to simplify the analysis of the impact of a vulnerability on cybersecurity. This proce-

dure considers a smaller set of attack scenarios rather than each vulnerability separately. The 

analysis of attack scenarios also covers the effect of security measures. The procedure includes 

simple criteria for applying security updates based on the analysis results. An example of vulner-

ability analysis using this procedure is provided. 
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INTRODUCTION 

A main way of conducting cyberattacks is to ex-

ploit vulnerabilities in software. Despite advances in 
software development and testing technologies, the 

complexity of programs makes it impossible to guar-
antee that software is free of vulnerabilities. Intruders 

focus their resources on finding and exploiting vulner-
abilities, whereas software developers and users are 

interested in finding and promptly fixing these vulner-
abilities, and releasing and installing appropriate soft-

ware security updates (patches). In general, a patch is 
often understood as a very wide range of software 

changes [1–4], which are either characterized by the 
approach to this patch as a/an process/object or related 

to the scope or nature of software changes. In informal 
communication of IT experts, one can also meet other 

similar terms, e.g., update, bugfix, or hotfix. For the 
purposes of this paper, let us assume the following. 

Definition. A security update (patch) is a modifi-

cation to installed software intended to eliminate soft-
ware vulnerabilities without changing other functional 

characteristics of the software. ♦ 
A great deal of work has been done globally to ac-

cumulate information about vulnerabilities, and there 

are publicly available and constantly updated data-
bases: CVE (USA) [5], the Data Bank of Information 

Security Threats (Russia, managed by the Federal Ser-
vice for Technical and Export Control (FSTEC)) [6], 

CERT-FR (France) [7], and others. For each vulnera-
bility on the list, the databases necessarily contain its 

description, impact assessment, and recommendations 
to eliminate the vulnerability or mitigate its negative 

impact. Software developers release security updates, 
which can often be installed automatically.  

The experience gained in the world is systematized 
in international and national standards and methodo-

logical documents on the application of patches; for 
example, see [3, 8, 9]. The guidelines and recommen-

dations of these documents are generally reduced to 

the following steps: 
1) permanently monitor vulnerabilities in the soft-

ware used; 
2) analyze newly discovered vulnerabilities and 

assess cybersecurity risks; 
3) determine further actions depending on the re-

sults of the risk assessment: accept the risk, eliminate 
the risk (apply a patch), etc.; 

4) under a positive decision to install an update: 
a) develop a plan for applying the update; 
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b) check the integrity and confidence of the up-

date; 

c) test the update; 

d) install the update; 

e) check the software status and configuration 

after the installation. 

As we believe, however, the issues of practical ap-

plication of the available data, primarily related to the 

large volume of analyzed information and its reliabil-

ity, have not yet been fully settled.  

In this paper, the problem of applying security up-

dates [10, 11] in systems with a long lifecycle will be 

considered on the example of an instrumentation and 

control system (ICS), and a new solution method will 

be proposed. Below, a system with a long lifecycle is 

understood as a system whose operation and support 

stage lasts for several years or even decades. 

According to the guidelines of regulatory and 

methodological documents [10–13], vulnerability 

identification, analysis, and assessment should be con-

ducted throughout the entire lifecycle of a protected 

system. Since cybersecurity resources and the context 

of viewing the system differ significantly between 

lifecycle stages, vulnerability elimination problems 

and methods for addressing them also differ. This pa-

per focuses on the issues of vulnerability assessment 

during the exploitation stage under the following as-

sumption: at the end of the development stage, the de-

veloper has closed known vulnerabilities and applied 

adequate protection measures to mitigate the risk to an 

acceptable level. For the development stage, there is a 

diverse set of recommendations for secure software 

development [14]. 

Much attention is paid to the operation stage be-

cause, as our experience shows, the problem of vul-

nerability management most fully manifests itself at 

the operation stage and becomes more complicated 

over time. This is primarily due to the integral effect 

of several factors: the accumulation of detected vul-

nerabilities in the components used, the end of the de-

veloper’s support period for some components, and 

the obsolescence of information security technologies 

embedded in the system design.  

As the object of study, we choose complex soft-

ware systems, i.e., sets of programs [15] with special 

system components and third-party components of 

general application. Assume that the total number of 

components in the system is sufficiently large: for 

simple systems, the patching problem seems to be not 

very serious due to a moderate number of vulnerabili-

ties, which can be promptly monitored and eliminated 

in the operation process. As shown by the practice, 

“simple” systems for ICSs consist of at most a single 

computer; then the number of assets and their links 

allows describing the emerging security relationships 

by an access control model, which can be used in risk 

assessment for assets associated with detectable vul-

nerabilities. 

Risk management in industrial facilities and the in-

stallation of updates for digital safety systems are im-

portant, both scientifically and practically. The prob-

lem of risk assessment for the ICS of nuclear power 

plants (NPPs) was reviewed in [16]; a comprehensive 

survey of the recent (2002–2020) publications on 

patch management was given in [17]. The contribution 

of this paper is the detailed description of top-level 

techniques (such as [1, 10]) and a novel, industrial 

control system-oriented, set of actions for deciding on 

the installation of updates. 

The problem of patch management will be consid-

ered in terms of the functions performed by the system 

rather than the vulnerability of a particular component 

for which a patch is available. For example, the main 

function of an ICS is to control an industrial facility. 

Then the purpose of installing a patch for the operating 

system (OS) of a computer within the control system 

is not to protect the OS but to mitigate the risk of the 

facility’s uncontrollability in case of vulnerability ex-

ploitation. For the solution, based on Failure Mode 

and Effects Analysis (FMEA) [18], we propose a risk-

oriented method with criteria for applying updates. In 

addition to managing vulnerabilities by their types, the 

idea is to consider explicitly the impact of protection 

measures on the realizability of attacks by an intruder 

with certain capabilities. The approach described be-

low allows comparing the newly discovered vulnera-

bilities with known ones from some classifier (e.g., the 

Common Weakness Enumeration (CWE) [19]) and 

answering the following question: Does the system 

have “an immunity” (a barrier) against a new vulnera-

bility? Hereinafter we will understand a barrier as a 

certain set of protection measures that guarantee secu-

rity in a definite attack scenario. 

1. THE PECULIARITIES OF USING THE THREAT MODEL 

IN PATCH INSTALLATION 

Most risk-oriented approaches to patch manage-

ment involve risk assessment techniques formulated in 

the ISO/IEC 27005 standard [20]. According to these 

techniques, the analysis of a threat model, including 

vulnerabilities, threats, and an intruder, mainly influ-

ences the decision of risk acceptability or unaccepta-

bility and, consequently, the decision to patch the sys-

tem. There are many methods for describing threat 

model elements and compiling their taxonomy; below 

we will discuss the most appropriate ones for risk as-
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sessment in complex industrial systems during the op-

eration stage. Let us begin with the individual compo-

nents of the threat model. 

 

1.1. Vulnerability Analysis 

Following the definition of a vulnerability from the 

ISO/IEC 27000 standard and FSTEC methodological 

documents [12], vulnerability is “weakness of an asset 

or control that can be exploited by one or more 

threats.”  

Vulnerabilities may have different nature. They 

can be related to the system properties embedded dur-

ing development (weaknesses in the defense-in-depth 

architecture or cross-domain communication, imple-

mentation errors) or can appear due to incorrect appli-

cation of protection measures (e.g., passwords). Vul-

nerability analysis is intended to establish the extent to 

which vulnerabilities can affect the security of the sys-

tem and the assessment of confidence in the protection 

measures implemented [21]. Patches must be applied 

to a system if the vulnerability analysis reveals an un-

acceptable level of information security risk to the sys-

tem (see the guidelines [9], Fig. 3.1). Let us demon-

strate the problems arising in vulnerability analysis. 

For this purpose, consider the use of methodological 

guidelines for analyzing and applying patches in more 

detail.  

The first problem that needs to be highlighted is 

the scale of the system. As mentioned above, a com-

plex software system includes a large number of het-

erogeneous components and third-party applications, 

and cybersecurity requires monitoring a large number 

of vulnerabilities associated with both special system 

components and third-party products (e.g., vulnerabili-

ties in the operating system, database management 

systems, web servers, interpreters, etc).  

The number of newly discovered vulnerabilities 

increases every year. For example, Table 1 presents 

the corresponding figures for CVE and the FSTEC 

Data Bank in 2021–2023. 

For a complex system, the flow of vulnerabilities 

can amount to tens or hundreds of vulnerabilities per 

day, and even the initial analysis of new vulnerabilities 

can require significant resources and costs for an or-

ganization. 

Table 1 

The number of vulnerabilities added to CVE and FSTEC 

Data Bank annually, in thousand 

Database 2021 2022 2023 

FSTEC Data Bank  6.4 7.5 9.1 

CVE [22] 20.2 25.0 29.0 

 

The next problem to be emphasized is that in all 

databases, vulnerabilities are described in a relatively 

free form, without a generally accepted standard. De-

scriptions can be either very brief or overly detailed, 

making their analysis even more complicated. Here 

are some examples of unsuccessful descriptions (Ta-

ble 2). The CVE-2018-19932 vulnerability is de-

scribed with many technical details (may be of interest 

only to software developers); the CVE-2023-36762 

vulnerability has a too general characterization; final-

ly, the CVE-2021-30618 vulnerability is included in 

the database almost without essential information.  

There are works aimed at automating vulnerability 

description analysis (e.g., see [23, 24]), including 

those with machine learning algorithms. However, to 

the best of our knowledge, no available tools com-

pletely automate the analysis of real systems in prac-

tice.  

The description problem is aggravated by the lan-

guage barrier, which has a complex character. First, 

most vulnerability descriptions in international data-

bases are written in English, fluently managed by far 

from all authors of such descriptions. In other words, 

even at the initial description phase, the essence of a 

vulnerability may be distorted or incompletely stated. 

Second, a large amount of information about vulnera-

bilities is transferred from international open databases 

to national ones, where the descriptions are usually 

moderated and translated into the local language. 

Thus, after such manipulations, national vulnerability 

databases may contain additional errors and inaccura-

cies that complicate vulnerability analysis and, vice 

versa, expanded and clarified descriptions. However, 

in the latter case, the developer of a component with 

an open vulnerability often loses feedback from the 

moderators: all clarifications made are available only 

in the national language. 
Table 2 

Examples of unsuccessful vulnerability descriptions 

Vulnerability Description 

CVE-2018-19932 An issue was discovered in the Binary File Descriptor (BFD) library (aka libbfd), as distrib-

uted in GNU Binutils through 2.31. There is an integer overflow and infinite loop caused by 

the IS_CONTAINED_BY_LMA macro in elf.c. 

CVE-2023-36762 Microsoft Word remote code execution vulnerability. 

CVE-2021-30618 Inappropriate implementation in DevTools. 
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Therefore, an organization needs a sufficiently 

large staff of experts to monitor and analyze such a 

volume of vulnerabilities independently; experts will 

perform a professional analysis of this poorly struc-

tured information and assess the risk associated with 

the vulnerability to the protected system.  

A possible way to reduce the amount of infor-

mation analyzed is to prioritize vulnerabilities and fo-

cus on the most critical ones. The Common Vulnera-

bility Scoring System (CVSS) [25–27] is one of the 

most well-known and widespread criticality assess-

ment scales. This scoring system includes three groups 

of metrics: basic, temporal, and contextual. According 

to our experience, the last two either do not contain 

information or the information is specific for a particu-

lar scenario of program application. Therefore, we will 

use only the basic metrics. For CVSS 3.0 [26], they 

include: 

 the attack vector (e.g., a network attack, a local 

attack, physical access, an attack on a related network 

protocol); 

 the complexity of the attack; 

 the necessary access rights to exploit the vulner-

ability; 

 participation of a “normal” user to exploit the 

vulnerability; 

 the possibility that the attack’s consequences 

will go beyond the system under study; 

 the impact on the availability, confidentiality, 

and integrity of information resources controlled by 

the program in which the vulnerability is detected. 

The basic metrics mainly reflect the properties of a 

software component, and the factors of the operating 

environment are considered only conditionally. Their 

values, calculated via expertise, are given in vulnera-

bility databases. 

Therefore, the basic metrics are primarily intended 

for developers and users of a separate software com-

ponent and ignore its role in the information system. 

To perform a complete CVSS vulnerability analysis 

for further risk assessment, one should calculate the 

remaining groups of metrics or use other metrics and 

vulnerability databases that reflect the above aspects 

[2, 28]. Also, it may be necessary to recalculate the 

values of basic metrics to consider the specifics of a 

particular organization or system under study. 

The transition from individual vulnerabilities to 

their classes seems to reduce the labor costs of risk 

analysis and assessment. Vulnerabilities can be classi-

fied in different ways depending on the subject matter 

and the level of detail of the system. In general, there 

are the following types of vulnerabilities reflecting the 

nature of assets [13]: 

– hardware vulnerabilities, 

– software vulnerabilities, 

– network vulnerabilities. 

This paper deals only with software vulnerabilities 

because security updates are mainly focused on them. 

To pass from the separate implementations of vul-

nerabilities (unique in most cases) to their types, we 

apply the approach [14], linking vulnerabilities to pro-

gram weaknesses. Let us take CWE [19], one of the 

most famous classifiers of weaknesses.  

This list is a hierarchical, freely augmentable tax-

onomy of software and hardware flaws that can be 

used in security analysis tools.  

The classifier is a multilevel tree with four levels 

of weaknesses: Root level, Base level, Class level, and 

Variant level. To facilitate user work, CWE contains 

the so-called views, i.e., a set of CWE records intend-

ed for specific tasks (e.g., software development, 

hardware development, and research).  

Vulnerabilities in CWE are classified manually by 

experts; according to practice, the opinions of experts 

differ in many cases [29]. Also, research into fully 

automatic classification is ongoing, but without unam-

biguous results available so far (e.g., see [23]). 

The CWE catalog can be used to create a secure 

development system. As we believe, however, it is of 

little utility for vulnerability classification to create a 

protection system due to an implicit relationship be-

tween the CWE class, attack methods (e.g., attacks 

from the CAPEC classifier [30]), and the intruder 

model. Indeed, the same weakness can be used in dif-

ferent attack scenarios by different intruders and cause 

different consequences. 
 

1.2. Analyzing Threats and Characteristics of Intruders 

In the context of cybersecurity, a threat can be de-

fined as a set of conditions and factors that create a 

potential or real danger of violating information secu-

rity [12]. 

Threat types are usually correlated to the way of 

exploiting vulnerabilities, each with different implica-

tions and prerequisites; as a rule, threat types can be 

associated with a violation of cybersecurity properties 

in one of the reference models (e.g., the Confidentiali-

ty–Integrity–Availability (CIA) model). 

The mapping of cybersecurity properties to system 

properties is individual for a particular system; de-

pending on the system under analysis, each threat type 

may affect any system property (reliability, availabil-

ity, maintainability, and safety). There are several 

common classifications of threat types: 

 The Data Bank of Information Security Threats 

(FSTEC, Russia) [6], 

 MITRE ATT&CK [31], 

 Microsoft’s STRIDE [32].  
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An intruder (threat agent, attacker) is an active el-
ement (subject) in a system that attempts to exploit a 
vulnerability. Examples are hackers, computer crimi-
nals, terrorists, industrial spies, and insiders [33]. A 
detailed classification of intruders is provided in the 
catalogs of FSTEC, CAPEC, MITRE ATT&CK, etc. 
[12, 30, 31]. Each classifier contains a set of attributes 
for intruders, e.g., type, the levels of competence and 
equipment, and the purpose of attack. Within the 
FSTEC model, intruders are further divided into ex-
ternal and internal. ISO/IEC 27000 and MITRE 
ATT&CK attribute an intruder by the purpose of at-
tack: obtaining money, undermining reputation, gain-
ing a competitive advantage, etc.  

As an example of attribution according to FSTEC 
documents, we present the types of intruders and their 
competence levels. 

The types of intruders according to FSTEC are: 

 special services of foreign countries; 

 terrorist and extremist groups; 

 criminal groups (criminal structures); 

 natural persons (hackers); 

 competing organizations; 

 developers of software and programmable digital 
items; 

 suppliers of software and programmable digital 
items for supporting systems; 

 providers of communication services and compu-
ting services; 

 persons engaged for installation, adjustment, test-
ing, commissioning, and other types of work; 

 persons ensuring the operation of systems and 
networks or supporting systems of the operator (ad-
ministration, security guards, cleaners, etc.); 

 authorized users of systems and networks. 
The competence levels (H1–H4) of an intruder ac-

cording to the Russian regulator FSTEC are: 

 basic capabilities for realizing information securi-
ty threats (H1); 

 increased capabilities for realizing information 
security threats (H2); 

 medium capabilities for realizing information se-
curity threats (H3); 

 high capabilities for realizing information securi-
ty threats (H4). 

This list may be supplemented by other intruder 
types, considering the peculiarities of the field where 
systems operate and the connection between the sys-
tem under analysis and its environment. 

 

1.3. Analysis of Threat Model Components: Some 

Conclusions 

According to the aforesaid, clearly, the work on 
analyzing threat model components and assessing the 

risk from vulnerability exploitation by intruders re-
quires the regular participation of experts with rich 
knowledge and skills in programming and information 
security risk assessment, both at the system level and 
at the level of separate components.  

This work is very time-consuming and goes be-
yond the functions related to risk analysis for vulnera-
bilities. If a vulnerability needs to be eliminated by 
applying a patch, the system owner faces additional 
work and problems.  

2. PATCH MANAGEMENT PROBLEMS 

In Section 1, we have described the basic steps for 
deciding whether to patch or not, as well as the related 
problems. However, the difficulties do not stop there: 
having decided to patch, the system owner deals with 
new problems due to the complexity of this class of 
systems: 

 The security update of a software component 
within a system is often released not separately but as 
part of a new version of the component. In this case, 
the functionality of the new version may require the 
additional testing of the component within the system. 
Replacing the existing version of a software compo-
nent may terminate some ICS functions, causing the 
need to modify ICS software. 

 Software components within a software system 
are interconnected by a chain of dependencies. De-
pendencies can be both horizontal (e.g., at the level of 
application software components) and vertical (at the 
level of OS components). Replacing any key compo-
nent may entail replacing the rest and, in the worst 
case, replacing all components in the dependency 
chain. For a system with a long lifecycle, some com-
ponents in a dependency chain may be no longer sup-
ported by the developer (no new versions exist for 
them), and the update in this case cannot be performed 
by simply passing to a new version. 

 ICSs are characterized by a long lifecycle (the 
operation period may reach decades) and strict re-
quirements for the procedure of their development and 
testing. Given the high rate of discovering new vulner-
abilities, it seems natural to assume that new vulnera-
bilities will be found in the ICS software environment 
during the time between the release of the ICS soft-
ware version and the launch of the system after com-
missioning. Also note that the suppliers of third-party 
components may stop supporting outdated versions of 
their products: in this case, there will be no security 
updates for new vulnerabilities. 

 ICS software is tested and certified to work on 
certain hardware tools in a given program environ-
ment, and depending on the validity conditions of the 
system certificate, the application of a patch can lead 



 

 
 

 

 
 

 ● 

to a costly and lengthy re-certification procedure for 
the system.  

An important factor is confidence in the source of 
updates and software developers. As shown by prac-
tice, an update may contain deliberately embedded 
vulnerabilities [2, 34, 35]. Moreover, confidence in the 
source of updates can change over time, from wide-
spread use of programs to their prohibition, only based 
on risk assessments related to the social and political 
circumstances [36, 37]. 

Let us discuss the testing of updates. Installation 
and testing of updates may require testing of the entire 
ICS. In most cases, a hybrid digital twin is a solution 
to perform full-fledged tests comparable to tests on the 
real object. In such a twin, some elements of the real 
ICS equipment are used together with purely digital 
components [38]. 

Thus, the practice of sequentially analyzing sepa-
rate vulnerabilities in components and patching those 
components can be used on simple systems only. For 
large and complex systems with a long operation peri-
od, it is necessary to find other solutions of the cyber-
security problem. 

A list of problems described in the literature was 
compiled in the review [17]. As we believe, the fol-
lowing are the most important ones:  

 The problems of applying patches to ensure in-
formation security and current tasks (e.g., continuous 
business or industrial processes) may be incompatible 
(see [17], item 2 of Table 5). 

 The process of applying patches requires addi-
tional resources and expert knowledge, which are not 
available in the companies operating the software (see 
[17], items 5 and 6 of Table 5). 

 The automatic testing of patches is extremely 
difficult, most patches are tested manually and the 
quality of testing is often unsatisfactory (see [17], 
items 11 and 12 of Table 5). 

 Verifying the correctness of an applied patch 
and eliminating the consequences of deployment er-
rors are a rather difficult problem (see [17], items 13 
and 14 of Table 5). 

Below we describe a novel risk-oriented approach 
to simplify vulnerability analysis significantly. 

3. THE RISK-ORIENTED APPROACH TO VULNERABILITY 

ANALYSIS CONSIDERING PROTECTION MEASURES 

The approach proposed here is intended for sys-
tems with the following characteristics: 

 The software environment of a system is treated 
as a set of separate “black-box” components interact-
ing with each other through a known set of interfaces. 

 A system is created using the architectural prin-
ciples of encapsulation and domain partitioning [39]. 

We will consider a system in terms of performing 
definite functions and examine the contribution of 
each component to the functions.  

This approach proceeds from the following main 
idea: the vulnerability analysis of system software 
should answer the question of how dangerous a vul-
nerability is to a particular system function rather than 
how critical it is to a particular software component. 

The vulnerability analysis method proposed below 
is based on Failure Mode and Effects Analysis 
(FMEA), a method for identifying weaknesses in the 
system architecture to improve its reliability and secu-
rity [18]. FMEA was developed in the 1940s [40] and 
initially intended to analyze the reliability or security 
of technical systems and equipment. Later, modifica-
tions of this method were proposed to analyze cyber-
security problems for systems with digital components 
(System Failure Mode and Effects Analysis, SFMEA) 
[41, 42]. This paper provides general information 
about FMEA; the interested reader can find details 
from the extensive literature. Within FMEA, a system 
must have the following properties: 

 definite targets in the form of requirements for 
its functions, 

 established operation conditions, 

 definite bounds, 

 a hierarchical structure. 
Together with the block diagram of the hierar-

chical structure of elements, FMEA uses block dia-
grams reflecting the hierarchy of functions performed 
by system elements and functional relationships be-
tween the elements, which makes the functional fail-
ures of the system traceable. 

The following items are analyzed for each system 
component (Fig. 1): 

 the causes of a given failure; 

 a function or failure that can occur (the type of 

failure); 
 

 

 

 
Fig. 1. The flowchart of failure criticality assessment according to the 

standard [18]. 
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 the peculiarities of possible consequences in case 

of a failure; 

 the severity of a failure (whether the failure is 

harmless or causes damage); 

 the criticality of a failure (how and when the fail-

ure can be detected). 

When applying FMEA approaches to cybersecurity 

assessment, it is necessary to describe FMEA stages in 

cybersecurity terms and relate the cause of a failure to 

the vulnerability and the intruder’s ability to exploit it.  

We propose adapting the FMEA methodology in 

order to assess the impact of a vulnerability, thereby 

reducing the amount of information under analysis 

(Fig. 2). 

The methodology takes into account that a vulner-

ability in itself is not the cause of a failure. That is, a 

vulnerability leads to a failure if an intruder with suffi-

cient competence exploits it to realize a definite threat 

(see block 1 in Fig. 2). The intruder and his/her com-

petence can be typified according to an accepted scale: 

  
 

 

 
Fig. 2. The flowchart of failure criticality assessment with protection barriers for reliability and cybersecurity problems.
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e.g., using the FSTEC classifier [12]. Thus, a failure is 

the result of a successful attack on the system by an 

intruder with sufficient competence and capabilities to 

exploit a vulnerability. 

In the methodology proposed, the independence of 

vulnerabilities is postulated to reduce the analysis 

space. This is analogous to the assumption on the in-

dependence of failures in FMEA ([18], section 4.1). 

In contrast to the typical consideration of separate 

technologies underlying a vulnerability (e.g., as in the 

CWE catalog), the analysis scheme proposed focuses 

on CVSS attributes to correlate the vulnerability and 

the associated threat. Additionally, we pass from ana-

lyzing separate threats and attackers to analyzing typi-

cal attack scenarios associated with threat classes and 

typical attacker capabilities, thereby reducing the 

number of threats and attack scenarios under analysis. 

For ICSs of NPPs, some examples of typical attack 

scenarios were described in [43]. 

In this case, a function failure is related not to a 

particular vulnerability (see Fig. 2) but to the set of 

conditions and factors that have led to the failure of a 

component and the intruder’s penetration through the 

protection barrier. Note that a failure is not necessarily 

directly related to a (cyber)attack and vulnerability 

exploitation but, e.g., may be the result of resource 

exhaustion. However, the operation modes of critical 

facilities are designed so that to exclude resource ex-

haustion. 

The second important supplement to the applica-

tion of FMEA approaches to cybersecurity problems is 

to consider the presence of a barrier reflecting the ef-

fect of an already implemented set of protection 

measures. A barrier can block the impact of a compo-

nent failure on the function of the entire system, there-

by nullifying the risks associated with an attack on the 

system. By assumption, a barrier has a high degree of 

confidence and can counteract the exploitation of one 

or more types of vulnerabilities. Thus, when analyzing 

attack scenarios, a barrier is supposed to be absolute. 

This model assumption allows significantly reducing 

the analysis space. 

The presence of an intruder with motivation and 

purpose means that a cybersecurity failure is generally 

not a random event. Therefore, as a rule, statistical 

approaches are inapplicable to failure analysis whereas 

a risk-oriented approach and logical rules can be used. 

If the probabilistic nature of the intruder’s impact 

on a system is allowed, the impact of a failure on the 

entire system and the associated risks (see block 2 in 

Fig. 2) are assessed using FMEA and the theoretical 

and probabilistic approaches developed in [18, 44].  

The approach described above can be combined in-

to an integrated protection and vulnerability assess-

ment method, called Vulnerability Inspection Control 

Strategy (VICS); see the flowchart in Fig. 3. 

Consider the sequence of actions to analyze vul-

nerabilities and assess patches for a modern ICS [45] 

within VICS. The initial data for the analysis are:  

 the list of vulnerabilities analyzed; 

 an accepted classification system for threats act-

ing on the system (e.g., the CIA model or the FSTEC 

classifier); 

 an accepted intruder’s model; 

 accepted typical attack scenarios, which allow 

determining the potential type of a component failure 

for each “threat class–intruder competence” pair; 

 the list of system functions, including known 

negative consequences of violating them; 

 a “function failure–barrier” table, which de-

scribes a bigraph defining a barrier for each failure 

type according to the protection measures implement-

ed;  

 the structural diagram of the system, which 

serves to relate a vulnerability to one or more system 

components;  

 a fault tree, which is intended to trace the impact 

of a failure of compromised components on system 

functions and group them by type (see Fault Tree 

Analysis (FTA)). 

The analysis comes to the following actions: 

1. For each vulnerability, assign a threat class, a 

typical attack scenario, and a component failure type, 

considering the intruder’s competence level and moti-

vation. 

2. Analyze the availability of a protection barrier. 

If the barrier exists, stop the analysis for this vulnera-

bility. 

3. If the barrier is absent or insufficient for this 

type of attack, select a protection measure or apply a 

patch that neutralizes the security threats identified or 

mitigates the risk of their exploitation to an acceptable 

level, following an accepted patch management meth-

odology (e.g., see the guidelines [9]). If the decision is 

to implement a new protection measure, add the corre-

sponding attack scenario and barrier into the table de-

scribing the bigraph. 

Thus, a security update is applied as a vulnerabil-

ity risk mitigation measure under the following condi-

tions (criteria): 

 no barrier against a given attack type; 

 an insufficient barrier against a given type of at-

tack; 

 the absence of protection measures that are more 

effective than installing an update. 
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Fig. 3. The flowchart of Vulnerability and Inspection Control Strategy. 

 

We propose the following sequence of actions for 
information system vulnerabilities: 

1. During the development of a protection system, 
perform a threat analysis and create a catalog of pro-

tection barriers and a catalog of typical attack scenari-
os. 

2. Based on the two catalogs, form a bigraph de-
scribing the parrying of attacks by protection barriers.  

3. Classify each new vulnerability in accordance 
with the classes of threats, intruders, and attack sce-

narios (see Section 4). If a vulnerability is assigned a 
class with an available barrier (a set of protection 

measures), no patch is required. 
4. If a vulnerability leads to a new attack scenario, 

either install a patch or implement other risk mitiga-
tion measures. In particular, they may include the in-

troduction of new protection barriers minimizing the 
impact of this attack scenario. 

5. Analyze periodically the correctness of the pro-
tection measures that form barriers. If protection 
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measures are considered insufficient based on the 
analysis results, other or additional ones (including 

patch installation) must be developed and implement-
ed. 

Note that VICS does not cover vulnerabilities in 
software protection barriers and the correctness of the 

operating environment. However, the systems under 
consideration are usually built with high confidence in 

the correctness of protection measures implemented 
and the quality of system operation; as a result, the 

number of vulnerabilities in the barriers is usually 
much smaller than the total number of vulnerabilities 

in the system. Therefore, the method covers the vast 
majority of vulnerabilities. Existing guidelines can be 

used to manage vulnerabilities in protection barriers 
(e.g., see [3, 8, 9]). 

In the next section, we demonstrate the practical 

application of VICS on the example of building a pro-
tection system for an upper-level system of an instru-

mentation and control system (ULS ICS). 

4. PRACTICAL APPLICATION OF THE METHOD  

Let us demonstrate the practical application of 
VICS on the example of ULS ICS. Here is a brief de-

scription of its main functions and properties. (For a 
detailed consideration of such systems, we refer, e.g., 

to [45].) 

The upper-level system of an ICS is intended: 

 to implement information, control, and auxiliary 
functions; 

 to send operator’s control commands for indus-
trial processes and equipment; 

 to monitor the ICS state; 

 to integrate information from ICS subsystems. 
The ULS ICS under consideration consists of serv-

ers, which collect and archive information from relat-

ed systems and operator’s commands, and work-
stations, where information about the ICS state is dis-

played and control commands are entered. All ULS 
elements are redundant and connected by a redundant 

network. The ICS has no access to the Internet. Unidi-
rectional data flows from the ICS to the outside (e.g., 

via a data diode) are allowed.  

We adopt the CIA model to describe threats, asso-
ciating with it the main threat types of violating confi-

dentiality, integrity, and availability. This approach is 
undoubtedly a simplification, but it follows the prac-

tice reflected in many widespread security classifiers 
(e.g., CWE and CVSS). We take the intruder’s model 

with a low or medium level of privileges (no adminis-
trator rights) and medium capabilities to realize infor-

mation security threats (intruder’s competence level 
H3 according to FSTEC). Suppose that the intruder 

undertakes a local attack to violate the integrity of 
software or data (including an unauthorized execution 

of commands) and implement thereby a control com-
mand that will cause physical damage to the industrial 

facility. 
Let a set of protection measures (a barrier) be in-

cluded in the ICS during the design stage to prevent 

access of an unprivileged user with a medium level of 
competence in the system software. For the ICS, the 

protection measures can be selected from the list [46]. 
Assume also that the system is not compromised at the 

time of the attack. For the attack scenario and barrier, 
a fragment of the bigraph is shown in Fig. 4. 

 

 
Fig. 4. The bigraph describing the “attack scenario–protection barrier” relationship. 
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Now we pass to the vulnerability analysis. From 

the vulnerability database it is necessary to unload the 

descriptions of vulnerabilities related to the software 

used in the ULS ICS, considering the versions of all 

components. To ease the work, one can use a vulnera-

bility scanner. 

For the sake of definiteness, let the ULS ICS be 

implemented in Linux. Consider a vulnerability in the 

glibc base component (CVE-2020-1752), which has a 

high degree of danger according to the CVSS 3.0 clas-

sifier. Exploiting this vulnerability, a local intruder can 

execute an arbitrary code by passing a special file path 

to a program and thus violate software integrity. All 

these properties of the vulnerability are reflected in the 

CVSS 3.0 vector.  

In the accepted security model (see the table), such 

a vulnerability corresponds to an attack scenario al-

lowing the execution of an arbitrary code without priv-

ilege escalation; also, a barrier acts against this attack 

to prevent vulnerability exploitation by an intruder in 

the given attack scenario. 

Thus, in view of high confidence in the barrier’s 

capability to counteract uncontrolled access to system 

software, we consider the risk of vulnerability minimal 

and no patches need to be installed for the CVE-2020-

1752 vulnerability. 

Obviously, for vulnerabilities with a similar attack 

scenario, VICS will yield the same results. 

CONCLUSIONS 

The problems of installing security updates are 

quite acute due to the increasing focus on cybersecuri-

ty in all computer applications. Recommendations on 

patching have been developed over the years [3, 8, 9], 

but their use encounters difficulties in practice. 

The first difficulty, which concerns information 

systems of any purpose, is the effect of scale. Current-

ly, thousands of vulnerabilities are discovered every 

year, making it inefficient to analyze each vulnerabil-

ity “manually.” The difficulties of analyzing each vul-

nerability separately can lead to a “patch everything” 

strategy. However, this strategy is fraught with com-

patibility validation problems for software and hard-

ware components and disruption of continuous busi-

ness processes under protection. 

Instrumentation and control systems (ICSs) are ad-

ditionally characterized by a long lifecycle (decades), 

low variability of hardware during operation, a rather 

lengthy development stage, and (often) the need for 

software certification. Therefore, even if all known 

vulnerabilities are eliminated in the ICS software at 

the time of its acceptance for operation, by the time of 

complete commissioning the software will certainly 

contain newly discovered vulnerabilities that cannot 

be promptly eliminated. Due to invariable hardware, 

after several years of operation, many software com-

ponents will be impossible to update without violating 

the hardware-software compatibility of the system, as 

new versions of third-party software may no longer 

support obsolete hardware. Industry regulations may 

require recertification after updates have been in-

stalled, resulting in additional time and costs. The 

need for recertification after each software change is 

essential and is recognized not only by developers but 

also by regulating authorities. In particular, at the in-

ternational level, the possibility of classifying changes 

(patches) according to the degree of their impact on 

the functionality of software and, depending on this, 

changing the requirements for recertification is being 

considered. 

Obviously, some method is needed to analyze a 

large number of vulnerabilities for a particular system 

and provide recommendations on patching without a 

full and detailed analysis of each vulnerability.  

This paper has proposed an FMEA-based approach 

considering not a separate vulnerability but its impact 

as part of an attack scenario (within an accepted model 

of threats and intruder) on the functions of the entire 

system with existing barriers (sets of protection 

measures effective against a definite attack scenario). 

In accordance with secure design principles, defi-

nite sets of protection measures are embedded into the 

system to form guaranteed barriers for definite classes 

of vulnerabilities. These barriers are activated during 

the operation stage. 

The “attack scenario– barrier” relationships form a 

bigraph, and risk analysis in case of new vulnerabili-

ties is reduced to analyzing this bigraph.  

Suppose that a new vulnerability is discovered, 

leading to an attack scenario without an installed (or 

ineffective) protection barrier. In this case, the new 

risk source requires additional measures in the form of 

installing a security update or applying other compen-

sating measures. This is the decision criterion for in-

stalling security updates. 

Barriers are considered in the context of protection 

against classes of vulnerabilities rather than a separate 

vulnerability. Therefore, the approach not only coun-

teracts open (known) vulnerabilities but also provides 

protection against yet-to-be-discovered vulnerabilities, 

which are always present in complex software prod-

ucts. 

Note finally that in a complex system, manual vul-

nerability analysis, even with a small number of attack 

scenarios, types of intruders and threats, is extremely 

difficult and makes a mass problem. As we believe, 

automation of vulnerability analysis using formal 
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problem-oriented languages for describing vulnerabil-

ity and attack scenarios will make this approach appli-

cable to real control systems, and research in this di-

rection is ongoing. 
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