DOI: https://doi.org/10.25728/pu.2018.6.8

МНОГОКОНТУРНОЕ АДАПТИВНОЕ УПРАВЛЕНИЕ ПОДВИЖНЫМИ ОБЪЕКТАМИ ПРИ РЕШЕНИИ ТРАЕКТОРНЫХ ЗАДАЧ¹

В.Х. Пшихопов, М.Ю. Медведев

Рассмотрены алгоритмы параметрической адаптации с эталонными моделями, обеспечивающие астатизм и оценивание возмущений. Предложена структура системы управления, позволяющая синтезировать многосвязные регуляторы, обеспечивающие движение вдоль заданных траекторий объекта, описываемого кинематикой и динамикой механических систем в трехмерном пространстве. С помощью метода функций Ляпунова доказана асимптотическая устойчивость замкнутой адаптивной системы с контуром обеспечения астатизма. Проведен анализ ошибок оценивания возмущений асимптотическим наблюдателем. Показана ограниченность ошибки оценивания и приведены соотношения для настройки параметров наблюдателя. Приведены результаты численных исследований.

Ключевые слова: адаптивное управление, эталонная модель, траекторное управление, астатизм, асимптотический наблюдатель, многоконтурная адаптация, параметрическая адаптация.

ВВЕДЕНИЕ

Наиболее часто системы адаптивного управления подвижными объектами строятся на основе методов беспоисковой адаптации [1, 2]. При этом применяются алгоритмы оценивания и идентификации [3, 4] или самонастройка с эталонной моделью [5—8]. Каждый из методов адаптации обладает известными преимуществами и недостатками [1, 2, 8, 9]. Совмещение преимуществ или устранение недостатков тех или иных методов адаптивного управления возможно благодаря применению комбинированных систем [10, 11].

В настоящей работе предлагаются алгоритмы комбинированной системы управления подвижным объектом, строящейся на основе адаптивных систем с эталонной моделью [5—7]. Такие системы позволяют управлять нелинейными нестационарными объектами [12, 13], учитывать ограничения на фазовые переменные и управляющие воздействия [14, 15], адаптироваться к структурной неопределенности [16, 17], а также применять алгоритмы оценивания неизмеряемых переменных или возмущений [17].

В работах [18-20] предложена комбинированная система управления, включающая в себя эталонную модель, контур обеспечения астатизма [21], контур параметрической адаптации и робастный алгоритм оценки возмущений. Рассмотрена также задача позиционирования подвижного объекта, описываемого уравнениями движения твердого тела. В настоящей статье рассматривается задача построения комбинированной системы управления при движении объекта вдоль заданной траектории с требуемой скоростью. Траекторные задачи управления [22] отличаются повышенной сложностью и актуальны в современной робототехнике, требующей реализации высокоточного движения в средах с препятствиями. Кроме того, в этой работе представлен сравнительный анализ точности замкнутой системы при различных сочетаниях контуров управления.

¹ Работа выполнена при финансовой поддержке РФФИ, проект № 16-08-00013.

1. ПОСТАНОВКА ЗАДАЧИ

Математическая модель подвижного объекта представлена в виде [18—20]:

$$\dot{y} = R(y)x,\tag{1}$$

$$\dot{x} = M^{-1}(F_u + F_d(y, x, t)),$$
 (2)

где y — измеряемый вектор линейных и угловых координат в неподвижной системе координат размерностью 6×1 ; x — измеряемый вектор линейных и угловых скоростей в связанной системе координат размерностью 6×1 ; R(y) — матрица кинематики размерностью 6×6 , зависящая от углов Эйлера [23, c. 15-17]; F_u — вектор управляющих сил и моментов размерностью 6×1 ; $F_d(y, x, t)$ — вектор прочих сил и моментов размерностью 6×1 ; M — матрица инерционных параметров размерностью 6×6 .

Относительно модели (1), (2) делаются следующие предположения:

— элементы матрицы инерционных параметров *М* — постоянные величины на интервалах:

$$M(i, j) \in [M_{ij}^{\min}, M_{ij}^{\max}],$$

где M_{ij}^{\min} , M_{ij}^{\max} , $i, j = \overline{1, 6}$ — постоянные величины;

— вектор $F_u = F_u(u, k_\delta)$ является функцией вектора управляющих воздействий *и* и вектора интервальных параметров $k_\delta^i \in [k_{\delta\min}^i, k_{\delta\max}^i]$, где $k_{\delta\min}^i$, $k_{\delta\max}^i =$ постоянные параметры; вектор *и* имеет размерность *m*;

— вектор сил и моментов $F_d(y, x, t)$ неопределенный и представляется в виде:

$$F_{d}(y, x, t) = F_{d1}(y, x) + F_{d2}(t),$$
$$\|F_{d1}(y, x)\| \le A_{Fy} \|y\| + A_{Fx} \|x\|,$$
$$|F_{i2}^{i}(t)| \le F_{i2}^{i0} \quad |\dot{F}_{i2}^{i}(t)| \le \dot{F}_{i2}^{i0} \quad i = \overline{1.6} \quad (3)$$

$$|I_{d2}(i)| = I_{d2}^{i}, |I_{d2}(i)| = I_{d2}^{i}, i = I_{$$

где $A_{Fx}, A_{Fy}, F_{d2}^{\circ}, F_{d2}$ — постоянные величины; $\|\cdot\|$ — операция вычисления нормы; $|\cdot|$ — операция вычисления модуля.

Траекторная и скоростная ошибки задаются в виде [18—20]:

$$\psi_{tr} = A_1 Y y + A_2 y + A_3, \tag{4}$$

$$\psi_{ck} = A_4 x + A_5, \tag{5}$$

где A_1, A_2 — постоянные матрицы размерностью $\mu \times 6, A_4$ — постоянная матрица размерностью $\nu \times 6, A_3$ — вектор задающих воздействий размерностью

 $\mu \times 1, A_5$ — вектор задающих воздействий размерностью $\nu \times 1$.

Размерность вектора ψ_{tr} равна μ , а размерность вектора ψ_{ck} равна v. Матрица Y — диагональная $Y = \text{diag}([y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ y_6]).$

Формирование траекторной ошибки в виде выражения (4) позволяет сформировать требования к желаемой траектории движения в пространстве внешних координат в виде прямых или кривых второго порядка. Задание скоростной ошибки в форме (5) позволяет сформировать постоянные требования к скоростям движения объекта.

Ставится задача: найти вектор управляющих воздействий в виде функции $F_u(x, y)$ переменных состояния объекта (1), (2), обеспечивающий асимптотическую устойчивость ошибок (4), (5) относительно нулевого состояния.

2. СИНТЕЗ ЭТАЛОННОЙ МОДЕЛИ

Процедура синтеза комбинированной адаптивной системы управления состоит из этапов синтеза эталонной модели, синтеза основного контура с обеспечением астатизма и параметрической адаптацией и синтеза наблюдателя аддитивных возмущений. В данном параграфе рассматривается этап синтеза эталонной модели, которая состоит из совокупности номинальной модели и номинального управления. Такая эталонная модель позволяет учесть особенности объекта управления, например, ограничения на углы тангажа и крена, связанные с условиями управляемости. Иными словами, наличие эталонной модели в виде совокупности «номинальная модель + номинальное управление» позволяет настроить эту эталонную модель таким образом, чтобы она не генерировала нереализуемых движений.

Рассмотрим номинальную модель подвижного объекта

$$\dot{y}_m = R(y_m) x_m, \tag{6}$$

$$\dot{x}_m = M_m^{-1}(F_{um} + F_{dm}),$$
 (7)

где y_m — вектор координат номинальной модели; x_m — вектор скоростей номинальной модели; $R(y_m)$ — матрица кинематики номинальной модели; F_{um} — вектор управляющих сил и моментов номинальной модели; F_{dm} — вектор прочих сил и моментов, приложенных к номинальной модели; M_m — матрица инерционных параметров номинальной модели. Все векторы и матрицы в уравнениях (6), (7) имеют те же размерности, что и соответствующие векторы и матрицы в модели (1), (2).

+

Матрица $R(y_m)$ имеет ту же структуру, что и матрица R(y).

В отличие от модели объекта (1), (2) номинальная модель известна, т. е.:

— элементы матрицы M_m — постоянные известные параметры;

— вектор $F_{um} = F_{um}(u_m, k_{\delta m})$ является функцией вектора управляющих воздействий *и* и вектора постоянных известных параметров $k_{\delta m}$;

— вектор прочих сил и моментов $F_{dm}(y_m, x_m, t)$ известен.

Векторы ошибок номинальной модели (6), (7) подвижного объекта сформируем, в соответствии с выражениями (4), (5), в виде

$$\psi_{trm} = A_1 Y_m y_m + A_2 y_m + A_3, \tag{8}$$

$$\psi_{ckm} = A_4 x_m + A_5, \tag{9}$$

$$Y_m = \text{diag}([y_{1m} \ y_{2m} \ y_{3m} \ y_{4m} \ y_{5m} \ y_{6m}]).$$

Потребуем, чтобы векторы (8), (9) удовлетворяли уравнениям вида

$$\ddot{\psi}_{trm} + T_2 \dot{\psi}_{trm} + T_1 \psi_{trm} = 0, \qquad (10)$$

$$\dot{\psi}_{ckm} + T_3 \psi_{ckm} = 0, \qquad (11)$$

где T_1 , T_2 и T_3 — диагональные положительно определенные постоянные матрицы.

Вычислив первую и вторую производные по времени от векторов ψ_{trm} (8) и ψ_{ckm} (9) в силу уравнений (6), (7) и подставив их в формулы (10), (11), получим

$$\begin{bmatrix} (2A_1Y_m + A_2)R(y_m) \\ A_4 \end{bmatrix} \dot{x}_m = \\ = -\begin{bmatrix} (2A_1\dot{Y}_mR(y_m)x_m + (2A_1Y_m + A_2)\dot{R}(y_m)x_m + \\ + T_2\dot{\psi}_{trm} + T_1\psi_{trm} \\ T_3\psi_{ckm} \end{bmatrix}, (12)$$

где $\hat{R}(y_m)$ — производная матрицы $R(y_m)$, вычисляемая в соответствии с работой [16, *c*. 538],

$$\begin{split} \dot{\psi}_{trm} &= (2A_1Y_m + A_2)\dot{y}_m = (2A_1Y_m + A_2)R(y_m)x_m, \\ \ddot{\psi}_{trm} &= 2A_1\dot{Y}_mR(y_m)x_m + (2A_1Y_m + A_2)\dot{R}(y_m)x_m + \\ &+ (2A_1Y_m + A_2)R(y_m)\dot{x}_m, \end{split}$$

$$Y_m = \text{diag}([\dot{y}_{1m} \ \dot{y}_{2m} \ \dot{y}_{3m} \ \dot{y}_{4m} \ \dot{y}_{5m} \ \dot{y}_{6m}]).$$

Для нахождения управления представим вектор управляющих сил и моментов в виде

$$F_{um} = K_{\delta m} u_m, \tag{13}$$

где $K_{\delta m}$ — матрица размерности 6 × (μ + ν).

Выражение (13) — это линейное преобразование главного вектора управляющих сил и моментов F_{um} к силам и моментам u_m , создаваемым исполнительными механизмами. Далее вектор u_m пересчитывается в углы поворотов и тяги двигателей в соответствии с процедурой, представленной в работах [19, 24]. В статье [19] такой подход успешно применен в системе управления автономного необитаемого подводного аппарата, а в статье [24] — в системе управления роботизированной воздухоплавательной платформы. Также примем число каналов управления $m = \mu + \nu$. Случай $m \neq \mu + \nu$ рассмотрен в работе [24].

Из выражения (12), с учетом выражений (7) и (13), находим

$$u_{m} = -\left(\begin{bmatrix} (2A_{1}Y_{m} + A_{2})R(y_{m}) \\ A_{4} \end{bmatrix} M_{m}^{-1}K_{\delta m} \right)^{-1} \times \\ \times \left(\begin{bmatrix} (2A_{1}Y_{m} + A_{2})R(y_{m}) \\ A_{4} \end{bmatrix} M_{m}^{-1}F_{dm} + \\ \begin{bmatrix} (2A_{1}\dot{Y}_{m}R(y_{m})x_{m} + (2A_{1}Y_{m} + A_{2})\dot{R}(y_{m})x_{m} + \\ + T_{2}\dot{\psi}_{trm} + T_{1}\psi_{trm} \\ T_{3}\psi_{ckm} \end{bmatrix} \right). (14)$$

Уравнения (6)—(9), (13), (14) представляют собой эталонную модель подвижного объекта. Проведем анализ устойчивости, введя квадратичную функцию

$$V_{1} = \frac{1}{2} \psi_{ckm}^{T} \psi_{ckm} + \psi_{trm}^{T} T_{1} \psi_{trm} + \frac{1}{2} \dot{\psi}_{trm}^{T} \dot{\psi}_{trm} + \frac{1}{2} (\dot{\psi}_{trm} + T_{2} \psi_{trm})^{T} (\dot{\psi}_{trm} + T_{2} \psi_{trm}).$$
(15)

Производная по времени от выражения (15), вычисленная в силу уравнений замкнутой системы,

$$\dot{V}_{1} = -\psi_{ckm}^{T} T_{3}\psi_{ckm} + 2\psi_{trm}^{T} T_{1}\dot{\psi}_{trm} + + \psi_{trm}^{T} (-T_{1}\psi_{trm} - T_{2}\dot{\psi}_{trm}) + (\dot{\psi}_{trm} + T_{2}\psi_{trm})^{T} \times \times (-T_{1}\psi_{trm} - T_{2}\dot{\psi}_{trm} + T_{2}\dot{\psi}_{trm}) = -\psi_{ckm}^{T} T_{3}\psi_{ckm} - - \psi_{trm}^{T} T_{1}T_{2}\psi_{trm} - \dot{\psi}_{trm}^{T} T_{2}\dot{\psi}_{trm}.$$
(16)

Синтез управления номинальной моделью (6), (7) позволяет корректно сформировать матрицы T_1 и T_2 уравнений (10), (11), а также оценить разницу между номинальной моделью и подвижным объектом, основываясь на разнице между номинальным управлением (14) и реальными значениями сил и моментов, подаваемых на подвижный объект.

Далее описанная процедура синтеза управления номинальным объектом будет применена с некоторыми изменениями, для нахождения управления реальным подвижным объектом (1), (2).

3. АДАПТИВНЫЙ АЛГОРИТМ УПРАВЛЕНИЯ с обеспечением астатизма

Ошибки системы управления заданы в виде (4), (5). Для повышения точности следящей системы вводятся цепочки интеграторов

$$\dot{z}_1 = z_2, \ \dot{z}_2 = z_3, \ \dots, \ \dot{z}_{n_{tr}} = \psi_{tr} - \psi_{trm} = A_1 Y_y + A_2 y - A_1 Y_m y_m - A_2 y_m,$$
(17)

$$\dot{\chi}_1 = \chi_2, \ \dot{\chi}_2 = \chi_3, \ \dots, \ \dot{\chi}_{n_{ck}} = \psi_{ck} - \psi_{ckm} =$$

= $A_4 x - A_4 x_m,$ (18)

где n_{tr} — число интеграторов, обеспечивающих астатизм порядка n_{tr} — 1 по траекторной ошибке; n_{ck} — число интеграторов, обеспечивающих астатизм порядка n_{ck} — 1 по скоростной ошибке; z_j , $j = \overline{1, n_{tr}}$, χ_k , $k = \overline{1, n_{ck}}$ — дополнительные переменные.

Тогда траекторная и скоростная ошибки подвижного объекта задаются в виде

$$e_{tr} = A_1 Y_y + A_2 y - A_1 Y_m y_m - A_2 y_m + + B_1 z_1 + \dots + B_{n_{tr}} z_{n_{tr}},$$
(19)

$$e_{ck} = A_4 x - A_4 x_m + C_1 \chi_1 + \dots + C_{n_{ck}} \chi_{n_{ck}}, \quad (20)$$

где B_j , C_k , $j = \overline{1, n_{tr}}$, $k = \overline{1, n_{ck}}$ — матрицы коэффициентов регулятора.

Потребуем, чтобы траекторная и скоростная ошибки удовлетворяли уравнениям

$$\ddot{e}_{tr} + T_2 \dot{e}_{tr} + T_1 e_{tr} = 0, \qquad (21)$$

$$\dot{e}_{ck} + T_3 e_{ck} = 0. \tag{22}$$

Первая и вторая производные по времени от выражения (19), вычисленные в силу уравнений (1), (2), (6), (7), (17), равны

$$\dot{e}_{tr} = (2A_1Y + A_2)R(y)x - (2A_1Y_m + A_2)R(y_m)x_m + B_1z_2 + \dots + B_{n_{tr}-1}z_{n_{tr}} + B_{n_{tr}}(A_1Yy + A_2y - A_1Y_my_m - A_2y_m),$$
(23)

$$\begin{split} \ddot{e}_{tr} &= 2A_1YR(y)x + (2A_1Y + A_2)(R(y)x + R(y)\dot{x}) - \\ &- 2A_1\dot{Y}_mR(y_m)x_m - (2A_1Y_m + A_2)(\dot{R}(y_m)x_m + \\ &+ R(y_m)\dot{x}_m) + B_1z_3 + \dots + B_{n_{tr}-2}z_{n_{tr}} + \\ &+ B_{n_{tr}-1}(A_1Yy + A_2y - A_1Y_my_m - A_2y_m) + \\ &+ B_{n_{tr}}((2A_1Y + A_2)R(y)x - (2A_1Y_m + A_2)R(y_m)x_m). \end{split}$$

Первая производная по времени от выражения (20), вычисленная в силу уравнений (1), (2), (6), (7), (17),

$$\dot{e}_{ck} = A_4 \dot{x} - A_4 \dot{x}_m + C_1 \chi_2 + \dots$$

... + $C_{n_{k-1}} \chi_{n_{ck}} + C_{n_{ck}} (A_4 x - A_4 x_m).$ (25)

Подставив выражения (16), (19), (20), (23)—(25) в уравнения (21), (22), получим

$$\begin{bmatrix} (2A_1Y + A_2)R(y)\\ A_4 \end{bmatrix} \dot{x} = -\begin{bmatrix} T_2(\dot{\psi}_{tr} + B_1z_2 + \dots + B_{n_{tr-1}}z_{n_{tr}} + B_{n_{tr}}(\psi_{tr} - \psi_{trm})) + T_1(\psi_{tr} + B_1z_1 + \dots + B_{n_{tr}}z_{n_{tr}}) + f_2\\ T_3(\psi_{ck} + C_1\chi_1 + \dots + C_{n_{ck}}\chi_{n_{ck}}) + C_1\chi_2 + \dots + C_{n_{ck-1}}\chi_{n_{ck}} + C_{n_{ck}}(A_4x - A_4x_m) \end{bmatrix}, \quad (26)$$

$$f_2 = 2A_1 \dot{Y} R(y) x + (2A_1 Y + A_2) \dot{R}(y) x + B_1 z_3 + \dots + B_{n_{tr}-2} z_{n_{tr}} + B_{n_{tr}-1} (\psi_{tr} - \psi_{trm}) + B_{n_{tr}} (\dot{\psi}_{tr} - \dot{\psi}_{trm}).$$

Как и для эталонной модели, примем

$$F_u = K_{\delta} u, \tag{27}$$

где K_{δ} — матрица размерности 6 × (μ + ν).

Из уравнения (26), с учетом уравнений (2), (27), находим выражение для вектора управляющих воздействий:

$$\begin{bmatrix} (2A_1Y + A_2)R(y) \\ A_4 \end{bmatrix} M^{-1}K_8 u = -\begin{bmatrix} (2A_1Y + A_2)R(y) \\ A_4 \end{bmatrix} M^{-1}F_d - \begin{bmatrix} T_2(\dot{\psi}_{tr} + B_1z_2 + \dots + B_{n_{tr-1}}z_{n_{tr}} + B_{n_{tr}}(\psi_{tr} - \psi_{trm})) + T_1(\psi_{tr} + B_1z_1 + \dots + B_{n_{tr}}z_{n_{tr}}) + f_2 \\ T_3(\psi_{ck} + C_1\chi_1 + \dots + C_{n_{ck}}\chi_{n_{ck}}) + C_1\chi_2 + \dots + C_{n_{ck-1}}\chi_{n_{ck}} + C_{n_{ck}}(A_4x - A_4x_m) \end{bmatrix}.$$
(28)

Выражение (28) описывает векторный позиционно-траекторный регулятор, обеспечивающий управление подвижным объектом (1), (2).

Анализ устойчивости желаемого положения равновесия (4), (5), (8), (9) осуществляется с помощью квадратичной функции

$$V_{2} = V_{1} + \frac{1}{2} e_{ck}^{T} e_{ck} + e_{tr}^{T} T_{1} e_{tr} + \frac{1}{2} \dot{e}_{tr}^{T} \dot{e}_{tr} + \frac{1}{2} (\dot{e}_{tr} + T_{2} e_{tr})^{T} (\dot{e}_{tr} + T_{2} e_{tr}), \qquad (29)$$

где V_1 описывается выражением (15).

Производная по времени от функции (29), вычисленная в силу уравнений замкнутой системы,

$$\dot{V}_2 = \dot{V}_1 - e_{ck}^T T_3 e_{ck} - e_{tr}^T T_1 T_2 e_{tr} - \dot{e}_{tr}^T T_2 \dot{e}_{tr},$$

где \dot{V}_1 определяется выражением (16).

Из проведенного анализа следует, что асимптотически устойчивое положение равновесия системы определяется выражениями

$$e_{ck} = 0_{v \times 1}, \quad e_{tr} = 0_{\mu \times 1}, \quad \dot{e}_{tr} = 0_{\mu \times 1}, \quad \psi_{ckm} = 0_{v \times 1}, \\ \psi_{trm} = 0_{\mu \times 1}, \quad \dot{\psi}_{trm} = 0_{\mu \times 1}, \quad (30)$$

где $0_{\nu \times 1}$, $0_{\mu \times 1}$ — нулевые векторы размерностью, указанной их индексами.

Из выражений (19), (30) следует, что в положении равновесия (30)

$$\psi_{tr} = -B_1 z_1 - \dots - B_{n_{tr}} z_{n_{tr}}.$$
 (31)

Подставив выражение (31) в систему (17), получим

$$\dot{z}_1 = z_2, \ \dot{z}_2 = z_3, \ ..., \ \dot{z}_{n_{tr}} =$$

= $-B_1 z_1 - ... - B_{n_{tr}} z_{n_{tr}}.$ (32)

Матрицы B_j , $j = \overline{1, n_{tr}}$, выбираются так, чтобы система (32) была асимптотически устойчивой. В частности, если матрицы B_j , $j = \overline{1, n_{tr}}$, диагональные, то система (32) распадается на μ подсистем, каждая из которых имеет вид

$$\dot{z}_{1i} = z_{2i}, \ \dot{z}_{2i} = z_{3i}, \ \dots, \ \dot{z}_{n_{tr}i} = = -B_{1(i,\ i)} z_{1i} - \dots - B_{n_{tr}(i,\ i)} \ z_{n_{tr}i},$$

где z_{ji} , $j = \overline{1, n_{tr}}$, $i = \overline{1, \mu}$ — элементы векторов z_j ; $B_{j(i, i)}$ — диагональные элементы матриц B_j .

В этой связи из системы (32) следует, что ее асимптотически устойчивое положение равновесия

определяется выражением $z_1 = z_2 = z_3 = ... = z_{n_{tr}} = 0_{\mu \times 1}$, с учетом которого из выражения (31) следует $\psi_{tr} = 0_{\mu \times 1}$.

Аналогичным образом, с учетом формул (18) и (20) показывается, что из выражения (30) следует $\psi_{ck} = 0_{v\times 1}$.

Из уравнений замкнутой системы (10), (11), (17), (18), (21) и (22) получаем собственную матрицу блочного вида

$$A_{z} = \begin{bmatrix} A_{z1} & 0 & 0 \\ 0 & A_{z2} & 0 \\ 0 & 0 & A_{z3} \end{bmatrix},$$

$$A_{z1} = \begin{bmatrix} Ip & -I & 0 \\ T_{1} & Ip + T_{2} & 0 \\ 0 & 0 & Ip + T_{3} \end{bmatrix},$$

$$I_{z2} = \begin{bmatrix} Ip & -I & 0 & 0 & 0 & 0 \\ T_{1} & Ip + T_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & Ip - I & 0 & 0 \\ 0 & 0 & 0 & Ip - I & 0 \\ 0 & 0 & 0 & Ip - I & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -I & 0 & B_{1} & B_{2} & \dots & Ip + B_{n_{Ir}} \end{bmatrix},$$

$$A_{z3} = \begin{bmatrix} Ip + T_{3} & 0 & 0 & 0 & 0 \\ 0 & Ip - I & 0 & 0 \\ 0 & 0 & Ip - I & 0 & 0 \\ 0 & 0 & Ip - I & 0 & 0 \\ 0 & 0 & Ip - I & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -I & C_{1} & C_{2} & \dots & Ip + C_{n_{ck}} \end{bmatrix},$$

где *р* — переменная преобразования Лапласа, *I* — единичная матрица.

Отсюда следует, что характеристическое уравнение замкнутой системы представляется в виде произведения полиномов

$$D = (Ip^{2} + T_{2}p + T_{1})(Ip + T_{3})(Ip^{2} + T_{2}p + T_{1}) \times (Ip + T_{3})(Ip^{n_{tr}} + B_{n_{tr}}p^{n_{tr}-1} + \dots + B_{1}p + B_{0}) \times (Ip^{n_{ck}} + C_{n_{ck}}p^{n_{ck}-1} + \dots + C_{1}p + C_{0}).$$
(33)

Таким образом, характеристическое уравнение замкнутой системы представляет собой произведение характеристических уравнений эталонной системы по каналам управления траекторией и скоростью, уравнения основного контура и уравнений обеспечения астатизма. Это позволяет проводить независимую настройку каналов управления скоростью и траекторией подвижного объекта, эталонной модели и контура обеспечения астатизма.

С целью проверки астатизма системы по каналу скорости добавим в уравнения (11), (18), (20) и (22) вектор задающих воздействий g_{ck} :

$$(Ip + T_3)(\psi_{ck} - \psi_{ckm} + C_1\chi_1 + \dots + C_{n_{ck}}\chi_{n_{ck}}) =$$

= $-(Ip + T_3)g_{ck},$
 $(Ip + T_3)\psi_{ckm} = (Ip + T_3)g_{ck},$
 $p\chi_1 = \chi_2, \quad p\chi_2 = \chi_3, \quad p\chi_{n_{ck}} = \psi_{ck} - \psi_{ckm}.$

После преобразований получим

$$(Ip^{n_{ck}} + C_{n_{ck}}p^{n_{ck}-1} + \dots + C_{1}p_{1} + C_{0})\psi_{ck} =$$
$$= (C_{n_{ck}}p^{n_{ck}-1} + \dots + C_{1}p_{1} + C_{0})\psi_{ckm},$$

откуда следует, что замкнутая система обладает порядком астатизма n_{ck-1} по отношению к сигналу эталонной модели ψ_{ckm} .

Аналогичным образом получаем уравнение «вход — выход» замкнутой системы по каналу управления траекторией

$$(Ip^{n_{tr}} + B_{n_{tr}}p^{n_{tr}-1} + \dots + B_{1}p_{1} + B_{0})\psi_{tr} =$$

= $(B_{n_{tr}}p^{n_{tr}-1} + \dots + B_{1}p_{1} + B_{0})\psi_{trm},$

из которого следует, что замкнутая система обладает порядком астатизма n_{tr-1} по отношению к сигналу эталонной модели ψ_{trm} .

Адаптация алгоритма управления (28) осуществляется посредством параметрической настройки матриц B_j и C_k , $j = \overline{1, n_{tr}}$, $k = \overline{1, n_{ck}}$. Если выбрать матрицы B_j и C_k , диагональными, то их начальные значения можно получить методом стандартных переходных функций [25]. В этом случае последние два полинома в выражении (33) можно записать в виде:

$$D_{1} = Ip^{n_{tr}} + B'_{n_{tr}}\Omega_{0tr}p^{n_{tr}-1} + \dots$$
$$\dots + B'_{1}\Omega^{n_{tr}-1}_{0tr}p + B'_{0}\Omega^{n_{tr}}_{0tr},$$
$$D_{2} = Ip^{n_{ck}} + C'_{n_{ck}}\Omega_{0ck}p^{n_{ck}-1} + \dots$$
$$\dots + C'_{1}p\Omega^{n_{tr}-1}_{0ck} + C'_{0}\Omega^{n_{tr}}_{0ck},$$

где B'_j и C'_k , $j = \overline{1, n_{tr}}$, $k = \overline{1, n_{ck}}$ — диагональные матрицы размерности $n_{tr} \times n_{tr}$ и $n_{ck} \times n_{ck}$, элементы которых определяются выбранным распределением корней (биномиальным, оптимальным); Ω_{0tr} и Ω_{0ck} — диагональные матрицы размерности $n_{tr} \times n_{tr}$ и $n_{ck} \times n_{ck}$, элементы которых являются среднегеометрическими корнями.

В данной статье предлагается осуществлять параметрическую адаптацию матриц геометрических корней Ω_{0tr} и Ω_{0ck} . Это позволяет свести настройку коэффициентов полинома высокого порядка к настройке одного коэффициента. Например, применяя известные алгоритмы настройки [26], получаем

$$\dot{\Omega}_{0tr} = G_{tr} z_1^T e_{tr}, \quad \dot{\Omega}_{0ck} = G_{ck} \chi_1^T e_{ck}, \quad (34)$$

где G_{tr} и G_{ck} — матрицы постоянных коэффициентов настройки размерности $\mu \times 1$ и $\nu \times 1$.

Пусть, например, $n_{tr} = n_{ck} = 2$, распределение корней стандартного полинома биномиальное, тогда коэффициенты находятся из соотношений $B_1 = \Omega_{0tr}^2$, $C_1 = \Omega_{0ck}^2$, $B_2 = 2\Omega_{0tr}$, $C_2 = 2\Omega_{0ck}$. Структурная схема системы управления под-

Структурная схема системы управления подвижного объекта с эталонной моделью представлена на рис. 1. Как видно, эталонная модель не входит в основной контур управления. В ней матрицы T_1 , T_2 и T_3 постоянные. В работе [27] предложен вариант настройки матриц T_1 , T_2 и T_3 таким образом, чтобы управляющие воздействия *и* не выходили в насыщение.

4. АЛГОРИТМ ОЦЕНИВАНИЯ ВОЗМУЩЕНИЙ

Выражение (28) для вычисления управляющего воздействия содержит неопределенный вектор F_d и матрицы интервальных параметров M и K_{δ} . Для оценки аддитивных возмущений представим уравнение (2) динамики подвижного объекта в виде

$$\dot{x} = (M_m + \Delta M)^{-1} ((\Delta K_{\delta m} + \Delta K_{\delta})u + F_{dm} + \Delta F_d) = F_{xm} + \Delta F_x,$$
(35)

где ΔM , ΔK_{δ} , ΔF_d — неопределенные матрицы и вектор, $F_{xm} = (M_m)^{-1}(K_{\delta m}u + F_{dm})$ — известный вектор, $\Delta F_x = M_m^{-1}(\Delta K_{\delta}u + \Delta F_d) + \Delta M^{-1}((K_{\delta m} + \Delta K_{\delta})u + F_{dm} + \Delta F_d)$ — неизвестный вектор.

Для синтеза наблюдателя вектора ΔF_x воспользуемся подходом, предложенным в работах [24, 28]. В этом подходе реализован редуцированный

Рис. 1. Схема адаптивной системы управления с астатизмом

=

наблюдатель Луенбергера [29], робастность которого обеспечивается аппроксимацией возмущений временными рядами [30]. В соответствии с методикой синтеза [28] ошибка наблюдателя формируется в виде

$$e_n = \Delta F_x - s(x) - \lambda, \qquad (36)$$

где λ — вектор переменных наблюдателя, s(x) — векторная функция, определяемая далее.

Потребуем, чтобы ошибка (36) удовлетворяла дифференциальному уравнению $\dot{e}_n + T_n e_n = 0$, где T_n — матрица, выбираемая из условий устойчивости и быстродействия. Для простоты изложения примем матрицу T_n скалярной, т. е. диагональной с одинаковыми элементами [31].

Дифференцируя ошибку (36) по времени в силу уравнения (35), из последнего уравнения получим

$$-\dot{\lambda} - \frac{\partial s(x)}{\partial x}(F_{xm} + \Delta F_x) + T_n(\Delta F_x - s(x) - \lambda) = 0.$$

Приравняв к нулю все слагаемые, содержащие неизвестный вектор ΔF_x , получим

$$\dot{\lambda} = -T_n \lambda - T_n T_n x - T_n F_{xm}, \quad \Delta \hat{F}_x = T_n x + \lambda. \quad (37)$$

68

Переходя в уравнениях (35) и (37) к изображениям по Лапласу, находим

$$\begin{cases} px = F_{xm} + \Delta F_x, \\ p\lambda = -T_n\lambda - T_nT_nx - T_nF_{xm}, \Rightarrow \\ \Delta \hat{F}_x = T_nx + \lambda, \end{cases}$$
$$\Rightarrow \begin{cases} x = \frac{F_{xm} + \Delta F_x}{p}, \\ \lambda = \frac{-T_nT_nx - T_nF_{xm}}{Ip + T_n}, \Rightarrow \Delta \hat{F}_x = \\ \Delta \hat{F}_x = T_nx + \lambda, \end{cases}$$
$$T_n \frac{F_{xm} + \Delta F_x}{p} - \frac{T_nT_n}{Ip + T_n} \frac{F_{xm} + \Delta F_x}{p} - \frac{T_nF_{xm}}{Ip + T_n} \Rightarrow \\ \Rightarrow \Delta \hat{F}_x = \frac{T_n}{Ip + T_n} \Delta \hat{F}_x. \end{cases}$$

Применив метод коэффициентов ошибок [32], получим

$$E_0 = 0, E_1 = \frac{1}{T_n}, E_2 = \frac{2}{T_n^2}, ..., E_i = \frac{i!}{T_n^i}$$

Тогда ошибка оценивания

$$\varepsilon_n(t) = \frac{1}{T_n} \Delta \dot{F}_x + \frac{1}{T_n^2} \Delta \ddot{F}_x + \dots + \frac{1}{T_n^i} \Delta F_x^{(i)} + \dots$$

Пусть ΔF_x представляет собой линейный сигнал, удовлетворяющий ограничениям (3). Тогда компоненты вектора ошибки оценивания ограничены выражением

$$|\varepsilon_n^i(t)| \le \Delta \dot{F}_d^{i0} / T_n, \quad i = \overline{1, 6}, \qquad (38)$$

которое позволяет выбрать положительно определенную матрицу T_n так, чтобы ошибка оценивания не превышала заданную величину.

Представим оцениваемую функцию гармоническим сигналом $\Delta F_x = A \sin \omega_{max} t$, тогда

$$\left|\varepsilon_n^i(t)\right| \le \frac{A\omega_{\max}}{T_n} + \frac{A\omega_{\max}^2}{T_n^2} + \dots + \frac{A\omega_{\max}^i}{T_n^i} + \dots$$

Отсюда следует, что для ограниченности ошибки оценивания требуется выбирать элементы матрицы T_n с учетом условия $\omega_{max}/T_n < 1$.

5. РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ ИССЛЕДОВАНИЙ

Рассмотрим подвижный объект с такими характеристиками:

$$A(\psi, \vartheta, \omega) = \\ = \begin{bmatrix} \cos\psi\cos\vartheta & \begin{pmatrix} -\cos\psi\sin\vartheta\cos\gamma + \\ +\sin\psi\sin\gamma \end{pmatrix} \begin{pmatrix} \sin\psi\cos\gamma + \\ +\cos\psi\sin\vartheta\sin\gamma \end{pmatrix} \\ \sin\vartheta & \cos\vartheta\cos\gamma & -\cos\vartheta\sin\gamma \\ -\sin\psi\cos\vartheta & \begin{pmatrix} \cos\psi\sin\gamma + \\ +\sin\psi\sin\vartheta\cos\gamma \end{pmatrix} \begin{pmatrix} \cos\psi\cos\gamma - \\ -\sin\psi\sin\vartheta\sin\gamma \end{pmatrix} \end{bmatrix},$$

$$A_{\omega} = \begin{bmatrix} 0 & \frac{\cos\gamma}{\cos\theta} & -\frac{\sin\gamma}{\cos\theta} \\ 0 & \sin\gamma & \cos\gamma \\ 1 & -\mathrm{tg}\theta\cos\gamma & \mathrm{tg}\theta\sin\gamma \end{bmatrix}, \quad R = \begin{bmatrix} A & 0 \\ 0 & A_{\omega} \end{bmatrix},$$

$$F_{d} = \begin{bmatrix} m(-g\sin\vartheta - \omega_{y}V_{z} + \omega_{z}V_{y}) \\ m(-g\cos\vartheta\cos\gamma - \omega_{z}V_{x} + \omega_{x}V_{z}) \\ m(g\cos\vartheta\sin\gamma - \omega_{x}V_{y} + \omega_{y}V_{x}) \\ -(J_{z} - J_{y})\omega_{y}\omega_{z} \\ -(J_{x} - J_{z})\omega_{x}\omega_{z} \\ -(J_{y} - J_{x})\omega_{y}\omega_{x} \end{bmatrix} + F_{d}(t),$$

$$K_{\delta m} = \begin{bmatrix} 1000\\ 0000\\ 0000\\ 0100\\ 0010\\ 0001 \end{bmatrix},$$

$$F_{u} = [P N_{p}]^{T}, \quad P = [P_{x} \ 0 \ 0]^{T}, \quad N_{P} = [N_{x} \ N_{y} \ N_{z}]^{T},$$
$$M_{m} = \text{diag}([m, m, m, J_{x}, J_{y}, J_{z}]), \quad m = 5 \text{ kr},$$
$$J_{x} = 10,0 \text{ kr} \cdot \text{m}^{2}, \quad J_{y} = J_{z} = 100,0 \text{ kr} \cdot \text{m}^{2},$$

где *P* и *N_P* — соответственно главный вектор и главный момент силы тяги двигателей.

Данные уравнения описывают движение подвижного объекта на малых скоростях с движительно-рулевым комплексом, обеспечивающим создание тяги вдоль продольной оси и управляющих моментов относительно трех осей связанной системы координат, например, квадрокоптер, автономный необитаемый подводный аппарат, беспилотный летательный аппарат с неизменяемым вектором тяги двигателей.

В качестве параметрических возмущающих воздействий приняты отклонения элементов номинальной матрицы M_m от элементов реальной матрицы M и отклонения элементов матрицы $K_{\delta m}$ от элементов матрицы K_{δ} . При моделировании принято:

Изменения в матрице M обусловлены расходом топлива и действием неучтенных в модели присоединенных масс [33], а в матрице K_{δ} — зависимостью тяг движителей от глубины (высоты) движения и неточностями в характеристиках, определяющих зависимость тяг от управляемых переменных дви-

Рис. 2. Траектория движения в трехмерном пространстве (*a*) и в проекции на плоскость Oy_1y_3 (*б*)

жителей. В выражении для управления (28) приняты номинальные значения параметров и вектор оценок возмущений M_m , $K_{\delta m}$, \hat{F}_d . Вектор внешних возмущений принят в виде

$$F_d(t) = \begin{bmatrix} 20 + 20\sin(0.8t) \\ 1 \\ 2 \\ -20 - 8\cos(1.3t + 0.2) \\ 16 \\ 40 + 20\sin(t) \end{bmatrix}.$$

Параметры системы управления

$$\begin{split} T_1 &= 1, \quad T_2 = 2, \quad T_3 = 1, \quad B_1 = \Omega_{0tr}^2, \\ B_2 &= 2\Omega_{0tr}, \quad C_1 = \Omega_{0ck}^2, \quad C_2 = 2\Omega_{0ck}, \\ \Omega_{0ck}(0) &= \Omega_{0tr}(0) = 10, \quad T_n = 10, \\ \\ A_1 &= 0, \quad A_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} -\Psi^0 \\ -\Psi^0 \\ -\Psi^0 \\ -\gamma^0 \end{bmatrix}, \\ A_4 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A_5 = -V_x^0, \\ \\ \Psi^0 &= \begin{cases} \arctan \frac{-a_g}{b_g}, \quad \exp \pi^0 > r_r, \\ \frac{r^0}{r_r} \left(\operatorname{arctg} \frac{-a_g}{-b_g} - \operatorname{arctg} \frac{b_g}{a_g} \right) + \operatorname{arctg} \frac{b_g}{a_g}, \quad \exp \pi^0 \le r_r, \end{cases} \end{split}$$

где r^0 — расстояние до заданной траектории в плоскости OY_1Y_3 , описываемой уравнением $a_gy(1)$ + + $b_gy(3) + c_g = 0$; r_r — расстояние, при превышении которого вектор скорости подвижного объекта направлен на ближайшую точку на заданной траектории. Если расстояние до траектории меньше r_r , то подвижный объект начинает разворачиваться вдоль траектории. При моделировании задано $r_r = 5$, $a_g = 1$, $b_g = -1$, $c_g = 0$, $\vartheta^0 = -k_{\vartheta}(y_2 - y_2^0)$, γ^0 и V_x^0 желаемые значения угла рысканья и скорости: $\gamma^0 = 0$, $V_x^0 = 1$, $k_{\vartheta} = 0,2$.

На рис. 2 и 3 представлены результаты моделирования адаптивной системы управления (1), (2), (6), (7), (14), (28), (34), (37) при $G_{tr} = G_{ck} = 3$.

На рис. 2, *а* представлена траектория в трехмерном пространстве, из которой видно, что подвижный объект совершает маневр, двигаясь одновременно на заданную глубину и к заданной прямой, после чего выходит на требуемую траекторию и движется с желаемой скоростью.

Результаты численных исследований различных вариантов адаптации сведены в таблице, в которой представлены статические ошибки по скорости и глубине движения. Из таблицы следует, что параметрические возмущения успешно подавляются всеми представленными алгоритмами. Отметим, что параметры объекта нестационарные и изменяются в широких пределах. Внешние возмущения подавляются с конечными ошибками. Так-

Рис. 3. Глубина (а) и скорость (б) подвижного объекта

же видно, что одновременное применение всех способов адаптации обеспечивает наибольшую точность замкнутой системы.

Наибольшую погрешность при подавлении внешних возмущений и совокупности внешних и параметрических возмущений показывает алгоритм, применяющий только оценивание возмущений. Это связано с тем, что астатизм по каждому каналу обеспечивается динамической системой второго порядка, а оценивание возмущений наблюдателем первого порядка. Вместе с тем отметим, что применение наблюдателя как дополнительного контура адаптации позволяет существенно (от 50 до 1000 %) уменьшить статическую ошибку.

ЗАКЛЮЧЕНИЕ

Представлены алгоритмы комбинированной системы управления, содержащей контуры обеспечения астатизма, оценивания возмущений и параметрической адаптации. Предложенная система управления отличается структурой, обеспечивающей автономное функционирование каждого контура, что позволяет настраивать их независимо. При этом параметрическая адаптация и астатизм замкнутой системы обеспечиваются одними и теми же коэффициентами регулятора. Еще одно отличие разработанных алгоритмов состоит в том, что благодаря настройке только среднегеометри-

Вид адаптации	Возмущения					
	параметрические		внешние		параметрические и внешние	
	Статическая ошибка, %					
	по скорости	по траектории	по скорости	по траектории	по скорости	по траектории
Управление с наблюдателем (37)	0	0	0,25	0,02	0,25	0,02
Управление (31)	0	0	0,02	0,001	0,0203	0,0012
Управление (31) с наблюдателем (38)	0	0	0,0016	0,00011	0,0016	0,00011
Управление (31) с настройкой коэффициентов (34)	0,0	0,0	0,0023	0,0004	0,003	0,0002
Управление (31) с настройкой коэф- фициентов (34) и наблюдателем (37)	0,0	0,0	0,0016	0,00011	0,0016	0,00011
		1	1	1		1

Сравнительный анализ вариантов адаптации

ческого корня предложенный алгоритм параметрической адаптации позволяет свести векторную задачу к скалярному случаю и не изменяет заданного соотношения между корнями характеристического полинома замкнутой системы. Одновременное применение алгоритмов оценивания возмущений, обеспечения астатизма и параметрической адаптации приводит к уменьшению ошибки замкнутой системы.

ЛИТЕРАТУРА

- 1. Рутковский В.Ю. Работы Института проблем управления в области беспоисковых адаптивных систем и систем управления космическими аппаратами // Автоматика и телемеханика. — 1999. — № 6. — С. 42—49.
- 2. Земляков С.Д., Рутковский В.Ю. О некоторых результатах развития теории и практики применения беспоисковых адаптивных систем // Автоматика и телемеханика. 2001. № 7. С. 103—121.
- Клейман Е.Г. Идентификация нестационарных объектов // Автоматика и телемеханика. — 1999. — № 10. — С. 3—45.
- Клейман Е.Г. Идентификация входных сигналов в динамических системах // Автоматика и телемеханика. — 1999. — № 12. — С. 3—15.
- Рутковский В.Ю., Крутова И.Н. Принцип построения и некоторые вопросы теории одного класса самонастраивающихся систем с моделью // Тр. I Всесоюзной конф. по теории и практике самонастраивающихся систем. — М., 1965. — С. 46—63.
- Рутковский В.Ю., Ссорин-Чайков В.Н. Самонастраивающиеся системы с пробным сигналом // Тр. I Всесоюзной конф. по теории и практике самонастраивающихся систем. — М., 1965. — С. 93—111.
- Zemlyakov S.D. Some problem of analytical synthesis in model reference control systems by the direct method of Lyapunov. Theory of self adaptive control system // Proc. of Intern. Symposium, England, Teddington, 1965. – N.-Y.: P.H. Hummon Plenum Press, 1966. – P. 175–179.
- Dan Zhang, Bin Wei. A review on model reference adaptive control of robotic manipulators // Annual Reviews in Control. – 2017. – Vol. 43. – P. 188–198.
- 9. Дружинина М.В., Никифоров В.О., Фрадков А.Л. Методы адаптивного управления нелинейными объектами по выходу // Автоматика и телемеханика. 1996. № 2. С. 3—33.
- Андриевский Б.Р., Фрадков А.Л. Адаптивное управление летательным аппаратом с идентификацией на скользящих режимах // Управление большими системами. — 2009. — Вып. 26. — С. 113—144.
- Бушманова Ю.А. Комбинированное управление скалярными нестационарными объектами в системах с неявным эталоном // Информатика и системы управления. — 2007. — № 2. — С. 165—172.
- Рутковский В.Ю., Глумов В.М. Особенности динамики адаптивной системы управления с нелинейной эталонной моделью. І // Автоматика и телемеханика. — 2017. — № 4. — С. 92—105.
- Рутковский В.Ю., Глумов В.М. Особенности динамики адаптивной системы управления с нелинейной эталонной моделью. II // Там же. — № 5.— С. 83—95.
- 14. Даденков Д.А., Казанцев В.П. Синтез электромеханических систем управления с нелинейной адаптивной эталонной моделью // Фундаментальные исследования. — 2014. — № 11. — С. 1466—1471.

- Еремин Е.Л. Модификация адаптивной системы для управления одноканальным объектом с входным насыщением // Информатика и системы управления. — 2016. — № 3 (49). — С. 119—131.
- 16. Еремин Е.Л., Пикуль З.Д., Теличенко Д.А. Адаптивная система управления одним классом структурно-параметрически неопределенных объектов в схеме с явной и неявной эталонными моделями // Информатика и системы управления. 2015. № 1 (43). С. 105—114.
- Фуртат И.Б., Цыкунов А.М., Адаптивное управление объектами с неизвестной относительной степенью // Автоматика и телемеханика. — 2010. — № 6. — С. 109—118.
- 18. *Пшихопов В.Х., Медведев М.Ю., Крухмалев В.А.* Базовые алгоритмы адаптивного позиционно-траекторного управления подвижными объектами при позиционировании в точке // Мехатроника, автоматизация, управление. 2015. № 4 (16). С. 219—225.
- 19. *Пшихопов В.Х., Медведев М.Ю., Гуренко Б.В.* Алгоритмы адаптивных позиционно-траекторный систем управления подвижными объектами // Проблемы управления. 2015. № 4. С. 66—74.
- Медведев М.Ю., Рогов В.А., Медведева Т.Н. Позиционнотраекторное управление подвижными объектами с многоконтурной адаптацией // Известия ЮФУ. Технические науки. — 2016. — № 7. — С. 101—114.
- 21. Isidori A. Nonlinear Control Systems. Springer Verlag, 1999.
- 22. Бурдаков С.Ф., Мирошник И.В., Стельмаков Р.Э. Системы управления движением колесных роботов / Сер. Анализ и синтез нелинейных систем. СПб.: Наука, 2001.
- Бюшгенс Г.С., Студнев Р.В. Динамика самолета. Пространственное движение. — М.: Машиностроение, 1983.
- 24. Пшихопов В.Х., Медведев М.Ю., Гайдук А.Р., и др. Система позиционно-траекторного управления роботизированной воздухоплавательной платформой: алгоритмы управления // Мехатроника, автоматизация и управление. — 2013. — № 7. — С. 13—20.
- Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. — М.: Наука, 1972.
- Александров А.Г. Оптимальные и адаптивные системы: учеб. пособие. — М.: Высшая школа, 1989. — 263 с.
- Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов, т. 2: учеб. пособие для втузов: 13-е изд. — М.: Наука. 1985. — 560 с.
- Медведев М.Ю. Алгоритмы адаптивного управления исполнительными приводами // Мехатроника, автоматизация и управление. 2006. № 6. С. 17—22.
- Bucy R. Nonlinear filtering theory // IEEE Trans. on Automat. Control. – 1965. – Vol. AC-1, N 2. – P. 198.
- Красовский А.А. Циклическое оценивание при первичной обработке сигналов датчиков // Автоматика и телемеханика. — 1987. — № 4. — С. 52—60.
- Гантмахер Ф.Р. Теория матриц: 5-е изд. М.: ФИЗМАТ-ЛИТ, 2004. — 560 с.
- 32. Теория автоматического управления: уч. для вузов. Ч. І. Теория линейных систем автоматического управления / Н.А. Бабаков, А.А. Воронов, А.А. Воронова и др.; под ред. А.А. Воронова: 2-е изд., перераб. и доп. — М.: Высшая школа, 1986. — 367 с.
- Седов Л.И. Плоские задачи гидродинамики и аэродинамики: 3-е изд. — М.: Наука, 1980.

Статья представлена к публикации членом редколлегии В.Ю. Рутковским.

Пшихопов Вячеслав Хасанович — д-р техн. наук,

директор НИИ робототехники и процессов управления, ⊠ pshichop@rambler.ru,

Медведев Михаил Юрьевич — д-р техн. наук, профессор, ⊠ medvmihal@sfedu.ru,

Южный федеральный университет, г. Ростов-на-Дону.