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Abstract. In this paper, we estimate the stability of continuous-type automated industrial pro-

cesses and choose a sufficient time-sampling frequency of the control signal using Whitney’s 

singularity theory. The proposed stability analysis approach is based on constructing typical 

bifurcations for the historical data of a technological object under different time-sampling fre-

quencies of its control signal. The singularity equation serves for obtaining the equation of the 

equilibrium state curves of the system and a sufficient time-sampling frequency of the control 

signal corresponding to the vertex of the resulting curve. As an illustrative example, the devel-

oped method is applied to the control system of the mass balance stripping section in the purifi-

cation process of a styrene distillation column of the ethylbenzene, styrene, and polystyrene 

plants. Based on the quantitative analysis results, we construct a bifurcation and determine a 

sufficient time-sampling frequency of the control signal to ensure system stability. 
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INTRODUCTION  

Catastrophe theory has been widely applied to ana-

lyze the behavior of economic and social systems, as-

sess the design properties of structures and apparatuses 

over time, and study the properties and quantitative 

characteristics of dynamical systems [1–6]. The exist-

ing mathematical framework numerically describes 

jump-like transients of the output variable due to a 

smooth change in the input parameters of a dynamical 

system [7]. In particular, this approach can be used to 

estimate the stability of continuous-type automated 

industrial processes [8].  

The problem under consideration––the stable oper-

ation of industrial processes––consists in complying 

with the regulatory limits of the detected technological 

parameters to minimize the risk of stopping production

and any  violations of  the quality  composition of com 

mercial products (on the one hand) and maximize the 

technological efficiency under various disturbances, 

often of sporadic nature (on the other hand); for de-

tails, see [9]. The modern technical base and the exist-

ing mathematical approaches and algorithmic solu-

tions used in automated control allow reducing this 

problem (technological mode stabilization and com-

pliance with the regulatory limits) to multidimensional 

model predictive control [10]. For systems of this 

class, the time-sampling frequency of the control de-

vice is one of the indicators characterizing the inertia 

of the controlled process and the effect of disturbing 

factors on the controlled technological parameters. 

Under fixed values of other characteristics, a sufficient 

value of this frequency ensures the stable operation of 

a technological object within the specified regulatory 

limits of the corresponding industrial process. 
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1. CONSTRUCTING BIFURCATIONS                                

OF CONTROL SYSTEMS  

How does the stability of an industrial process de-

pend on the control signal frequency? What is the 

range of frequencies ensuring system operation within 

given constraints? To answer these questions, we con-

sider the dynamics of a controlled process parameter 

as a typical bifurcation.  

By conditions, the bifurcation depends on the time-

sampling frequency of the control device and the ef-

fect of disturbing factors on the system, possessing a 

codimension of 2. Due to the continuity and natural 

origin of the processes under study, the bifurcation 

dependence must be a continuously differentiable 

function on the entire definitional domain. 

For the problem under consideration, it is conven-

ient to represent the bifurcation as a second Whitney 

singularity, the cusp [11]. Its functional mapping is 

given by  

f(x, g(ω)) = x
3
 + g(ω)x, 

with the following notations: f(x) is the normalized 

distribution of the controlled parameter; x ∈ [–1, 1] is 

the normalized spectrum of the equivalent disturbance 

characterizing the resulting effect of all external fac-

tors of the system on the controlled variable; g(ω) is 

the frequency function; finally, ω is the time-sampling 

frequency characterizing the periodicity of the control 

signal. 

According to the bifurcation properties, the control 

system is in an unstable state if g(ω) > 0: the function 

f(x, g(ω)) has no nondegenerate singularities and in-

creases continuously over the entire definitional do-

main [12]. For ω = ωs, we obtain g(ω) = 0, where ωs is 

a sufficient time-sampling frequency of the control 

device algorithms: the system passes through a bifur-

cation point S, being in an equilibrium state. In the 

case g(ω) < 0, the system comes to a stable equilibri-

um, forming a bifurcation with two stationary points. 

Note that the frequency function g(ω) has no strict 

mathematical formalization. For the quantitative de-

scription of observed real processes, it can be con-

structed by piecewise linear approximation based on 

the historical operation data of the controlled object. 

Considering the inverse dependence of the stability 

margin on the frequency ω ensuring system stability 

within the range ω ∈ (ωs, +∞), the frequency function 

for this system operation range takes the form 

g(ω) = – ω + ωs . 

In this case, the bifurcation is transformed to  

f(x, ω) = x
3
 + (ωs – ω)x. 

Let us reduce the distribution f(x, ω) from the normal-

ized variables to those expressed in the original units 

of measurement: 

y(x, ω) = αf(x, ω) + My, 

where α is the normalization coefficient and My de-

notes the expectation of y(x, ω). As a result, the sur-

face is given by 

    3,ω α ω ω .s yy x x x M     (1) 

The projection of the cusp y(x, ω) onto the plane 

(y, ω) yields the set of singularities ys with the vertex 

at the initial bifurcation point S. The bifurcation set 

under study forms the boundaries of the branches of 

the equilibrium state curves. According to the defini-

tion [13], these curves are obtained by equating the 

derivative y'x(x, ω) to zero: 

23 ω ω 0sx    . 

Substituting this condition into formula (1), we de-

termine the general equation of the bifurcation set of 

the control system:  

 
3/2

ω ω
ω 2α , ω ω

3

s
s y sy M

 
   

 
.      (2) 

The graph of the resulting bifurcation is shown in 

Fig. 1.  

The parameters ωs and α, characterizing the stabil-

ity of the control system, are determined empirically 

by the historical data of the closed-loop dynamics un-

der different frequencies ω. According to the corre-

spondence principle for the degrees of freedom and 

the necessary number of equations to identify the pa-

rameters ωs and α, a statistical sample must contain 

historical data sets for two operation modes under dif-

ferent frequencies ω1 and ω2 of the control system: 

y1(x1, ω1) and y2(x2, ω2), where y1 and y2 are the detect-

ed states of the controlled parameter under external 

disturbances x1 and x2, respectively. In this case, we 

have the system of equations 

  

  

3
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After trivial transformations, this system yields ex-

pressions for the parameters ωs and α: 
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Fig. 1. Control system bifurcation: s––bifurcation point, I––unstable state domain, and II––stable state domain.

 

It is convenient to calculate ωs and α at the maxi-

mum spike points of the controller parameter: y1 and 

y2 for the frequencies ω1 and ω2, respectively. These 

responses of the output signal correspond to the limits 

of the undetected spectrum of the resulting disturbance 

of the system in the normalized form: |x1,2| = 1. The 

sign of x1,2 is determined depending on the location of 

the spike point of the controlled variable relative to the 

sampling mean My. 

2. BIFURCATIONS OF REAL TECHNOLOGICAL OBJECTS: 

ONE EXAMPLE OF CONSTRUCTION 

As an industrial process example, we consider the 

stripping section of the distillation column C-2 in the 

separation unit of ethylbenzene, styrene, and polysty-

rene production (PESP): construct a bifurcation and 

choose a sufficient time-sampling frequency for the 

control signal of the automated process control sys-

tem. This unit consists of three columns (C-1, C-2, and 

C-3) with the following functions: separating hydro-

carbon condensate supplied from the ethylbenzene 

dehydrogenation block into raw styrene and the ben-

zene-toluene-ethylbenzene fraction; purifying com-

mercial styrene from heavier fractions (residue of sty-

rene rectification); separating the benzene-toluene-

ethylbenzene fraction into recycled ethylbenzene and 

the benzene-toluene fraction (benthol). Figure 2 shows 

the general diagram of the main material flows of the 

distillation unit for ethylbenzene, styrene, and polysty-

rene production. 

The technological mode of the stripping section of 

column C-2 is maintained by multidimensional con-

trol: it is required to stabilize the level in the column 

(LI001) under a given constraint (the limit value of the 

column temperature profile (TI001)) due to beginning 

the styrene polymerization reaction. The main control 

action is the superheated steam supply into the heat 

exchanger H-2 (FIC001), intended for heating the bot-

tom fraction. The evacuation of high boiling compo-

nents from the column (FIC002) is fixed at the mini-

mum value due to commercial styrene losses in the 

mixture. The key disturbance for this automated pro-

cess control system is the quantitatively undetected 

change in the composition of the incoming hydrocar-

bon feedstock.  

The dynamics of the technological object are de-

scribed by the system of differential equations 
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Fig. 2. Distillation unit diagram. 

 

with the following notations: L is the liquid phase lev-

el in column C-2; F is the steam flow rate in the heat 

exchanger H-2; Q is the quantitative composition of 

column feeding; T is the bottom temperature in col-

umn C-2; a, b, and c are the coefficients of differential 

equations; n, m, and k are the orders of polynomials   

(n > m, n > k); finally, τ is the time lag of dynamic 

channels. 

The technological mode is maintained within the 

specified regulatory limits by an automated model 

predictive control (MPC) system [14]. The model is 

presented as a matrix transfer function approximating 

the real behavior of the industrial process according to 

the empirical transient characteristics of the transmis-

sion channels (5). Figure 3 shows the process control 

diagram for the stripping section of column C-2. 

 

 
 

Fig. 3. Process control for the stripping section of column C-2. 

Due to the relatively small dimensions of the col-

umn and the high rate of mass exchange processes, the 

distillation column C-2 has low inertia. Figure 4 

demonstrates the level in the column under different 

time-sampling frequencies of the control signal. For 

ω1 = 0.1/min, we observe jump changes of this level 

with a root-mean-square (RMS) deviation of 7.29%, 

which determine the possibility of an emergency shut-

down of the plant: the pumping equipment will switch 

off under the full release of the bottom fraction from 

the column. For ω2 = 1/min (all other system parame-

ters remain unchanged), the liquid phase level in the 

column has admissible fluctuations with an RMS de-

viation of 4.33%: the industrial process is in a steady 

state.  

To construct a bifurcation of the system on a given 

historical data set (a representative sample), we select-

ed necessary initial data. For this purpose, we consid-

ered the maximum deviations of the liquid phase level 

in column C-2 relative to the mean My = 88.75% for 

the system operating with the frequencies ω1 = 0.1/min 

and ω2 = 1/min: y(x1, ω1) = 55.29%, x1 = –1;           

y(x2, ω2) = 82.32%, x2 = –1. 

According to formulas (3) and (4), the quantitative  

properties of this bifurcation are given by the parame-

ters ωs = 0.22/min and α = 30.03. Then the bifurcation 

of the automated process control system for the strip-

ping section of the distillation column C-2 and the cor-

responding function of the bifurcation take the follow-

ing form (Fig. 5): 

    3, ω 30.03 0.22 ω 88.75y x x x    , 

3/2
0.22 ω

(ω) 88.75 60.07 , ω 0.22
3

sy
 

   
 

.
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Fig. 4. The level in column C-2

 

 

 
 
Fig. 5. Bifurcation of the stripping section of column C-2: s––bifurcation point, I––unstable state domain, and II––stable state domain. 

 

 

The constructed bifurcation for choosing the suffi-

cient time-sampling frequency of the control signal is 

adequate: it agrees with the dynamical characteristics 

of the real material balance stabilization system for the 

stripping section of the distillation column C-2. The 

control action channel (Fig. 3) has the delay τe ≈ 5 

min; therefore, the admissible time-sampling frequen-

cy is empirically defined by ωe = τe
–1

 ≈ 0.2 min
–1

. The 

analytical solution obtained by the method of bifurca-

tion diagrams gives the sufficient time-sampling fre-

quency ωs ≥ 0.22 min
–1

.  

CONCLUSIONS 

This paper has presented a method for constructing 

bifurcations of dynamical systems based on historical 

data. It has been applied to estimate the stability of the 

control system of the mass balance stripping section in 

the purification process of a styrene distillation col-

umn of the ethylbenzene, styrene, and polystyrene 

plants. According to the analysis results, the control 

signal ensures stable system operation within the ad-

missible regulatory limits of the technological process 
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parameters under a sufficient time-sampling frequency 

of 0.22 min
–1

. 

This approach to constructing bifurcations of con-

trol systems and calculating the stable state domain of 

the chemical engineering object is estimative: it serves 

for preliminarily determining the optimal time step of 

the control system considering the dynamical proper-

ties of the controlled object. 

REFERENCES 

1. Zinenko, A.V., Catastrophe Theory and Price Dynamics, Eco-

nomics and Mathematical Methods, 2018, vol. 54, no. 4, pp. 

116–123. (In Russian.) 

2. Nedel’ko, N.S., Catastrophe Theory and Analysis of Economic 

Systems’ Behavior, Vestnik of MSTU, 2010, vol. 13, no. 1, pp. 

223–227. (In Russian.) 

3. Schmitt, N., Tramontana, F., and Westerhoff, F., Nonlinear 

Asset-price Dynamics and Stabilization Policies, Nonlinear 

Dynamics, 2020, no. 102, pp. 1045–1070. 

4. Muzhikov, G.P. and Gilev, M.A., Analysis of Dynamic Sys-

tems Using Elements of the Theory of Bifurcations, in Sov-

remennye tendentsii razvitiya i perspektivy vnedreniya inno-

vatsionny tekhnologii v mashinostroenii, obrazovanii i 

ekonomike (Current Trends and Prospects for Introducing Inno-

vative Technologies in Engineering, Education, and Econom-

ics), 2017, vol. 3, no. 1 (2), pp. 35–37. (In Russian.) 

5. Qin, L., Qin, H., and Xing, J., Energy Flow Characteristics of 

Friction-Induced Nonlinear Vibrations in a Water-Lubricated 

Bearing-Shaft Coupled System, Acta Mechanica Sinica, 2021, 

no. 37, pp. 679–704. 

6. Skorobogatov, S.M., Catastrophes and Serviceability of 

Reinforced Concrete Structures (Classification and Elements of 

Theory), Yekaterinburg: Ural State University of Railway 

Transport, 2020. 

7. Hassard, B., Kazarinov, D., and Wan, Y., Theory and 

Applications of Hopf Bifurcation, Cambridge: Cambridge 

University Press, 1982. 

8. Ostreikovskii, V.A., Analiz ustoichivosti i upravlyaemosti 

dinamicheskikh sistem metodami teorii katastrof (Analysis of 

Stability and Controllability of Dynamic Systems by 

Catastrophe Theory Methods), Moscow: Vysshaya Shkola, 

2005. (In Russian.) 

9. Chereshko, A.A. and Shunderyuk, M.M., Applicability Limits 

of Model-Based Predictive Control Algorithms under Uncertain 

Control Object Dynamics, Control Sciences, 2020, no. 1, pp. 

17–23. (In Russian.)  

10. Bakhtadze, N.N. and Lototskii, V.A., Contemporary Methods 

of Production Process Control, Control Sciences, 2009, no. 3, 

pp. 56–63. (In Russian.) 

11. Arnold, V.I., Catastrophe Theory, Berlin–Heidelberg: Springer, 

1984. 

12. Iooss, G. and Joseph, D., Elementary Stability and Bifurcation 

Theory, New York: Springer, 2014. 

13. Moskalenko, A.V., Tetuev, R.K., and Makhortykh, S.A., On 

Studies of Bifurcation Phenomena Such as Memory and Delay, 

KIAM Preprint No. 109, Moscow: Keldysh Institute of Applied 

Mathematics RAS, 2019, pp. 1–44. (In Russian.)  

14. Rabotnikov, M.A., Strategy of Material Balance Control Im-

plementation of the Styrene Rectifying Column Bottom, Trudy 

Vserossiiskoi nauchno-prakticheskoi konferentsii “Khimiya. 

Ekologiya. Urbanistika” (Proceedings of the All-Russian Sci-

entific and Practical Conference on Chemistry, Ecology and 

Urbanism), Perm, 2021, vol. 4, pp. 242–246. (In Russian.)  

 

This paper was recommended for publication  

by B.G. Il’yasov, a member of the Editorial Board.  
 

 

Received March 1, 2022, and revised September 11, 2022. 

Accepted December 16, 2022. 

 

 
Author information 

 
Rabotnikov, Mikhail Alekseevich. Assistant, Perm National Re-

search Polytechnic University, Perm, Russia  

 rabotnikovma@gmail. com 

 
Stafeichuk, Boris Grigor’evich. Cand. Sci. (Eng.), Perm National 

Research Polytechnic University, Perm, Russia 

 bgstaf@mail.ru   

 
Shumikhin, Aleksandr Georgievich. Dr. Sci. (Eng.), Perm Na-

tional Research Polytechnic University, Perm, Russia  

 shumichin@gmail.com  
 
Cite this paper 

Rabotnikov, M.A., Stafeichuk, B.G., Shumikhin, A.G., Estimating 

Industrial Process Stability by Whitney’s Singularity Theory When 

Choosing a Sufficient Time-Sampling Frequency of the Control 

Signal. Control Sciences 6, 29–34 (2022). 

http://doi.org/10.25728/cs.2022.6.4  

 
Original Russian Text © Rabotnikov, M.A., Stafeichuk, B.G., 

Shumikhin, A.G., 2022, published in Problemy Upravleniya, 2022, 

no. 6, pp. 35–41. 

 
Translated into English by Alexander Yu. Mazurov,  

Cand. Sci. (Phys.–Math.),  

Trapeznikov Institute of Control Sciences,  

Russian Academy of Sciences, Moscow, Russia 

 alexander.mazurov08@gmail.com   
 

mailto:rabotnikovma@gmail.com
mailto:%20bgstaf@mail.ru
mailto:shumichin@gmail.com
http://doi.org/10.25728/cs.2022.6.4
mailto:alexander.mazurov08@gmail.com

