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Abstract. This paper considers the problem of designing an optimal inter-orbital spacecraft 

transfer. We present a computational algorithm and modeling results of the optimal transfer 

trajectory between near-Earth elliptical orbits for a spacecraft with a chemical booster and fixed 

thrust. The trajectory design procedure includes four stages as follows: a) formation of the pri-

mary ranges of initial approximations for typical optimization problems; b) iterative integration 

to find the domains of convergence for a typical variational problem; c) determination of the 

optimum for each problem statement within the accepted ranges and its implementation by cal-

culating the final conditions residuals; d) analysis of the results obtained. We use numerical 

methods of mathematical analysis and mathematical programming. The risk of “overstepping” 

the potentially optimal result is minimized by varying the accuracy at different stages of calcu-

lations. Based on the results, we improve the primary solution of the reference problem state-

ment, identify the domains of convergence of solutions, and obtain the sets of initial approxima-

tion vectors ensuring convergence in the considered problems for further analysis. The results of 

this study can be used to develop further and refine the algorithm for selecting optimal initial 

approximations for different optimization problems (including spacecraft trajectory optimiza-

tion as a typical one). 

 
Keywords: optimal control, spacecraft trajectory optimization, maximum principle, mathematical model-

ing, nonlinear programming.  
 

 

 

INTRODUCTION  

Currently, there exist many methods for solving 
optimal control problems. However, Pontryagin’s 
maximum principle [1] is one of the most widespread 
approaches to dynamic optimization. This method 
yields optimality conditions, including the cases when 
optimal control is on the admissible domain boundary. 
Also, it allows deriving all necessary conditions for 
the variational calculus problem, reducing the original 
problem to a boundary value problem of differential 
equations [1]. Like other methods [2], the maximum 
principle requires an initial approximation for the pa-
rameter values, and the correct choice of initial ap-
proximations provides faster convergence and success-
ful determination of an optimum. At the same time, 
the choice problem is connected with the branching of 
optimal solutions and the high sensitivity of the resid-
uals of the boundary value problem to its parameter 
variations [3]. Moreover, despite the possibility to cre-
ate formal estimation algorithms under a given initial 

approximation, one should follow intuition and a pri-
ori knowledge to select good approximations [2, 4]. 

Modern literature offers some practical methods 
facilitating the choice of initial approximations, such 
as the homotopy of maximum thrust [5], edge normal-
ization [6], edge estimation by a reference trajectory 
[7], and others. In special cases, some of the devel-
oped methods turn out useful. For example, we men-
tion approximate rephrasing solutions, which were 
developed to obtain initial approximations for indirect 
methods [7–10]. Relevant studies focus on particular 
problems; solving some of them gives new (auxiliary) 
methods for finding initial approximations for relevant 
problems. Nevertheless, most of the modern ap-
proaches still involve the trial-and-error method, often 
more effective than subtle counterparts. It consists in 
choosing initial approximations based on a priori 
knowledge and intuition [2–4, 8]. 

Thus, more and more efforts of the global research 
community are applied to find algorithms that will be 
effective in choosing correct initial approximations for 
optimal control problems; for example, see [2, 4–6, 8].  
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This paper implements the first stage of research, 

intended to identify the relationships between the vec-

tor components ensuring convergence for typical inter-

orbital spacecraft transfer optimization problems. The 

first part of the study identifies the domains of conver-

gence for typical optimization problems within ac-

cepted ranges. It reduces to forming initial approxima-

tion vectors ensuring the best solutions within a data 

grid. Expectedly, this study will contribute to refining 

initial approximation choice algorithms for typical 

problems. 

1. PROBLEM STATEMENT 

This paper considers the problem of designing an 

optimal inter-orbital transfer trajectory for a space-

craft. 

 

1.1. The general formulation and parameters of the 

optimization problem 

We consider a spacecraft on a given initial near-

Earth orbit. The spacecraft includes a chemical booster 

with some known characteristics. This booster must 

transfer the spacecraft to a working near-Earth orbit 

with specified characteristics. 

It is required to find a rational transfer scheme be-

tween the orbits. As an optimality criterion, we choose 

the spacecraft mass inserted into the working orbit: the 

mass is maximized. The transfer time is not limited. 

We fix the following parameters and conditions for 

all cases under consideration: the spacecraft mass on 

the initial orbit is 5000 kg; the thrust of the unregulat-

ed rocket engine of the booster is 5 kN; the number of 

engine ignitions is arbitrary; the specific impulse is 

330 s; the spacecraft transfer scheme is limited to one 

revolution; the orbits belong to the same plane; the 

apsidal lines of the orbits coincide; the gravity field is 

Newtonian. 

We vary the following parameters: the perigee alti-

tude of the initial orbit and its apogee altitude; the per-

igee altitude of the final orbit and its apogee altitude.  

The transfer scheme characteristics are as follows: 

– the start point of the spacecraft on the initial or-

bit, 

– the number of active and passive sections on the 

transfer trajectory, 

– the duration of active and passive sections of the 

trajectory and their location on the transfer trajectory 

(in other words, the time instants of engine ignition 

and cutoff), 

– the pitch angle program on each active section,  

– the end point on the final orbit. 

 

1.2. Spacecraft transfer model 

The mathematical model of the spacecraft motion 

includes the vector of its phase coordinates with the 

following components: the radial velocity Vr, the nor-

mal velocity Vn, the radius r, and the polar angle β. 

Recall that the sequence of active and passive sections 

is not fixed, and we design an optimal law of engine 

ignition and cutoff. Therefore, it is reasonable to add 

the spacecraft mass m to the listed variables, and the 

resulting vector of the phase variables (further called 

the phase vector) takes the form 

.
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The spacecraft motion is described by the system 

of differential equations 
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The notations are as follows: 

P is the engine thrust (unregulated, a known value); 

  is the true anomaly; 

  is the Earth’s gravitational parameter; 

q is the mass flow rate of the engine (a known value); 

δ is the thrust function taking only two values: δ = 1 

(ignition) and δ = 0 (cutoff);  

φ is the pitch angle of the spacecraft (the angle be-

tween the thrust vector and the local horizon); 

δ(t) and φ(t) are the control functions to be optimized. 

In the first stage of the analysis, we fix the motion 

conditions in the initial orbit perigee as the initial con-

ditions:  
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Here, 0t  is the start time, which can be set to 0 (the 

time is counted from the start), and 0p  and 0e  are the 

focal parameter and the eccentricity of the initial orbit, 

respectively. The subscript “f” in the relations below 

denotes belonging to the final motion conditions. We 

count the angular range (the polar angle) from the ap-

sidal line of the initial orbit. 

The spacecraft transport problem arising in the first 

stage is as follows: for the set of initial conditions (3), 

find the control functions δ(t) and φ(t) and the transfer 

time ft  under which the spacecraft will reach the 

phase space point 
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with the minimum fuel consumption,  m(tf ) → max. 

 

1.3. The mathematical optimization problem 

We introduce an auxiliary function (Hamiltonian). 

It can be treated as the scalar product of two vectors: 

the right-hand sides of the motion equations and the 

conjugate variables. The vector of conjugate variables, 

further called the conjugate vector, has the same di-

mension as the phase vector; each component of the 

conjugate vector corresponds to some phase variable. 

In other words, the dimension of the phase vector is 5; 

see (1). 

The conjugate vector has the form  
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The Hamiltonian is given by 
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According to the maximum principle, the chosen 

control law maximizes the Hamiltonian, i.e., the opti-

mal control functions (δ(t) and φ(t)) can be found from 

the maximum conditions for the Hamiltonian. 

In addition, it is possible to show that 
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Here, Ψ denotes the engine switching function and W 

is the exhaust velocity. The subscript “opt” means that 

the corresponding relations are derived by maximizing 

the Hamiltonian. 

The obtained pitch angle program is as follows: 
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Considering the optimal control laws (the pitch an-

gle program and the optimal thrust function), the equa-

tions of the phase variables on the optimal trajectory 

take the form 
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Due to the maximum principle, the conjugate vari-

ables satisfy the system of differential equations 
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Consequently,  
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The corresponding boundary value problem of the 

maximum principle is as follows: find values of the 

conjugate vector components at the start point, λVr(t0), 

λVn(t0), λr(t0), λβ(t0), and λm(t0), and the transfer time tf 

(six unknowns in total) such that 
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In the second stage of the analysis, the start and 

end points of the spacecraft transfer trajectory are 

floating. To implement this requirement, we introduce 

the transversality conditions. 

 

1.4. The transversality conditions at the start and end 

points of the transfer trajectory 

The transversality condition expresses the perpen-

dicularity of the conjugate vector to all tangent vectors 

of the boundary manifold. 

If the phase variables at a boundary point (first, the 

start point) are a function of some chosen parameter 

(in the case under consideration, the true anomaly of 

the initial orbital point, 0 ), the tangent vector of the 

initial manifold has the components  
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Calculating the derivatives, we obtain the vector  
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The optimality conditions for the start point on the 

initial orbit are given by the perpendicularity of the 

conjugate vector and this tangent vector. The perpen-

dicularity condition can be written as 
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Similarly, the optimality condition for the transfer 

end point (the optimality of the final angular distance) 

has the form 
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2. A DATA GRID TO FIND INITIAL APPROXIMATIONS  

The algorithm for further study (the trajectory de-

sign procedure) consists of four stages: 

 calculation of optimal intra-orbital transfer tra-

jectories with different parameters for the spacecraft 

with a chemical booster and a fixed thrust to identify 

and refine the ranges of initial approximations for typ-

ical problems. It produces a data grid for an exhaustive 

search over the initial values vector; 

 iterative integration to find the domains of 

convergence and reach an optimum of the variational 

problem; 

 determination of the optimum for each prob-

lem statement within the accepted ranges and its im-

plementation by calculating the final conditions resid-

uals. 

 analysis of the results obtained. 
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For the primary choice of the range of initial ap-

proximations, we solve an optimization problem with 

the following orbit data: 500-km perigee altitude and 

1500-km apogee altitude (the initial orbit), and 2000-

km perigee altitude and 10 000-km apogee altitude 

(the final orbit). For these data, the Bard method [2] 

yields the following initial approximations (with a fi-

nal spacecraft mass of 3203.788 kg): 
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The aircraft transfer scheme after calculating the 

residuals is presented in the figure below. The nota-

tions are as follows: 1

1jrtt   is the transfer trajectory ob-

tained with integrating by the Runge–Kutta method of 

the fourth order with a variable step; 1

1jt  is the 

change in the polar angle 
1t  on this trajectory. 

 
 

 

 
The optimal transfer scheme (choice of initial values). 

 

This solution is taken as a reference to form the 

range for each of the unknown variables. To determine 

such a range, we add the values for the left and right 

boundaries at the initial time instant; they are calculat-

ed so that, according to the generated initial data vec-

tors, the sizes of the domains of convergence will be 

sufficient to identify the relationships between the pa-

rameter values and the degree of convergence of the 

results. Note that the ranges should be not very large 

to reduce the risk of “overstepping” the possible solu-

tion during integration (to avoid critical steps). 

Thus, we choose the following ranges to find good 

approximations for the unknown variables at the initial 

time instant: 

0     0.079, ..., 0.058rV    , 

0λ   1  .291, ..., 1.431,nV   

0λ   1  .361,..., 1.491r  , 

0λ    0.3, ..., 0.7,m   

0     0.61, ..., 0.60405.     

Over 4 145 000 variations of the initial approxima-

tion vectors were checked for each of the five prob-

lems in the selected range to identify the relationships 

between the parameter values and convergence. 

The data grid (see Table 1) was loaded into Py-

thon. 

3. THE ITERATIVE ALGORITHM FOR SOLVING THE SET 

OF TYPICAL OPTIMIZATION PROBLEMS 

3.1. The iterative algorithm for solving the optimization 

problem 

The algorithm was implemented in MathCad in 

two stages as follows. 

The first stage is to find the preliminary domains 

of convergence areas by iterating parameter values 

(performing an exhaustive search) within the data grid. 

Note that the solution accuracy is set to 10
–3

. This 

moderate value reduces the risk of “overstepping” the 

potential solution and allows avoiding the multiply 

increasing number of vectors to be checked (in the 

case of four and more decimal places). In the second 

stage, we return to the required accuracy of 10
–14

 and 

refine the preliminary solution by calculating the re-

siduals. 

These stages are discussed in detail below. 
 

3.1.1. The first stage (preliminary solution) 

The first step of the algorithm is to enter the data 

and reduce them to a common dimensionless form. 

We select five sets of input parameters to demonstrate 

the algorithm: 

1. 400-km perigee altitude and 1400-km apogee al-

titude (the initial orbit), and 1900-km perigee altitude 

and 9900-km apogee altitude (the final orbit). 

2. 400-km perigee altitude and 1400-km apogee al-

titude (the initial orbit), and 2000-km perigee altitude 

and 10 000-km apogee altitude (the final orbit). 
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Table 1 

The data grid for the exhaustive search when integrating by the Runge–Kutta method of the fourth order 

Vr Vn R λVr λVn λr ʋ0 λm 

–0.0394875 1.05887075 0.942166729 –0.079 1.291 1.361 –0.61 0.3 

–0.0394875 1.05887075 0.942166729 –0.079 1.291 1.361 –0.61 0.4 

–0.0394875 1.05887075 0.942166729 –0.079 1.291 1.361 –0.61 0.5 

–0.0394875 1.05887075 0.942166729 –0.079 1.291 1.361 –0.61 0.6 

–0.0394875 1.05887075 0.942166729 –0.079 1.291 1.361 –0.61 0.7 

–0.0394677 1.05888457 0.942154435 –0.079 1.291 1.361 –0.6097 0.3 

–0.0394677 1.05888457 0.942154435 –0.079 1.291 1.361 –0.6097 0.4 

–0.0394677 1.05888457 0.942154435 –0.079 1.291 1.361 –0.6097 0.5 

–0.0394677 1.05888457 0.942154435 –0.079 1.291 1.361 –0.6097 0.6 

–0.0394677 1.05888457 0.942154435 –0.079 1.291 1.361 –0.6097 0.7 

–0.0394479 1.05889838 0.942142147 –0.079 1.291 1.361 –0.6093 0.3 

–0.0394479 1.05889838 0.942142147 –0.079 1.291 1.361 –0.6093 0.4 

–0.0394479 1.05889838 0.942142147 –0.079 1.291 1.361 –0.6093 0.5 

–0.0394479 1.05889838 0.942142147 –0.079 1.291 1.361 –0.6093 0.6 

–0.0394479 1.05889838 0.942142147 –0.079 1.291 1.361 –0.6093 0.7 

 

 

3. 400-km perigee altitude and 1400-km apogee al-

titude (the initial orbit), and 2100-km perigee altitude 

and 10 100-km apogee altitude (the final orbit). 

4. 500-km perigee altitude and 1500-km apogee al-

titude (the initial orbit), and 2000-km perigee altitude 

and 10 000-km apogee altitude (the final orbit). 

5. 600-km perigee altitude and 1600-km apogee al-

titude (the initial orbit), and 2000-km perigee altitude 

and 10 000-km apogee altitude (the final orbit). 

All varying characteristics are entered iteratively in 

a loop with a counter from 0 to 4 (five problem state-

ments). Due to a very significant load on the computa-

tional system (exhaustive search within the data grid 

and iterative calculations), we divided the program by 

stages into the following subprograms: 

 a program with preliminary calculations, 

which outputs the results in a separate Excel 

file; 

 a program with basic calculations in the loop; 

 a program that visualizes the results. 

The input data for the problem include: 

 the Earth’s gravitational parameter (398 600 
3

2

km

s
) and the Earth’s radius (6371 km); 

 the initial spacecraft mass (5000 kg), the thrust 

of the chemical rocket engine (5000 N), and its specif-

ic impulse (330 s∙g); 

 the perigee and apogee altitudes of the initial 

and final orbits as well as the angle between their ap-

sidal lines; 

 the elements of the initial and final orbits (the 

perigee radius rp  and the apogee radius ra , the semi-

major axis A , the energy constant h , the eccentricity 

e , and the focal parameter p );  

 the orbital equation, i.e., the length of the 

spacecraft radius vector as a function of the true 

anomaly: 

 
   

1 cos

p
r

e


  
. 

Next, the entered dimensional quantities are con-

verted to dimensionless form. Dimensionless quanti-

ties reduce the CPU load by replacing thousands of 

kilometers with the normalized values. Also, the num-

ber of input arguments is reduced. 

The mathematical model is the equations of the 

planar motion of the spacecraft. The orbital coordinate 

system is used to analyze the spacecraft velocity (the 

radial Vr and transversal Vn components). The space-

craft position is considered in the polar coordinate sys-

tem: the principal axis x is directed along the radius 

vector of the apsidal point of the initial orbit. In this 

case, r is the length of the radius vector and b is the 

polar angle. 

The angle   in the equations is the pitch angle of 

the spacecraft measured from the local horizon line. 

All variables in the system of differential equations 

under consideration are dimensionless. 

See Section 1, system (2), for the initial mathemat-

ical model. The final model based on the maximum 
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principle is represented by the system of ten first-order 

ordinary differential equations (4) and (5). 

Integration involves the Rkadapt tool of MathCad. 

The initial approximations for Rkadapt are found by 

exhaustive search within the data grid; see Section 2. 

The data grid is presented in Table 1. In this stage of 

calculations, the solution accuracy is set to 10
–3

.  

In the first stage, the preliminary check of the solu-

tions (insertion into the final orbit) is visual by the 

graphs of the results since the final conditions are not 

considered and the required accuracy is not observed. 

The algorithm fixes all sets of vectors without conver-

gence and distributes all solutions with convergence 

into three groups for further analysis:  

– insertion into the final orbit (for each case),  

– insertion into an orbit above the final one,  

– insertion into an orbit below the final one. 

Note that the final spacecraft mass on the orbit (the 

transfer optimality criterion) is calculated but not con-

sidered due to insufficient accuracy. 

Thus, the main result of the first stage is the set of 

initial value vectors ensuring insertion into the final 

orbit (for each specific case) and the sets of initial val-

ue vectors for further analysis. 

 

3.1.2. The second stage (optimal solution) 

In the second stage, the algorithm returns to the re-

quired accuracy 10
–14

 and operates the sets of candi-

date vectors (the ones ensuring insertion into the final 

orbit). 

To find the exact solution and then the optimum, 

we developed a program calculating the final condi-

tions residuals at a floating point of inserting into the 

final orbit. The program requires the transversality 

conditions derived in Section 2. 

The program outputs the vector of residuals, which 

is used to find an exact solution: equating their values 

to 0 allows obtaining the factual initial variables, the 

final transfer time, and the polar angle characterizing 

the transfer end point. 

In this stage, the spacecraft mass at the transfer end 

point is analyzed and the optimum (the solution of the 

problem) is identified. In addition, the effect of start 

point variations within the data grid on the final space-

craft mass (on the final orbit) is assessed. 

The result obtained within the data grid is the vec-

tors ensuring the optimal transfer between the orbits. 

For problem statements 1–5, they are combined in Ta-

ble 2. The notations are as follows: 
FT  is the transfer 

time; F  is the polar angle characterizing the transfer 

end point; 
Fm  is the spacecraft mass on the final orbit. 

Here, the subscript “1” indicates the parameters at the 

initial time instant with the best result by the final air-

craft mass criterion. 

Thus, the implemented approach improved the re-

sult for the “reference” problem (statement 4) by 365 g 

compared to the Bard method [2]. 

 

3.2. Analysis and discussion of the results 

Five typical problems were calculated in a loop. 

The domains of convergence were identified and the 

best solutions satisfying the optimality condition were 

obtained within the grid (the ones with the maximum 

aircraft mass on the final orbit). The risk of “overstep-

ping” the potentially optimal result was reduced using 

variable accuracy in different stages of the calcula-

tions. 

The results––the vectors of the desired variables 

for each case––were written in Excel tables using 

MathCad. They will be estimated and analyzed by sta-

tistical methods in a Python program. 

With the proposed approach to calculations and 

accuracy, the initial result for the “reference” problem 

was improved by 365 g without leaving the ranges for 

each value. 

 
Table 2 

The optimal transfer characteristics in problem statements 1–5 (analysis within the data grid) 

 
Characteristics  Statement 1 Statement 2 Statement 3 Statement 4 Statement 5 

1

0  –0.608528181266 –0.687262955509 –0.58694862445 –0.58063271537992 –0.67460422765 

1

r  V  –0.065265825615 –0.075257944004 –0.06564653582 –0.06466045327036 –0.06339073139 

1

n  V   1.3623340777782 1.3653869345017 1.364158466294 1.36474044140864 1.357648817782 

1  r  1.4200011568480 1.4207257561587 1.421069918027 1.42243156356652 1.40764863211 

FT  6.7321648922778 7.0228415355241 12.30599404742 12.48386539989280 5.855669428846 

F  3.1311300732552 3.166796288751 5.127686975088 5.33807657900554 2.859452408788 

Fm  3227.339 kg 3182.552 kg 3181.12 kg 3204.153 kg 3247.748 kg 
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Thus, this paper demonstrates the effectiveness of 

exhaustive search within the data grid when refining 

and improving the initial result in optimal inter-orbital 

spacecraft transfer problems. This paper is the first 

(preliminary) stage of research aimed at identifying 

the mathematical relationships between the vector 

components ensuring convergence for typical prob-

lems. Calculations were carried out in parallelized 

programs in MathCad 15 and Python 3.9 mainly based 

on a Core i5 1035G1 processor. The total running time 

of the programs was 8 hours. 

CONCLUSIONS  

In this paper, we have studied and extended the ca-

pabilities of mathematical programming with applica-

tion to typical optimization problems (optimization of 

the spacecraft transfer trajectory between near-Earth 

elliptical orbits). In addition, we have demonstrated an 

effective approach to finding optimal initial approxi-

mations for the variational problem of inter-orbital 

spacecraft transfer optimization with the minimum 

mass flow criterion. 

The results are as follows: 

 Over 4 145 000 variations of the initial ap-

proximations were checked for each problem in 

MathCad and Python programs to identify relation-

ships between the parameter values and convergence. 

 The primary solution of the reference varia-

tional problem of inter-orbital spacecraft transfer op-

timization was improved within the considered ranges. 

 Five typical problems were iteratively solved 

in a loop in MathCad and their parameter sets were 

examined. 

The results of this study can be used to develop 

further and refine an algorithm for selecting optimal 

initial approximations for different optimization prob-

lems (including spacecraft trajectory optimization as a 

typical one). Expectedly, they will simplify the solu-

tion of such problems and will contribute to the re-

finement and development of the corresponding math-

ematical apparatus. 
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