
I nformation Technology in Control

 ●

A PROCEDURE FOR ASSESSING SECURITY UPDATES

IN INDUSTRIAL SYSTEMS

K. V. Semenkov* and V. G. Promyslov**

*,**Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

* semenkov@ipu.ru, ** vp@ipu.ru

Abstract. This paper is devoted to the problem of applying cybersecurity updates (patches) for

the software of instrumentation and control systems (ICS) with a long lifecycle. The problem is

considered for the system operation stage. The main focus is on the large number of vulnerabili-

ties found in software, the complexity of analyzing the impact of a vulnerability on system securi-

ty, and the requirements for testing the compatibility of updates and software certification after

changes have been made. Based on the Failure Mode and Effects Analysis (FMEA), a procedure

is proposed to simplify the analysis of the impact of a vulnerability on cybersecurity. This proce-

dure considers a smaller set of attack scenarios rather than each vulnerability separately. The

analysis of attack scenarios also covers the effect of security measures. The procedure includes

simple criteria for applying security updates based on the analysis results. An example of vulner-

ability analysis using this procedure is provided.

Keywords: vulnerability, patch, risk assessment, instrumentation and control system (ICS), cybersecurity,

criterion.

INTRODUCTION

A main way of conducting cyberattacks is to ex-

ploit vulnerabilities in software. Despite advances in
software development and testing technologies, the

complexity of programs makes it impossible to guar-
antee that software is free of vulnerabilities. Intruders

focus their resources on finding and exploiting vulner-
abilities, whereas software developers and users are

interested in finding and promptly fixing these vulner-
abilities, and releasing and installing appropriate soft-

ware security updates (patches). In general, a patch is
often understood as a very wide range of software

changes [1–4], which are either characterized by the
approach to this patch as a/an process/object or related

to the scope or nature of software changes. In informal
communication of IT experts, one can also meet other

similar terms, e.g., update, bugfix, or hotfix. For the
purposes of this paper, let us assume the following.

Definition. A security update (patch) is a modifi-

cation to installed software intended to eliminate soft-
ware vulnerabilities without changing other functional

characteristics of the software. ♦
A great deal of work has been done globally to ac-

cumulate information about vulnerabilities, and there

are publicly available and constantly updated data-
bases: CVE (USA) [5], the Data Bank of Information

Security Threats (Russia, managed by the Federal Ser-
vice for Technical and Export Control (FSTEC)) [6],

CERT-FR (France) [7], and others. For each vulnera-
bility on the list, the databases necessarily contain its

description, impact assessment, and recommendations
to eliminate the vulnerability or mitigate its negative

impact. Software developers release security updates,
which can often be installed automatically.

The experience gained in the world is systematized
in international and national standards and methodo-

logical documents on the application of patches; for
example, see [3, 8, 9]. The guidelines and recommen-

dations of these documents are generally reduced to

the following steps:
1) permanently monitor vulnerabilities in the soft-

ware used;
2) analyze newly discovered vulnerabilities and

assess cybersecurity risks;
3) determine further actions depending on the re-

sults of the risk assessment: accept the risk, eliminate
the risk (apply a patch), etc.;

4) under a positive decision to install an update:
a) develop a plan for applying the update;

mailto:semenkov@ipu.ru
mailto:vp@ipu.ru

 ●

b) check the integrity and confidence of the up-

date;

c) test the update;

d) install the update;

e) check the software status and configuration

after the installation.

As we believe, however, the issues of practical ap-

plication of the available data, primarily related to the

large volume of analyzed information and its reliabil-

ity, have not yet been fully settled.

In this paper, the problem of applying security up-

dates [10, 11] in systems with a long lifecycle will be

considered on the example of an instrumentation and

control system (ICS), and a new solution method will

be proposed. Below, a system with a long lifecycle is

understood as a system whose operation and support

stage lasts for several years or even decades.

According to the guidelines of regulatory and

methodological documents [10–13], vulnerability

identification, analysis, and assessment should be con-

ducted throughout the entire lifecycle of a protected

system. Since cybersecurity resources and the context

of viewing the system differ significantly between

lifecycle stages, vulnerability elimination problems

and methods for addressing them also differ. This pa-

per focuses on the issues of vulnerability assessment

during the exploitation stage under the following as-

sumption: at the end of the development stage, the de-

veloper has closed known vulnerabilities and applied

adequate protection measures to mitigate the risk to an

acceptable level. For the development stage, there is a

diverse set of recommendations for secure software

development [14].

Much attention is paid to the operation stage be-

cause, as our experience shows, the problem of vul-

nerability management most fully manifests itself at

the operation stage and becomes more complicated

over time. This is primarily due to the integral effect

of several factors: the accumulation of detected vul-

nerabilities in the components used, the end of the de-

veloper’s support period for some components, and

the obsolescence of information security technologies

embedded in the system design.

As the object of study, we choose complex soft-

ware systems, i.e., sets of programs [15] with special

system components and third-party components of

general application. Assume that the total number of

components in the system is sufficiently large: for

simple systems, the patching problem seems to be not

very serious due to a moderate number of vulnerabili-

ties, which can be promptly monitored and eliminated

in the operation process. As shown by the practice,

“simple” systems for ICSs consist of at most a single

computer; then the number of assets and their links

allows describing the emerging security relationships

by an access control model, which can be used in risk

assessment for assets associated with detectable vul-

nerabilities.

Risk management in industrial facilities and the in-

stallation of updates for digital safety systems are im-

portant, both scientifically and practically. The prob-

lem of risk assessment for the ICS of nuclear power

plants (NPPs) was reviewed in [16]; a comprehensive

survey of the recent (2002–2020) publications on

patch management was given in [17]. The contribution

of this paper is the detailed description of top-level

techniques (such as [1, 10]) and a novel, industrial

control system-oriented, set of actions for deciding on

the installation of updates.

The problem of patch management will be consid-

ered in terms of the functions performed by the system

rather than the vulnerability of a particular component

for which a patch is available. For example, the main

function of an ICS is to control an industrial facility.

Then the purpose of installing a patch for the operating

system (OS) of a computer within the control system

is not to protect the OS but to mitigate the risk of the

facility’s uncontrollability in case of vulnerability ex-

ploitation. For the solution, based on Failure Mode

and Effects Analysis (FMEA) [18], we propose a risk-

oriented method with criteria for applying updates. In

addition to managing vulnerabilities by their types, the

idea is to consider explicitly the impact of protection

measures on the realizability of attacks by an intruder

with certain capabilities. The approach described be-

low allows comparing the newly discovered vulnera-

bilities with known ones from some classifier (e.g., the

Common Weakness Enumeration (CWE) [19]) and

answering the following question: Does the system

have “an immunity” (a barrier) against a new vulnera-

bility? Hereinafter we will understand a barrier as a

certain set of protection measures that guarantee secu-

rity in a definite attack scenario.

1. THE PECULIARITIES OF USING THE THREAT MODEL

IN PATCH INSTALLATION

Most risk-oriented approaches to patch manage-

ment involve risk assessment techniques formulated in

the ISO/IEC 27005 standard [20]. According to these

techniques, the analysis of a threat model, including

vulnerabilities, threats, and an intruder, mainly influ-

ences the decision of risk acceptability or unaccepta-

bility and, consequently, the decision to patch the sys-

tem. There are many methods for describing threat

model elements and compiling their taxonomy; below

we will discuss the most appropriate ones for risk as-

 ●

sessment in complex industrial systems during the op-

eration stage. Let us begin with the individual compo-

nents of the threat model.

1.1. Vulnerability Analysis

Following the definition of a vulnerability from the

ISO/IEC 27000 standard and FSTEC methodological

documents [12], vulnerability is “weakness of an asset

or control that can be exploited by one or more

threats.”

Vulnerabilities may have different nature. They

can be related to the system properties embedded dur-

ing development (weaknesses in the defense-in-depth

architecture or cross-domain communication, imple-

mentation errors) or can appear due to incorrect appli-

cation of protection measures (e.g., passwords). Vul-

nerability analysis is intended to establish the extent to

which vulnerabilities can affect the security of the sys-

tem and the assessment of confidence in the protection

measures implemented [21]. Patches must be applied

to a system if the vulnerability analysis reveals an un-

acceptable level of information security risk to the sys-

tem (see the guidelines [9], Fig. 3.1). Let us demon-

strate the problems arising in vulnerability analysis.

For this purpose, consider the use of methodological

guidelines for analyzing and applying patches in more

detail.

The first problem that needs to be highlighted is

the scale of the system. As mentioned above, a com-

plex software system includes a large number of het-

erogeneous components and third-party applications,

and cybersecurity requires monitoring a large number

of vulnerabilities associated with both special system

components and third-party products (e.g., vulnerabili-

ties in the operating system, database management

systems, web servers, interpreters, etc).

The number of newly discovered vulnerabilities

increases every year. For example, Table 1 presents

the corresponding figures for CVE and the FSTEC

Data Bank in 2021–2023.

For a complex system, the flow of vulnerabilities

can amount to tens or hundreds of vulnerabilities per

day, and even the initial analysis of new vulnerabilities

can require significant resources and costs for an or-

ganization.

Table 1

The number of vulnerabilities added to CVE and FSTEC

Data Bank annually, in thousand

Database 2021 2022 2023

FSTEC Data Bank 6.4 7.5 9.1

CVE [22] 20.2 25.0 29.0

The next problem to be emphasized is that in all

databases, vulnerabilities are described in a relatively

free form, without a generally accepted standard. De-

scriptions can be either very brief or overly detailed,

making their analysis even more complicated. Here

are some examples of unsuccessful descriptions (Ta-

ble 2). The CVE-2018-19932 vulnerability is de-

scribed with many technical details (may be of interest

only to software developers); the CVE-2023-36762

vulnerability has a too general characterization; final-

ly, the CVE-2021-30618 vulnerability is included in

the database almost without essential information.

There are works aimed at automating vulnerability

description analysis (e.g., see [23, 24]), including

those with machine learning algorithms. However, to

the best of our knowledge, no available tools com-

pletely automate the analysis of real systems in prac-

tice.

The description problem is aggravated by the lan-

guage barrier, which has a complex character. First,

most vulnerability descriptions in international data-

bases are written in English, fluently managed by far

from all authors of such descriptions. In other words,

even at the initial description phase, the essence of a

vulnerability may be distorted or incompletely stated.

Second, a large amount of information about vulnera-

bilities is transferred from international open databases

to national ones, where the descriptions are usually

moderated and translated into the local language.

Thus, after such manipulations, national vulnerability

databases may contain additional errors and inaccura-

cies that complicate vulnerability analysis and, vice

versa, expanded and clarified descriptions. However,

in the latter case, the developer of a component with

an open vulnerability often loses feedback from the

moderators: all clarifications made are available only

in the national language.
Table 2

Examples of unsuccessful vulnerability descriptions

Vulnerability Description

CVE-2018-19932 An issue was discovered in the Binary File Descriptor (BFD) library (aka libbfd), as distrib-

uted in GNU Binutils through 2.31. There is an integer overflow and infinite loop caused by

the IS_CONTAINED_BY_LMA macro in elf.c.

CVE-2023-36762 Microsoft Word remote code execution vulnerability.

CVE-2021-30618 Inappropriate implementation in DevTools.

 ●

Therefore, an organization needs a sufficiently

large staff of experts to monitor and analyze such a

volume of vulnerabilities independently; experts will

perform a professional analysis of this poorly struc-

tured information and assess the risk associated with

the vulnerability to the protected system.

A possible way to reduce the amount of infor-

mation analyzed is to prioritize vulnerabilities and fo-

cus on the most critical ones. The Common Vulnera-

bility Scoring System (CVSS) [25–27] is one of the

most well-known and widespread criticality assess-

ment scales. This scoring system includes three groups

of metrics: basic, temporal, and contextual. According

to our experience, the last two either do not contain

information or the information is specific for a particu-

lar scenario of program application. Therefore, we will

use only the basic metrics. For CVSS 3.0 [26], they

include:

 the attack vector (e.g., a network attack, a local

attack, physical access, an attack on a related network

protocol);

 the complexity of the attack;

 the necessary access rights to exploit the vulner-

ability;

 participation of a “normal” user to exploit the

vulnerability;

 the possibility that the attack’s consequences

will go beyond the system under study;

 the impact on the availability, confidentiality,

and integrity of information resources controlled by

the program in which the vulnerability is detected.

The basic metrics mainly reflect the properties of a

software component, and the factors of the operating

environment are considered only conditionally. Their

values, calculated via expertise, are given in vulnera-

bility databases.

Therefore, the basic metrics are primarily intended

for developers and users of a separate software com-

ponent and ignore its role in the information system.

To perform a complete CVSS vulnerability analysis

for further risk assessment, one should calculate the

remaining groups of metrics or use other metrics and

vulnerability databases that reflect the above aspects

[2, 28]. Also, it may be necessary to recalculate the

values of basic metrics to consider the specifics of a

particular organization or system under study.

The transition from individual vulnerabilities to

their classes seems to reduce the labor costs of risk

analysis and assessment. Vulnerabilities can be classi-

fied in different ways depending on the subject matter

and the level of detail of the system. In general, there

are the following types of vulnerabilities reflecting the

nature of assets [13]:

– hardware vulnerabilities,

– software vulnerabilities,

– network vulnerabilities.

This paper deals only with software vulnerabilities

because security updates are mainly focused on them.

To pass from the separate implementations of vul-

nerabilities (unique in most cases) to their types, we

apply the approach [14], linking vulnerabilities to pro-

gram weaknesses. Let us take CWE [19], one of the

most famous classifiers of weaknesses.

This list is a hierarchical, freely augmentable tax-

onomy of software and hardware flaws that can be

used in security analysis tools.

The classifier is a multilevel tree with four levels

of weaknesses: Root level, Base level, Class level, and

Variant level. To facilitate user work, CWE contains

the so-called views, i.e., a set of CWE records intend-

ed for specific tasks (e.g., software development,

hardware development, and research).

Vulnerabilities in CWE are classified manually by

experts; according to practice, the opinions of experts

differ in many cases [29]. Also, research into fully

automatic classification is ongoing, but without unam-

biguous results available so far (e.g., see [23]).

The CWE catalog can be used to create a secure

development system. As we believe, however, it is of

little utility for vulnerability classification to create a

protection system due to an implicit relationship be-

tween the CWE class, attack methods (e.g., attacks

from the CAPEC classifier [30]), and the intruder

model. Indeed, the same weakness can be used in dif-

ferent attack scenarios by different intruders and cause

different consequences.

1.2. Analyzing Threats and Characteristics of Intruders

In the context of cybersecurity, a threat can be de-

fined as a set of conditions and factors that create a

potential or real danger of violating information secu-

rity [12].

Threat types are usually correlated to the way of

exploiting vulnerabilities, each with different implica-

tions and prerequisites; as a rule, threat types can be

associated with a violation of cybersecurity properties

in one of the reference models (e.g., the Confidentiali-

ty–Integrity–Availability (CIA) model).

The mapping of cybersecurity properties to system

properties is individual for a particular system; de-

pending on the system under analysis, each threat type

may affect any system property (reliability, availabil-

ity, maintainability, and safety). There are several

common classifications of threat types:

 The Data Bank of Information Security Threats

(FSTEC, Russia) [6],

 MITRE ATT&CK [31],

 Microsoft’s STRIDE [32].

 ●

An intruder (threat agent, attacker) is an active el-
ement (subject) in a system that attempts to exploit a
vulnerability. Examples are hackers, computer crimi-
nals, terrorists, industrial spies, and insiders [33]. A
detailed classification of intruders is provided in the
catalogs of FSTEC, CAPEC, MITRE ATT&CK, etc.
[12, 30, 31]. Each classifier contains a set of attributes
for intruders, e.g., type, the levels of competence and
equipment, and the purpose of attack. Within the
FSTEC model, intruders are further divided into ex-
ternal and internal. ISO/IEC 27000 and MITRE
ATT&CK attribute an intruder by the purpose of at-
tack: obtaining money, undermining reputation, gain-
ing a competitive advantage, etc.

As an example of attribution according to FSTEC
documents, we present the types of intruders and their
competence levels.

The types of intruders according to FSTEC are:

 special services of foreign countries;

 terrorist and extremist groups;

 criminal groups (criminal structures);

 natural persons (hackers);

 competing organizations;

 developers of software and programmable digital
items;

 suppliers of software and programmable digital
items for supporting systems;

 providers of communication services and compu-
ting services;

 persons engaged for installation, adjustment, test-
ing, commissioning, and other types of work;

 persons ensuring the operation of systems and
networks or supporting systems of the operator (ad-
ministration, security guards, cleaners, etc.);

 authorized users of systems and networks.
The competence levels (H1–H4) of an intruder ac-

cording to the Russian regulator FSTEC are:

 basic capabilities for realizing information securi-
ty threats (H1);

 increased capabilities for realizing information
security threats (H2);

 medium capabilities for realizing information se-
curity threats (H3);

 high capabilities for realizing information securi-
ty threats (H4).

This list may be supplemented by other intruder
types, considering the peculiarities of the field where
systems operate and the connection between the sys-
tem under analysis and its environment.

1.3. Analysis of Threat Model Components: Some

Conclusions

According to the aforesaid, clearly, the work on
analyzing threat model components and assessing the

risk from vulnerability exploitation by intruders re-
quires the regular participation of experts with rich
knowledge and skills in programming and information
security risk assessment, both at the system level and
at the level of separate components.

This work is very time-consuming and goes be-
yond the functions related to risk analysis for vulnera-
bilities. If a vulnerability needs to be eliminated by
applying a patch, the system owner faces additional
work and problems.

2. PATCH MANAGEMENT PROBLEMS

In Section 1, we have described the basic steps for
deciding whether to patch or not, as well as the related
problems. However, the difficulties do not stop there:
having decided to patch, the system owner deals with
new problems due to the complexity of this class of
systems:

 The security update of a software component
within a system is often released not separately but as
part of a new version of the component. In this case,
the functionality of the new version may require the
additional testing of the component within the system.
Replacing the existing version of a software compo-
nent may terminate some ICS functions, causing the
need to modify ICS software.

 Software components within a software system
are interconnected by a chain of dependencies. De-
pendencies can be both horizontal (e.g., at the level of
application software components) and vertical (at the
level of OS components). Replacing any key compo-
nent may entail replacing the rest and, in the worst
case, replacing all components in the dependency
chain. For a system with a long lifecycle, some com-
ponents in a dependency chain may be no longer sup-
ported by the developer (no new versions exist for
them), and the update in this case cannot be performed
by simply passing to a new version.

 ICSs are characterized by a long lifecycle (the
operation period may reach decades) and strict re-
quirements for the procedure of their development and
testing. Given the high rate of discovering new vulner-
abilities, it seems natural to assume that new vulnera-
bilities will be found in the ICS software environment
during the time between the release of the ICS soft-
ware version and the launch of the system after com-
missioning. Also note that the suppliers of third-party
components may stop supporting outdated versions of
their products: in this case, there will be no security
updates for new vulnerabilities.

 ICS software is tested and certified to work on
certain hardware tools in a given program environ-
ment, and depending on the validity conditions of the
system certificate, the application of a patch can lead

 ●

to a costly and lengthy re-certification procedure for
the system.

An important factor is confidence in the source of
updates and software developers. As shown by prac-
tice, an update may contain deliberately embedded
vulnerabilities [2, 34, 35]. Moreover, confidence in the
source of updates can change over time, from wide-
spread use of programs to their prohibition, only based
on risk assessments related to the social and political
circumstances [36, 37].

Let us discuss the testing of updates. Installation
and testing of updates may require testing of the entire
ICS. In most cases, a hybrid digital twin is a solution
to perform full-fledged tests comparable to tests on the
real object. In such a twin, some elements of the real
ICS equipment are used together with purely digital
components [38].

Thus, the practice of sequentially analyzing sepa-
rate vulnerabilities in components and patching those
components can be used on simple systems only. For
large and complex systems with a long operation peri-
od, it is necessary to find other solutions of the cyber-
security problem.

A list of problems described in the literature was
compiled in the review [17]. As we believe, the fol-
lowing are the most important ones:

 The problems of applying patches to ensure in-
formation security and current tasks (e.g., continuous
business or industrial processes) may be incompatible
(see [17], item 2 of Table 5).

 The process of applying patches requires addi-
tional resources and expert knowledge, which are not
available in the companies operating the software (see
[17], items 5 and 6 of Table 5).

 The automatic testing of patches is extremely
difficult, most patches are tested manually and the
quality of testing is often unsatisfactory (see [17],
items 11 and 12 of Table 5).

 Verifying the correctness of an applied patch
and eliminating the consequences of deployment er-
rors are a rather difficult problem (see [17], items 13
and 14 of Table 5).

Below we describe a novel risk-oriented approach
to simplify vulnerability analysis significantly.

3. THE RISK-ORIENTED APPROACH TO VULNERABILITY

ANALYSIS CONSIDERING PROTECTION MEASURES

The approach proposed here is intended for sys-
tems with the following characteristics:

 The software environment of a system is treated
as a set of separate “black-box” components interact-
ing with each other through a known set of interfaces.

 A system is created using the architectural prin-
ciples of encapsulation and domain partitioning [39].

We will consider a system in terms of performing
definite functions and examine the contribution of
each component to the functions.

This approach proceeds from the following main
idea: the vulnerability analysis of system software
should answer the question of how dangerous a vul-
nerability is to a particular system function rather than
how critical it is to a particular software component.

The vulnerability analysis method proposed below
is based on Failure Mode and Effects Analysis
(FMEA), a method for identifying weaknesses in the
system architecture to improve its reliability and secu-
rity [18]. FMEA was developed in the 1940s [40] and
initially intended to analyze the reliability or security
of technical systems and equipment. Later, modifica-
tions of this method were proposed to analyze cyber-
security problems for systems with digital components
(System Failure Mode and Effects Analysis, SFMEA)
[41, 42]. This paper provides general information
about FMEA; the interested reader can find details
from the extensive literature. Within FMEA, a system
must have the following properties:

 definite targets in the form of requirements for
its functions,

 established operation conditions,

 definite bounds,

 a hierarchical structure.
Together with the block diagram of the hierar-

chical structure of elements, FMEA uses block dia-
grams reflecting the hierarchy of functions performed
by system elements and functional relationships be-
tween the elements, which makes the functional fail-
ures of the system traceable.

The following items are analyzed for each system
component (Fig. 1):

 the causes of a given failure;

 a function or failure that can occur (the type of

failure);

Fig. 1. The flowchart of failure criticality assessment according to the

standard [18].

 ●

 the peculiarities of possible consequences in case

of a failure;

 the severity of a failure (whether the failure is

harmless or causes damage);

 the criticality of a failure (how and when the fail-

ure can be detected).

When applying FMEA approaches to cybersecurity

assessment, it is necessary to describe FMEA stages in

cybersecurity terms and relate the cause of a failure to

the vulnerability and the intruder’s ability to exploit it.

We propose adapting the FMEA methodology in

order to assess the impact of a vulnerability, thereby

reducing the amount of information under analysis

(Fig. 2).

The methodology takes into account that a vulner-

ability in itself is not the cause of a failure. That is, a

vulnerability leads to a failure if an intruder with suffi-

cient competence exploits it to realize a definite threat

(see block 1 in Fig. 2). The intruder and his/her com-

petence can be typified according to an accepted scale:

Fig. 2. The flowchart of failure criticality assessment with protection barriers for reliability and cybersecurity problems.

 ●

e.g., using the FSTEC classifier [12]. Thus, a failure is

the result of a successful attack on the system by an

intruder with sufficient competence and capabilities to

exploit a vulnerability.

In the methodology proposed, the independence of

vulnerabilities is postulated to reduce the analysis

space. This is analogous to the assumption on the in-

dependence of failures in FMEA ([18], section 4.1).

In contrast to the typical consideration of separate

technologies underlying a vulnerability (e.g., as in the

CWE catalog), the analysis scheme proposed focuses

on CVSS attributes to correlate the vulnerability and

the associated threat. Additionally, we pass from ana-

lyzing separate threats and attackers to analyzing typi-

cal attack scenarios associated with threat classes and

typical attacker capabilities, thereby reducing the

number of threats and attack scenarios under analysis.

For ICSs of NPPs, some examples of typical attack

scenarios were described in [43].

In this case, a function failure is related not to a

particular vulnerability (see Fig. 2) but to the set of

conditions and factors that have led to the failure of a

component and the intruder’s penetration through the

protection barrier. Note that a failure is not necessarily

directly related to a (cyber)attack and vulnerability

exploitation but, e.g., may be the result of resource

exhaustion. However, the operation modes of critical

facilities are designed so that to exclude resource ex-

haustion.

The second important supplement to the applica-

tion of FMEA approaches to cybersecurity problems is

to consider the presence of a barrier reflecting the ef-

fect of an already implemented set of protection

measures. A barrier can block the impact of a compo-

nent failure on the function of the entire system, there-

by nullifying the risks associated with an attack on the

system. By assumption, a barrier has a high degree of

confidence and can counteract the exploitation of one

or more types of vulnerabilities. Thus, when analyzing

attack scenarios, a barrier is supposed to be absolute.

This model assumption allows significantly reducing

the analysis space.

The presence of an intruder with motivation and

purpose means that a cybersecurity failure is generally

not a random event. Therefore, as a rule, statistical

approaches are inapplicable to failure analysis whereas

a risk-oriented approach and logical rules can be used.

If the probabilistic nature of the intruder’s impact

on a system is allowed, the impact of a failure on the

entire system and the associated risks (see block 2 in

Fig. 2) are assessed using FMEA and the theoretical

and probabilistic approaches developed in [18, 44].

The approach described above can be combined in-

to an integrated protection and vulnerability assess-

ment method, called Vulnerability Inspection Control

Strategy (VICS); see the flowchart in Fig. 3.

Consider the sequence of actions to analyze vul-

nerabilities and assess patches for a modern ICS [45]

within VICS. The initial data for the analysis are:

 the list of vulnerabilities analyzed;

 an accepted classification system for threats act-

ing on the system (e.g., the CIA model or the FSTEC

classifier);

 an accepted intruder’s model;

 accepted typical attack scenarios, which allow

determining the potential type of a component failure

for each “threat class–intruder competence” pair;

 the list of system functions, including known

negative consequences of violating them;

 a “function failure–barrier” table, which de-

scribes a bigraph defining a barrier for each failure

type according to the protection measures implement-

ed;

 the structural diagram of the system, which

serves to relate a vulnerability to one or more system

components;

 a fault tree, which is intended to trace the impact

of a failure of compromised components on system

functions and group them by type (see Fault Tree

Analysis (FTA)).

The analysis comes to the following actions:

1. For each vulnerability, assign a threat class, a

typical attack scenario, and a component failure type,

considering the intruder’s competence level and moti-

vation.

2. Analyze the availability of a protection barrier.

If the barrier exists, stop the analysis for this vulnera-

bility.

3. If the barrier is absent or insufficient for this

type of attack, select a protection measure or apply a

patch that neutralizes the security threats identified or

mitigates the risk of their exploitation to an acceptable

level, following an accepted patch management meth-

odology (e.g., see the guidelines [9]). If the decision is

to implement a new protection measure, add the corre-

sponding attack scenario and barrier into the table de-

scribing the bigraph.

Thus, a security update is applied as a vulnerabil-

ity risk mitigation measure under the following condi-

tions (criteria):

 no barrier against a given attack type;

 an insufficient barrier against a given type of at-

tack;

 the absence of protection measures that are more

effective than installing an update.

 ●

Fig. 3. The flowchart of Vulnerability and Inspection Control Strategy.

We propose the following sequence of actions for
information system vulnerabilities:

1. During the development of a protection system,
perform a threat analysis and create a catalog of pro-

tection barriers and a catalog of typical attack scenari-
os.

2. Based on the two catalogs, form a bigraph de-
scribing the parrying of attacks by protection barriers.

3. Classify each new vulnerability in accordance
with the classes of threats, intruders, and attack sce-

narios (see Section 4). If a vulnerability is assigned a
class with an available barrier (a set of protection

measures), no patch is required.
4. If a vulnerability leads to a new attack scenario,

either install a patch or implement other risk mitiga-
tion measures. In particular, they may include the in-

troduction of new protection barriers minimizing the
impact of this attack scenario.

5. Analyze periodically the correctness of the pro-
tection measures that form barriers. If protection

 ●

measures are considered insufficient based on the
analysis results, other or additional ones (including

patch installation) must be developed and implement-
ed.

Note that VICS does not cover vulnerabilities in
software protection barriers and the correctness of the

operating environment. However, the systems under
consideration are usually built with high confidence in

the correctness of protection measures implemented
and the quality of system operation; as a result, the

number of vulnerabilities in the barriers is usually
much smaller than the total number of vulnerabilities

in the system. Therefore, the method covers the vast
majority of vulnerabilities. Existing guidelines can be

used to manage vulnerabilities in protection barriers
(e.g., see [3, 8, 9]).

In the next section, we demonstrate the practical

application of VICS on the example of building a pro-
tection system for an upper-level system of an instru-

mentation and control system (ULS ICS).

4. PRACTICAL APPLICATION OF THE METHOD

Let us demonstrate the practical application of
VICS on the example of ULS ICS. Here is a brief de-

scription of its main functions and properties. (For a
detailed consideration of such systems, we refer, e.g.,

to [45].)

The upper-level system of an ICS is intended:

 to implement information, control, and auxiliary
functions;

 to send operator’s control commands for indus-
trial processes and equipment;

 to monitor the ICS state;

 to integrate information from ICS subsystems.
The ULS ICS under consideration consists of serv-

ers, which collect and archive information from relat-

ed systems and operator’s commands, and work-
stations, where information about the ICS state is dis-

played and control commands are entered. All ULS
elements are redundant and connected by a redundant

network. The ICS has no access to the Internet. Unidi-
rectional data flows from the ICS to the outside (e.g.,

via a data diode) are allowed.

We adopt the CIA model to describe threats, asso-
ciating with it the main threat types of violating confi-

dentiality, integrity, and availability. This approach is
undoubtedly a simplification, but it follows the prac-

tice reflected in many widespread security classifiers
(e.g., CWE and CVSS). We take the intruder’s model

with a low or medium level of privileges (no adminis-
trator rights) and medium capabilities to realize infor-

mation security threats (intruder’s competence level
H3 according to FSTEC). Suppose that the intruder

undertakes a local attack to violate the integrity of
software or data (including an unauthorized execution

of commands) and implement thereby a control com-
mand that will cause physical damage to the industrial

facility.
Let a set of protection measures (a barrier) be in-

cluded in the ICS during the design stage to prevent

access of an unprivileged user with a medium level of
competence in the system software. For the ICS, the

protection measures can be selected from the list [46].
Assume also that the system is not compromised at the

time of the attack. For the attack scenario and barrier,
a fragment of the bigraph is shown in Fig. 4.

Fig. 4. The bigraph describing the “attack scenario–protection barrier” relationship.

 ●

Now we pass to the vulnerability analysis. From

the vulnerability database it is necessary to unload the

descriptions of vulnerabilities related to the software

used in the ULS ICS, considering the versions of all

components. To ease the work, one can use a vulnera-

bility scanner.

For the sake of definiteness, let the ULS ICS be

implemented in Linux. Consider a vulnerability in the

glibc base component (CVE-2020-1752), which has a

high degree of danger according to the CVSS 3.0 clas-

sifier. Exploiting this vulnerability, a local intruder can

execute an arbitrary code by passing a special file path

to a program and thus violate software integrity. All

these properties of the vulnerability are reflected in the

CVSS 3.0 vector.

In the accepted security model (see the table), such

a vulnerability corresponds to an attack scenario al-

lowing the execution of an arbitrary code without priv-

ilege escalation; also, a barrier acts against this attack

to prevent vulnerability exploitation by an intruder in

the given attack scenario.

Thus, in view of high confidence in the barrier’s

capability to counteract uncontrolled access to system

software, we consider the risk of vulnerability minimal

and no patches need to be installed for the CVE-2020-

1752 vulnerability.

Obviously, for vulnerabilities with a similar attack

scenario, VICS will yield the same results.

CONCLUSIONS

The problems of installing security updates are

quite acute due to the increasing focus on cybersecuri-

ty in all computer applications. Recommendations on

patching have been developed over the years [3, 8, 9],

but their use encounters difficulties in practice.

The first difficulty, which concerns information

systems of any purpose, is the effect of scale. Current-

ly, thousands of vulnerabilities are discovered every

year, making it inefficient to analyze each vulnerabil-

ity “manually.” The difficulties of analyzing each vul-

nerability separately can lead to a “patch everything”

strategy. However, this strategy is fraught with com-

patibility validation problems for software and hard-

ware components and disruption of continuous busi-

ness processes under protection.

Instrumentation and control systems (ICSs) are ad-

ditionally characterized by a long lifecycle (decades),

low variability of hardware during operation, a rather

lengthy development stage, and (often) the need for

software certification. Therefore, even if all known

vulnerabilities are eliminated in the ICS software at

the time of its acceptance for operation, by the time of

complete commissioning the software will certainly

contain newly discovered vulnerabilities that cannot

be promptly eliminated. Due to invariable hardware,

after several years of operation, many software com-

ponents will be impossible to update without violating

the hardware-software compatibility of the system, as

new versions of third-party software may no longer

support obsolete hardware. Industry regulations may

require recertification after updates have been in-

stalled, resulting in additional time and costs. The

need for recertification after each software change is

essential and is recognized not only by developers but

also by regulating authorities. In particular, at the in-

ternational level, the possibility of classifying changes

(patches) according to the degree of their impact on

the functionality of software and, depending on this,

changing the requirements for recertification is being

considered.

Obviously, some method is needed to analyze a

large number of vulnerabilities for a particular system

and provide recommendations on patching without a

full and detailed analysis of each vulnerability.

This paper has proposed an FMEA-based approach

considering not a separate vulnerability but its impact

as part of an attack scenario (within an accepted model

of threats and intruder) on the functions of the entire

system with existing barriers (sets of protection

measures effective against a definite attack scenario).

In accordance with secure design principles, defi-

nite sets of protection measures are embedded into the

system to form guaranteed barriers for definite classes

of vulnerabilities. These barriers are activated during

the operation stage.

The “attack scenario– barrier” relationships form a

bigraph, and risk analysis in case of new vulnerabili-

ties is reduced to analyzing this bigraph.

Suppose that a new vulnerability is discovered,

leading to an attack scenario without an installed (or

ineffective) protection barrier. In this case, the new

risk source requires additional measures in the form of

installing a security update or applying other compen-

sating measures. This is the decision criterion for in-

stalling security updates.

Barriers are considered in the context of protection

against classes of vulnerabilities rather than a separate

vulnerability. Therefore, the approach not only coun-

teracts open (known) vulnerabilities but also provides

protection against yet-to-be-discovered vulnerabilities,

which are always present in complex software prod-

ucts.

Note finally that in a complex system, manual vul-

nerability analysis, even with a small number of attack

scenarios, types of intruders and threats, is extremely

difficult and makes a mass problem. As we believe,

automation of vulnerability analysis using formal

 ●

problem-oriented languages for describing vulnerabil-

ity and attack scenarios will make this approach appli-

cable to real control systems, and research in this di-

rection is ongoing.

REFERENCES

1. IEC TR 62443-2-3. Technical Report. Security for Industrial

Automation and Control Systems. Part 2-3: Patch Manage-

ment in the IACS Environment, Geneva: International Electro-

technical Commission, 2015.

2. The Methodology for Testing Security Updates of Software and

Programmable Digital Items. Approved by the Federal Service

for Technical and Export Control (FSTEC) of Russia on Octo-

ber 28, 2022. (In Russian.)

3. Souppaya, M. and Scarfone, K., Guide to Enterprise Patch

Management Planning: Preventive Maintenance for Technolo-

gy, Special Publication (NIST SP) no. 800-40r4, Gaithersburg,

MD: National Institute of Standards and Technology, 2022.

DOI: 10.6028/NIST.SP.800-40r4

4. National Information Assurance (IA) Glossary, CNSS Instruc-

tion no. 4009, Fort Meade: Committee on National Security

Systems Instruction, 2015.

5. CVE. URL: https://cve.mitre.org. (Accessed October 2, 2024.)

6. The Data Bank of Information Security Threats. URL:

https://bdu.fstec.ru/vul. (Accessed October 2, 2024.) (In Rus-

sian.)

7. CERT-FR avis. URL: https://www.cert.ssi.gouv.fr/avis/. (Ac-

cessed February 2, 2024.)

8. ISO/IEC TS 9569:2023. Technical Specification. Information

Security, Cybersecurity and Privacy Protection – Evaluation

Criteria for IT Security – Patch Management Extension for the

ISO/IEC 15408 series and ISO/IEC 18045, Geneva: Interna-

tional Standard Organization/International Electrotechnical

Commission, 2023.

9. Vulnerability Management Guidelines for an Authority (Organ-

ization). Approved by the Federal Service for Technical and

Export Control (FSTEC) of Russia on May 17, 2023. (In Rus-

sian.)

10. The Methodology for Assessing the Criticality of Vulnerabilities

in Software and Programmable Digital Items. Approved by the

Federal Service for Technical and Export Control (FSTEC) of

Russia on October 28, 2022. (In Russian.)

11. Scarfone, K., Souppaya, M., and Dodson, D., Secure Software

Development Framework (SSDF). Version 1.1: Recommenda-

tions for Mitigating the Risk of Software Vulnerabilities, Spe-

cial Publication (NIST SP) no. 800-218, Gaithersburg, MD:

National Institute of Standards and Technology, 2022. DOI:

10.6028/NIST.SP.800-218

12. The Methodology for Assessing Information Security Threats.

Approved by the Federal Service for Technical and Export

Control (FSTEC) of Russia on February 5, 2021. (In Russian.)

13.IEC/TS 62443-1-1:2009. Industrial Communication Networks.

– Network and System Security. – Part 1-1: Terminology,

Concepts and Models (IDT), Geneva: International Electro-

technical Commission, 2009.

14. GOST (State Standard) R 56939-2016: Information Security.

Development of Secure Software. General Requirements, Mos-

cow: Standartinform, 2016.

15. GOST (State Standard): The Unified System of Program Docu-

mentation. The Types of Programs and Program Documents,

Moscow: Standartinform, 2010. (In Russian.)

16. Promyslov, V.G. and Zharko, E.F., Approaches to Risk As-

sessment in Cybersecurity of A-plant Process Control Systems,

Automation in Industry, 2022, no. 11, pp. 28–33. (In Russian.)

17. Dissanayake, N., Jayatilaka, A., Zahedi, M., and AliBabar, M.,

Software Security Patch Management - A Systematic Literature

Review of Challenges, Approaches, Tools and Practices, Infor-

mation and Software Technology, 2022, vol. 144, art. no.

106771.

18. IEC 60812:2006. Analysis Techniques for System Reliability –

Procedure for Failure Mode and Effects Analysis (FMEA), Ge-

neva: International Electrotechnical Commission, 2006.

19. About CWE. URL: https://cwe.mitre.org/about/index.html.

(Accessed April 22, 2024.)

20. GOST (State Standard) R ISO/MEK 27005-2010: Information

Technology. Methods and Means of Ensuring Security. Risk

Management in Information Security. Moscow: Standartinform,

2011. (In Russian.)

21. GOST (State Standard) R ISO/MEK 15408-3-2008: Information

Technology. Methods and Means of Ensuring Security. Criteria

for Assessing the Security of Information Technology. Part 3.

Security Confidence Components, Moscow: Standartinform,

2008. (In Russian.)

22. CVE Metrics. URL: https://www.cve.org/About/Metrics. (Ac-

cessed April 22, 2024.)

23. Haddad, A., Aaraj, N., Nakov P., et al., Automated Mapping of

CVE Vulnerability Records to MITRE CWE Weaknesses,

arXiv:2304.11130, 2023. DOI: 10.48550/arXiv.2304.11130

24. Lin, Y.-Z., Mamun, M., Chowdhury, V.A., et al., HW-V2W-

Map: Hardware Vulnerability to Weakness Mapping Frame-

work for Root Cause Analysis with GPT-assisted Mitigation

Suggestion, arXiv:2312.13530, 2023. DOI:

10.48550/arXiv.2312.13530

25. Mell, P., Scarfone, K., and Romanosky, S., A Complete Guide

to the Common Vulnerability Scoring System Version 2.0,

2007. URL: https://www.first.org/cvss/v2/guide. (Accessed

April 1, 2024.)

26. Common Vulnerability Scoring System v3.0: Specification

Document, URL: https://www.first.org/cvss/v3.0/specification-

document. (Accessed September 22, 2024.)

27. CVSS V3 Calculator. URL: https://bdu.fstec.ru/calc3. (Ac-

cessed September 22, 2024). (In Russian.)

28. Kekül, Н., Ergen, B., and Arslan, H., Comparison and Analysis

of Software Vulnerability Databases, Int. J. Eng. Manuf., 2022,

vol. 12, no. 4, pp. 1–14.

29. How We Assess Acceptance Levels. National Vulnerability

Database. URL: https://nvd.nist.gov/vuln/cvmap/How-We-

Assess-Acceptance-Levels. (Accessed April 26, 2024.)

30. CAPEC List. URL: https://capec.mitre.org/data/index.html.

(Accessed April 22, 2024.)

31. MITRE ATT&CK. URL: https://attack.mitre.org/. (Accessed

April 22, 2024.)

32. Microsoft Threat Modeling Tool. URL: https://learn.

microsoft.com/en-us/azure/security/develop/threat-modeling-

tool-threats. (Accessed May 31, 2024.)

33. Pietre-Cambacedes, L. and Chaudet, C., Disentangling the Re-

lations between Safety and Security, Proceedings of the 9th

WSEAS International Conference on Applied Informatics and

Communications, Stevens Point, Wisconsin, 2009, pp. 156–

161.

34.Boehs, E., Everything I Know About the XZ Backdoor. URL:

https://boehs.org/node/everything-i-know-about-the-xz-back

door. (Accessed April 10, 2024.)

35.CVE-2022-23812. URL: https://cve.mitre.org/cgi-bin/cvena

me.cgi?name=CVE-2022-23812. (Accessed April 10, 2024.)

https://doi.org/10.6028/NIST.SP.800-40r4
https://cve.mitre.org/
https://bdu.fstec.ru/vul
https://www.cert.ssi.gouv.fr/avis/
https://cwe.mitre.org/about/index.html
https://www.cve.org/About/Metrics
http://dx.doi.org/10.48550/arXiv.2304.11130
https://doi.org/10.48550/arXiv.2312.13530
https://doi.org/10.48550/arXiv.2312.13530
https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://bdu.fstec.ru/calc3
https://nvd.nist.gov/vuln/cvmap/How-We-Assess-Acceptance-Levels
https://nvd.nist.gov/vuln/cvmap/How-We-Assess-Acceptance-Levels
https://capec.mitre.org/data/index.html
https://attack.mitre.org/
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://boehs.org/node/everything-i-know-about-the-xz-backdoor
https://boehs.org/node/everything-i-know-about-the-xz-backdoor
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23812
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23812

 ●

36. Kapranov, O. and Gureeva, Yu., Employees of the Ministry of

Education Have Been Prohibited from Using Apple Devices,

Rossiiskaya Gazeta, July 7, 2023. URL: https://rg.ru/

2023/07/19/sotrudnikam-minprosveshcheniia-zapretili-polzo

vatsia-tehnikoj-apple.html. (Accessed October 22, 2024; in

Russian.)

37.Commerce Department Prohibits Russian Kaspersky Software

for U.S. Customers, Bureau of Industry and Security, June 20,

2024. URL: https://www.bis.gov/press-release/commerce-

department-prohibits-russian-kaspersky-software-us-

customers. (Accessed December 20, 2024.)

38.Semenkov, K., Promyslov, V., Poletykin, A., et al., Validation

of Complex Control Systems with Heterogeneous Digital

Models in Industry 4.0 Framework, Machines, 2021, vol. 9,

no. 3, art. no. 62.

39. GOST (State Standard) ISO/IEC TS 19249-2021: Information

Technologies. Methods and Means of Ensuring Security. The

Catalog of Architecture and Design Principles for Secure

Products, Systems, and Applications, Moscow: Standartinform,

2021. (In Russian.)

40.MIL-P 1629: USA Military Standard, Procedure for Perform-

ing a Failure Mode, Effects and Criticality Analysis, Washing-

ton, DC: Department of Defense, 1980.

41.Schmittner, C., Gruber, T., Puschner, P., and Schoitsch, E.,

Security Application of Failure Mode and Effect Analysis

(FMEA), in Lecture Notes in Computer Science, 2014, vol.

8666, pp. 310–325. DOI: https://doi.org/10.1007/978-3-319-

10506-2_21

42. Talwar, P. Software Failure Mode and Effects Analysis, Ad-

vances in Intelligent Systems and Computing, 2020, vol. 1131,

pp. 86–91.

43. Busquim e Silva, R.A., Piqueira, J.R.C., Cruz, J.J., Marques

R.P. Cybersecurity Assessment Framework for Digital Inter-

face Between Safety and Security at Nuclear Power Plants, In-

ternational Journal of Critical Infrastructure Protection, 2021,

vol. 34, art. no. 100453. DOI: 10.1016/j.ijcip.2021.100453

44. Kalashnikov, A.O., Bugajskij, K.A., Birin, D.S., et al., Appli-

cation of the Logical-Probabilistic Method in Information Se-

curity (Part 1), Cybersecurity Issues, 2023, no. 4 (56), pp. 23–

32. (In Russian.)

45. Mengazetdinov, N.E., Poletykin, A.G., Promyslov, V.G., et al.,

Kompleks rabot po sozdaniyu pervoi upravlyayushchei sistemy

verkhnego blochnogo urovnya ASU TP dlya AES “Busher” na

osnove otechestvennykh informatsionnykh tekhnologii (The

Complex of Works on Creating the First Control System of the

Upper Block Level of the ICS for the Bushehr NPP Based on

Russian Information Technology), Moscow: Trapeznikov Insti-

tute of Control Sciences RAS, 2013. (In Russian.)

46. Requirements for Ensuring the Security of Significant Critical

Information Infrastructure Objects of the Russian Federation.

Approved by the Federal Service for Technical and Export

Control (FSTEC) of Russia on December 25, 2017. (In Rus-

sian.)

This paper was recommended for publication

by R. V. Meshcheryakov, a member of the Editorial Board.

Received June 6, 2024, and revised March 18, 2025.

Accepted April 28, 2025

Author information

Semenkov, Kirill Valer’evich. Cand. Sci. (Phys.–Math.), Trapez-

nikov Institute of Control Sciences, Russian Academy of Science,

Moscow, Russia

 semenkov@ipu.ru
ORCID iD: https://orcid.org/0000-0003-0865-9072

Promyslov, Vitaly Georgievich. Cand. Sci. (Phys.–Math.),

Trapeznikov Institute of Control Sciences, Russian Academy of

Sciences, Moscow, Russia

 vp@ipu.ru

ORCID iD: https://orcid.org/0000-0003-1919-8718

Cite this paper

Semenkov, K.V., and Promyslov, V.G., A Procedure for Assessing

Security Updates in Industrial Systems. Control Sciences 2, 49–61

(2025).

Original Russian Text © Semenkov, K.V., Promyslov, V.G., 2025,
published in Problemy Upravleniya, 2025, no. 2, pp. 58–73.

This paper is available under the Creative Commons Attribution

4.0 Worldwide License.

Translated into English by Alexander Yu. Mazurov,

Cand. Sci. (Phys.–Math.),

Trapeznikov Institute of Control Sciences, Russian Academy of

Sciences, Moscow, Russia

 alexander.mazurov08@gmail.com

https://rg.ru/2023/07/19/sotrudnikam-minprosveshcheniia-zapretili-polzovatsia-tehnikoj-apple.html
https://rg.ru/2023/07/19/sotrudnikam-minprosveshcheniia-zapretili-polzovatsia-tehnikoj-apple.html
https://rg.ru/2023/07/19/sotrudnikam-minprosveshcheniia-zapretili-polzovatsia-tehnikoj-apple.html
https://www.bis.gov/press-release/commerce-department-prohibits-russian-kaspersky-software-us-customers
https://www.bis.gov/press-release/commerce-department-prohibits-russian-kaspersky-software-us-customers
https://www.bis.gov/press-release/commerce-department-prohibits-russian-kaspersky-software-us-customers
https://doi.org/10.1007/978-3-319-10506-2_21
https://doi.org/10.1007/978-3-319-10506-2_21
https://doi.org/10.1016/j.ijcip.2021.100453
mailto:semenkov@ipu.ru
https://orcid.org/0000-0003-0865-9072
mailto:vp@ipu.ru
https://orcid.org/0000-0003-1919-8718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:alexander.mazurov08@gmail.com
http://creativecommons.org/licenses/by/4.0/

