
I  nformation Technology in Control  

 

 

 
 

41 CONTROL SCIENCES   No. 4 ● 2021 

 DOI: http://doi.org/10.25728/cs.2021.4.5 

ESTIMATING TIME CHARACTERISTICS OF CONTROL SYSTEMS  

WITH CYCLIC OPERATION: A NETWORK CALCULUS APPROACH1 

 
V.G. Promyslov2 and K.V. Semenkov3 

 
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia   

 
2
 v1925@mail.ru, 3 semenkovk@mail.ru 

 
 

Abstract. The practical validation of time characteristics of digital control systems is consid-

ered. The delay in information processing and transmission often has a probability distribution 

differing from the Gaussian one. Therefore, the confidence intervals calculated under the Gauss-

ian distribution assumption will be incorrect for such systems. The idea is to estimate the time 

characteristics of a control system using non-statistical time parameter estimation methods. As 

one of such methods, Network Calculus is considered. The practical implementation of Network 

Calculus to estimate the parameters of control systems, particularly its features, is discussed. 

One of the main features is imposing special restrictions on data flows and system performance, 

determined by flow envelopes and maximum (minimum) service curves. Generally, these char-

acteristics are unknown in advance. Mathematical methods are proposed to estimate these char-

acteristics under known input and output data flows in the system. As shown below, the calcula-

tion of characteristics is significantly simplified for systems with cyclic data processing algo-

rithms, and the data transfer rate over the network is much higher than that on the computing 

components of the system. Simulations are carried out, and the system’s time parameters esti-

mated by Network Calculus are compared with the results of classical statistical estimation 

methods. As an illustrative example, the time parameters of one component of a real nuclear 

power plant instrumentation and control system are estimated using Network Calculus. 

 
Keywords: system performance, time characteristics, digital control systems, Network Calculus, non-

statistical estimation methods. 

 

INTRODUCTION 

In most cases, modern control systems (CSs) for 

industrial plants are implemented as a computing envi-

ronment distributed by functions and means. Its com-

ponents are a set of hardware and software means for 

acquisition, accumulation, asynchronous processing, 

representation, and transmission of information. CS 

components can be distributed both spatially and func-

tionally. 

Dynamic validation methods of system parameters 

have been developed to confirm the CS operability. 

They vary depending on the industry: for example, the 

IAEA methodology is used for CSs of nuclear power 

plants  (NPPs) [1].  Network  simulators  based  on 

discrete  mathematics,  such  as  OMNeT ++ [1–3] and  
_______________________________ 
1
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OPNET [4, 5], are used to estimate the dynamic char-

acteristics of CSs. However, statistical methods are 

necessarily applied to confirm the time characteristics 

of a real system. In the latter case, the samples of 

measurements of the system’s parameters are analyzed 

under the common assumption that the distribution law 

of the measured characteristics is close to Gaussian 

[1]. In most cases, this assumption is true for physical 

signals. As shown below, it can be false for the param-

eters describing the digital CS itself, e.g., signal trans-

mission and processing times. 

Network Calculus [6], a non-statistical analysis 

method for deterministic systems, is an alternative ap-

proach to estimating the characteristics of data flows 

between the components of computer networks. This 

method is based on the min-plus algebra and is attrac-

tive: in many cases, it allows considering linear sys-

tems that are nonlinear in the conventional algebra. 

http://doi.org/10.25728/cs.2021.4.5
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The method involves no assumptions about the type of 

distribution for the measured process. 

A feature of Network Calculus is using specific 

functions – the envelopes of the input and output data 

flows and service curves – o calculate the system char-

acteristics, which primarily include the data transmis-

sion delay and buffering parameters. 

Network Calculus was developed for analyzing 

flow systems without information losses during pro-

cessing (e.g., for calculating the throughput of a net-

work segment or determining the parameters of video 

streaming over Ethernet networks). Generally speak-

ing, control systems do not belong to this class of sys-

tems due to the following characteristics: 

 parallel processing of several tasks on one com-

puting resource, 

 a significant change in the volume of infor-

mation at the component’s input and output (the output 

flow can be either greater or smaller than the input 

one, e.g., when compressing information), 

 heterogeneous information in CSs, unlike infor-

mation transmission systems (here, information heter-

ogeneity means that each element (bit) has a specific 

value and can be processed according to a particular 

algorithm). 

No doubt, these features were considered within 

Network Calculus. The authors [7] extended the meth-

od to systems with cyclic dependencies between the 

input and output flows of components. The papers [8, 

9] presented Network Calculus approaches for systems 

with a significant change in the input-output flow ratio. 

The publications [10, 11] considered various methods 

for describing joint processing disciplines of several 

tasks on one computing resource. 

The approaches mentioned above have common 

drawbacks. First of all, their application requires accu-

rate knowledge of the internal features of system oper-

ation: bound to them, the approaches become sensitive 

to any change in the operating modes of the system. In 

addition, when used for complex systems, the ap-

proaches lose the “transparency” of results and their 

simple correlation with other characteristics (the input 

data rate, data unevenness, and the computing power 

of the component). 

In view of these drawbacks, when constructing a 

system model below, we will try preserving the gener-

ality and transparency of the results (on the one hand) 

and reflecting the unevenness of input and output data 

flows and the dependence of the data processing algo-

rithm on the information contained in them (on the 

other hand). 

Also,  we  will  validate Network Calculus by com- 

paring the delays yielded by statistical estimation 

methods and the former method. This comparison is of 

particular interest for correlating the results of Net-

work Calculus with those of statistical methods, which 

is an underinvestigated problem. 

We will solve the problem on model examples of 

control systems and a real NPP instrumentation and 

control system [11]. The CS under study is of a rather 

general type, and the problems considered below are 

common for the developers of industrial CSs. There-

fore, this experience may be of interest to other re-

searchers and engineers of industrial CSs.  

1. THE STRUCTURE OF A TYPICAL PROCESS     

CONTROL SYSTEM 

1.1. Typical interaction of control system components 
 

This paper considers a typical CS for an industrial 

plant, further referred to as the CS. A similar CS struc-

ture arises in various applications for real plants; see 

[11, 13]. 

The typical structure of the CS is shown in Fig. 1. 

There are three levels: 

– programmable logic controllers (PLC) and gate-

ways (level G or level 1), 

– the servers of primary processing and data stor-

age (level S or level 2), and 

– the components providing the human-machine in-

terface (level Z or level 3). 

The CS architecture under consideration has the 

following properties: 

– One or more components of levels 1 and 3 can be 

connected to the server. 

– Each communication channel (C1–C4) between 

different-level components can be redundant (redun-

dancy is not shown in the diagram). 

– Components G, S, and Z have cyclic information 

processing algorithms. 
 

 

 

Fig. 1. The structural diagram of control system. 
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1.2. Data processing features 

According to the operating conditions of the CS 

(see Fig. 1), different-level elements of the system use 

cyclic processing algorithms for the data transmitted 

from the gateway (G) at the level of connection to the 

server (S) and from the server to the workstation (Z). 

The data are the signals representing the plant’s state 

and the control system itself. 

Definition 1. A system element implements a 

cyclic data processing algorithm if the algorithm has 

the following properties: 

– The element’s initial state is waiting for the data 

arrival. 

– The sequentially incoming data packets are 

processed in a deterministic uniform way, after which 

the system returns to the initial state. 

For a cyclic algorithm, the total processing time of 

a data packet can be written as the sum of two values: 

          C E SD T T  , 

where TE denotes the network delay, and TS is the pro-

cessing time on the CS element. 

2. NETWORK CALCULUS FOR ESTIMATING                 

TIME CHARACTERISTICS OF CONTROL SYSTEMS 

2.1. Foundations of Network Calculus 

Network Calculus [6] is based on rather new meth-

ods of applied mathematics introduced by Cruz [14, 

15]. They involve the min-plus algebra; see the mono-

graph [16]. The main application area of Network Cal-

culus is the studies of queuing systems. 

Let us briefly describe the method, following the 

book [6]. 

Definition 2. A flow (also called a cumulative 

flow) is a nondecreasing function of time such that 

   

   

, ,
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A flow is said to be causal if   0,   0A t t   . The 

set of all causal functions is often denoted by F. For 

such functions, we introduce the operations of convo-

lution and deconvolution. 

Definition 1. Let A and β be causal flows. Their 

min-plus convolution, denoted by *A A   , has the 

form 

      *

0
inf β .

s t
A t t s A s

 
                (1) 

Whenever no confusion occurs, we will omit the 

variable   in the expressions below. Obviously, 

 * 0,   0A t t   , and *A  is nonnegative since both 

A  and β  are nonnegative causal functions. 

Definition 4. Consider functions A  and β , where 

β  is causal. Their mini-plus deconvolution, denoted by 

βH A , has the form 

    
0

sup β .
u

H A t u u


                   (2) 

Note that the deconvolution of flows A  and β , 

where β  is causal, is a flow as well. 

Definition 5. Let A and β be causal functions. 

Their max-plus convolution, denoted by * βA A  , 

has the form 

      *

0

sup β .
s t

A t t s A s
 

                (3) 

Definition 6. Let A  and β  be flows, where β  is 

causal. Their maxi-plus deconvolution, denoted by 

βH A  , has the form 

    
0

inf β .
u

H A t u u


                      (4) 

Definition 7. A function β  is the (minimum) ser-

vice curve of a network element (or a system) with an 

input flow A  if β  is a causal flow and the output flow 
*A  of the element (system) satisfies the relation 

*   β.A A                               (5) 

Definition 8. A function γ  is the (maximum) ser-

vice curve of a network element (or a system) with an 

input flow A  if γ  is a causal flow and the output flow 
*A  of the element (system) satisfies the relation 

*   γ.A A                                (6) 

Definition 9. A function a  is called an envelope of 

a flow A  if A A a   or, equivalently,  

.a A A                                 (7) 

Incoming and outgoing flows are determined by 

the total volume of data observed at the input and out-

put over a certain period. Therefore, the data pass 

through the system in a time defined as the horizontal 

deviation between these functions,  d t . 

Definition 10 (maximum delay in system). For 

linear systems with an input flow A , an output flow 
*A ,    * A t A t , the maximum delay 

maxD  is the 

maximum horizontal distance between the input and 

output flows: 

       * *

max
0

, sup inf 0 : .
t

D h A A d A t A t d


      

A  fundamental  result  of  Network  Calculus is the  

possibility of determining delays using flow envelopes 

and service curves instead of cumulative flows: 

 max ,β .D h a                           (8) 

It was proved in the book [6].   
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3. APPROACHES TO ESTIMATING CHARACTERISTIC 

CURVES OF NETWORK CALCULUS 

Consider the problem of determining the flow en-

velope, the system’s maximum and minimum service 
curves, and their linear approximations based on ex-

perimentally measured flows.  
 

3.1. Calculating flow envelope                                    

based on experimental data  

Equation (7) gives a direct way to calculate the en-
velope of a cumulative flow A. For facilitating calcula-

tions, it is convenient to operate the piecewise-linear 
approximation of the envelope, reduced in some cases 

to the affine function y kx b  . The piecewise-linear 

representation allows adopting efficient computational 
algorithms for data processing. Operating the affine 

function, we can quickly (“on the fly”) analyze the 
system and assess its behavior in quantitative terms. 

Piecewise-linear approximation is traditionally 

used in the analysis of complex systems. Due to sim-
plicity, this model is indispensable for Network Calcu-

lus, where both specially developed algorithms [10] 
and mathematical methods of optimal control and sys-

tem identification are applied; for example, see [17] or 
[18]. 

The approximation of flow envelopes by the affine 
curve within Network Calculus was considered in [19]. 

The methods for calculating a one-component linear 
flow envelope suggested therein were based on support 

vector algorithms [20]. 
 

3.2. Calculating maximum and minimum service curves 

based on experimental data 

Formula (7) allows directly calculating the flow 
envelope: the problem reduces to searching for 

effective analytical and computer methods of linear 
approximation. Determining the parameters of the 

service curve is much more difficult. 
Theoretically, an exact estimate of the service 

curve can be obtained from formulas (1) and (2) using 
a specially selected test flow and the fact that the zero 

element δ0  of the convolution functions is absorbed by 

the operator ⊗; see the book [6], p. 111. However, 
such an experiment is impracticable: it requires 

generating an infinitely large flow, which exceeds the 
capabilities of any real system. 

The second approach is based on the property of 
the min-plus algebra described in [6]: 

C B A        .B A C                  (9) 

Using this relation and formula (2), we obtain a 
lower bound for the maximum service curve: 

*γ   ,A А                                  (10) 

where A  and *A  are the input and output cumulative 

flows, respectively.  

But the maximum service curve is often not enough 
to analyze the system. For example, the minimum ser-

vice curve (5) is required to calculate the maximum 
system delay and the maximum buffer size. Algo-

rithms for calculating the minimum service curve of 
general systems are unknown to the authors. 

The approach to calculating the minimum service 
curve proposed below involves the following “weaker” 

property of the min-plus convolution and deconvolu-

tion. 

Property. If C B A , then  

.B A C                                (11) 
P r o o f. 

Let      C s B A s  for s . This means that for 

any 0v  , 

          
0

inf   ,
u

B s v A v B s u A u C s


       

i.e., 

     .B s v C s A v                           (12) 

Introducing the notation 
,t s v   

we rewrite inequality (12) as 

       .B t A t s C s                      (13) 

Inequality (13) holds for any s  such that 0t s  . 

Hence, it will be true in the limit case (for the lower bound 

of its right-hand side): 

,B A C   , 0t  . 

The proof of this property is complete. ♦ 

Now we estimate the minimum service curve. Let 

A  and *A  be input and output cumulative flows, re-

spectively. Due to the property established above, the 
function 

*β A A                                 (14) 

satisfies the inequality * βA A   . In other words, the 

estimate β  is the minimum service curve. 

Since the property (11) is only a necessary condi-

tion, the estimate of the minimum service curve given 
by (14) can lie above or below the real minimum ser-

vice curve of the system. Comparing the expressions 

(9) and (11), we also note that β γ . In other words, 

the minimum service curve is bounded above by the 
maximum service curve.  

Consider a  special  case when  the  system  has  no  
maximum service curve: there is an “instantaneous” 

processing mode for input flows. In this case, an exact 
value of the minimum service curve can be obtained 

by replacing the input and output cumulative flows 

with their envelopes. To do this, assume that α  and 
*α  are the envelopes of the input and output flows, 

respectively. As is known, * (α   βα γ)   ; see the 

book [6], p. 34. For 
0( )t   , this equation can be 

written as 
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*α α β . 

Due to the property of the operator  (see [6], p.  

123) and the minimum service curve β , 

*α = β .α          

Using the commutativity of the operator   and the 

same property reversely, we arrive at the following 

estimate of the minimum service curve: 
*β =α α.

 
If the service curves can be described by affine 

functions, then there exist fast convolution and decon-

volution algorithms necessary for calculating the sys-

tem’s parameters [11]. As shown in [21], the service 

curves can be approximated by affine functions like 

the flow envelope using similar support vector algo-

rithms. 

4. MODELING AND ESTIMATING TIME CHARACTERISTICS 

OF CONTROL SYSTEMS 

Let us describe the typical CS (Fig. 1) using the 

Network Calculus model. In addition, assume that the 

CS has redundant computing power. Under this as-

sumption, the system can be decomposed, and each 

logical channel can be considered separately. Other-

wise, it is necessary to examine the mutual influence 

of different processing channels, e.g., using a task 

scheduler model [11]. 

In the CS shown in Fig. 1, consider a separate con-

trol channel (Fig. 2). Each CS component in the chan-

nel model is characterized by its maximum and mini-

mum service curves. According to the definitions of 

the minimum (5) and maximum (6) service curves, the 

derivation and final equations for the maximum ser-

vice curve of the CS will be similar to those for the 

minimum service one. They can be written by simply 

renaming the variables and reverting the inequality 

signs in the relations. Therefore, all the main conclu-

sions and considerations in this section will concern 

the minimum service curve β . To indicate a particular 

component, we will add an appropriate alphanumeric 

subscript to β  according to the notation in Fig. 2. Lev-

el 1 of the system receives an input flow designated by 

an uppercase letter with an index. The input and output 

flows of each component will be denoted by A and A*, 

respectively. 

Due to the definition of the minimum service curve 

(5), for each element of the linear system, we have the 

expression 
*   β.A A   

However, in practice, the characteristics of all CS 

elements (except communication channels) are nonlin-

ear: the scale of the flow between the input and output 

 
 

Fig. 2. Logical transmission channel i1 separated in CS.   

 

changes. For example, one alarm signal at the compo-

nent’s input can cause a whole avalanche of related 

signals in the algorithms of information protection and 

display in the control system. As a result, the infor-

mation at the component’s output will increase. To 

incorporate the flow scale changes into the model 

shown in Fig. 2, we introduce a scaling function  M  

and its inverse 1M  . They implement the transfor-

mations *:M A A  and 1 *:M A A  , respectively, 

[8]. In this case, the service curve βSi
 of system chan-

nel i with the scaling functions takes the form 
1 1

1 1 2 2β ( ( )),Si Gk Cn Sl Cn ZmM M          (25) 

where: , , , Ni k l m  are the numbers of serially con-

nected components in the logical data processing 

channel at each CS level; 1, 1 Nn n   are the numbers of 

the communication channels used for data transmis-

sion between the components in channel 1i ; finally, 

1M  and 
2M  are the scaling functions of the 

corresponding components. The service curves 
1βCn
 

and 
2βCn

 reflect the network data transmission delay 

ET ; the others, the data processing delay 
ST  in the 

component. 

If the service curves and scaling functions can be 

calculated for each component, equation (15) yields 

bounds on the data processing delay for the entire sys-

tem, depending on the input flow characteristics  ai t , 

i N . However, calculating the scaling functions M
of a real system is a difficult problem not necessarily 

solved in practice. 

To avoid difficulties with determining the scaling 

functions, we apply the following technique for the 

systems with a cyclic data processing algorithm: rede-

fine the input and output flows and pass from the real 

flows to the virtual ones. 

Suppose that all data received at the beginning of 

each cycle will be processed and transmitted to the 

output by the end of the cycle. Consider the function 

 

 

τ , ,

0 0,

jq j j N

q

 







 

where j  denotes the cycle number, and τ j
 is the dura-

tion of cycle j . On the interval 0,  , we introduce 

the function 
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0

, 1.
j

l

Q x q l j x j


     

Obviously, the step function  Q x  is a flow by 

Definition 2. 

For such a component, the output flow *Q  can be 

obtained from the input flow by the single-cycle shift: 

 
   

 
*

1 , 1, ,

0, 0,1 .

Q x x
Q x

x

   
 



 

Figure 3 shows the structural diagram (Fig. 2) rede-

fined for the virtual flows in the components of types 

G, S, and Z. 

For the channel with such virtual flows for the 

components G, S, and Z, we redefine the minimum and 

maximum service curves β  and γ : 
*   β,Q Q   
*   γ.Q Q   

Also, we introduce the direct mappings 
0 1, ,M M   and 

2M   for the transformation *:M Q A   and the in-

verse mappings for the transformation 1' *: QM A  . 

Then the service curve for the system in  

Fig. 3 takes the form 
1

1 1 1

1
2 2 2 .

Si Gk Cn

Sl Cn Zm

M M

M M









   





 

 

  
          (16) 

In turn, equation (16) can be reduced to a conven-

ient form; see subsection 5.1 of the paper [8]. For this 

purpose, the scaling functions M   are transferred from 

the component’s input to the output, and the pair          

( 1',  M M  ) at the component’s output is canceled: 

1
1 1

1
2 2

( )

( ) .

Si Gk Cn Sl

Cn Zm

M

M



 

   

 

  
                 (17) 

The partial transition from the data flows A  to the 

cycles Q  in equations (16) and (17) does not simplify 

the operation of scaling functions. However, under the 

condition 

 , ,
,Сi G S Z i

                            (18) 

the curve 
Сβ  i  can be replaced by the function 

 
0,  0,

δ
,  0.

t
t

t


 

 
 

It is neutral with respect to min-convolution and has 

the property δ f f  . (For example, see the book 

[6].) 

The monotonic scaling function of the network 

component satisfies the relation 

    1   ,  N.M t n n 
    

For such a function, we may ignore 
Сβ i

 in equation 

(17), thereby eliminating the scaling functions. Physi-

cally, the assumption (18) means that the processing 

cycle time in the network stack corresponding to the 

information transmission time over the system network 

is negligible compared to the information processing 

time on a computing resource. This assumption mainly 

holds for modern digital control systems, where the 

transmitted information has a relatively small volume 

compared to the throughput of communication chan-

nels. 

In this case, the general service curve for chain i of 

the secondary flow (see equation (17)) reduces to 

.Si Gk Sl Zm      

Here , , Nk l m  are the numbers of the serially con-

nected components that process data at the CS levels. 

Although Network Calculus is quite “transparent” 

in the sense of results interpretation, it involves non-

standard characteristics of the studied objects: the flow 

envelope and the service curve. These characteristics 

are not directly measured but result from calculations. 

Obviously, the methods used to calculate them will 

also affect the reliability of the final result. Therefore, 

we will focus on the practical aspects of calculating the 

flow envelope and the service curve. 

 

5. VALIDATION OF NETWORK CALCULUS                     

FOR ESTIMATING TIME CHARACTERISTICS 

5.1. Reference data and validation procedure 

Before calculating the characteristics of the typical 

CS (Fig. 1), we have to validate Network Calculus on 

data with known statistical parameters. A test program 

 

G1 S1C1 Z1C3

Level 1 Level 2 Level 3

a1(t)
M 1 M 2

a*1(t)
M 3M -1

1 M -1
2M -1

0

 
 

Fig. 3. The structural diagram of CS with cyclic virtual flows.
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was created to simulate the CS component with a cy-

clic operation algorithm; the network delay TE and 

the cycle time TS were random variables with a given 

distribution. The obtained data were processed using 

the Network Calculus library of Matlab [10]. 

      The subject of study was the ratio of the maxi-

mum delay determined by Network Calculus and the 

maximum measured delay in the sample as well as the 

dependence of the maximum calculated delay on the 

sample size and distribution. 

      In addition, a technique was developed to carry 

out measurements and obtain samples with network 

packet sizes and cycle times on a test program simu-

lating the cyclic algorithm of a real system. Figure 4 

shows the pseudocode of this test program. The file 

containing the parameters of the delay distribution 

function is read line by line in the loop; a random de-

lay with a given distribution is inserted after each read 

operation. The duration of each cycle is recorded in 

the output file. 

 

5.2. Testing technique and results 

For each sample, three delays were calculated: 

– the maximum experimental delay Dx over the en-

tire dataset, 

– the delay determined by Network Calculus 

according to formula (8) with the minimum service 

curve β  estimated by formula (14), 

 

 
Fig. 4. Test program’s pseudocode for generating output flows with a 

given delay distribution. 

 

 

– the delay determined by Net-

work Calculus according to formula 

(8) with the lower bound (10) of the 

maximum service curve γ . 

The calculations were carried out 

for samples of different sizes L. The 

data in the samples had different 

distributions, including those close 

to Gaussian and heavy-tailed ones. 

The numerical results presented be-

low are rounded within 1%. 

The initial test data are combined 

in the table available for download 

[22]. The data obtained with the test 

program are indicated by the asterisk 

(*). 

Figure 5 shows the ratio / xD D  

depending on the sample size for 

different distributions, where D is 

the maximum delay determined by 

Network Calculus with the service 

curve (14). 

 

 

 
 

Fig. 5. Maximum delay estimate depending on sample size for β.  
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Figure 6 shows the ratio / xD D  depending on the 

sample size for different distributions, where D is the 

maximum delay determined by Network Calculus 

with the service curve (10). 

The testing results allow drawing the following 

conclusions. 

The maximum delay D estimated using the service 

curve (10) is close to the experimental maximum de-

lay
xD : as a rule, the former is somewhat smaller than 

the latter. The resulting estimate better correlates with 

the real maximum delay for large samples and distri-

butions close to Gaussian [22]. 

At the same time, the estimate of the maximum 

delay using the minimum service curve (14) is more 

accurate for small samples and heavy-tailed distribu-

tions. The ratio / xD D  grows with increasing the 

sample size, although the delay’s rate of change de-

creases with increasing the sample  size.  The  ratio  

 / xD D  can reach 10
2
 . 

Figure 7 presents the ratio / xD D  

depending on the sample size and over-

shoot amplitude in the case of the mini-

mum service curve. 

The simulation shows that the maxi-

mum delay calculated using the service 

curve (10) characterizes the delay in 

normal operating conditions; see Fig. 6. 

The estimated delay is close by absolute 

value to the maximum delay in the sam-

ple and weakly depends on the sample 

size for sufficiently large samples. 

Figure 8 shows typical curves yield-

ed by Network Calculus based on the 

experimental data. The sample data have 

the Rayleigh distribution with σ 1 ; 

however, single overshoots of 300 σ 

were added to the sample. For clarity, 

the small-sample data are given here. 

The upper horizontal line corresponds to 

the maximum delay calculated for the 

service curve (10). This delay is close to 

the maximum sample delay. The lower 

 

 
Fig. 6. Maximum delay estimate depending on sample size for γ . 

 
 

 
 

Fig. 7. The ratio of measured and calculated delays for the Rayleigh 

distribution with μ = 0 and σ = 300 bytes depending on single 

overshoot in σ and sample size L. 

 

 
Fig. 8.  Network Calculus-based experimental curves for a sample of 

size L = 10 with the Rayleigh distribution and a single overshoot of 

300 σ. 
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horizontal line corresponds to the maximum delay 

estimated for the service curve (14). Clearly, the input 

flow envelope limits all curves on the graph from 

above; the estimate of the minimum service curve 

(14), from below. 

For the samples obtained on the test example (not 

generated), the results turned out to be somewhat less 

stable. However, the differences in the order of mag-

nitude from the same distributions obtained by direct 

data generation do not exceed 20%. The data acquisi-

tion procedure described above can be recommended 

for measurements of real systems. 

 

5.3. Comparison of results: Network Calculus vs. 

classical statistical methods  

According to the simulation results, the ratio D/Dx 
and the maximum delay depend on the distribution 
function of processing times, the sample size, and the 
number and amplitude of single overshoots in the da-
ta. 

This dependence is complex due to the nonlinear 
formulas describing the basic Network Calculus oper-
ations (1)–(4) to find the maximum delay. According 
to these formulas, the flow envelope and the service 
curve include segments of close values arranged in 
descending order for the flow envelope and the max-
imum service curve and ascending order for the min-
imum service curve. (See the book [6], p. 113.) 

Thus, for larger samples, the flow will contain 
many segments with a considerable slope of the 
curve; therefore, the flow envelope (7) and the service 
curves calculated by formulas (10) and (14) will 
change. 

The maximum service curve (10) estimated on the 
sample will be similar to the flow envelope. The min-
imum service curve has the opposite trend (see Fig. 
8). Hence, the estimate (10) depends less on variations 
of the input data and sample size. 

Heavy-tailed distributions are characterized by 
some overshoots strongly differing from the rest of 
the values. For distributions close to Gaussian, the 
appearance of such overshoots in the sample is less 
probable, but they are characterized by a sufficient 
volume of data within the confidence interval. Ac-
cordingly, the general slope trend for the envelope 
and service curves will differ depending on the distri-
bution of the measured parameter. The samples with 
single large overshoots will be characterized by the 
curves with a large slope value at the beginning and 
its subsequent sharp decrease; the samples without 
large overshoots, by the curves with a smooth de-
crease in slope (Fig. 9). 

Some examples of the service curves for different 
sample sizes were given in the supplementary materi-
al; see Fig. 1 in [23]. 

 

 

 

Fig. 9. Example of two cumulative flows and envelopes  (α1, α2) for 

them. Flow 1 has overshoots in data (point 4 on axis X). Flow 2 has no 

overshoots in data.  

 

These considerations explain the relationship be-

tween the delays estimated by Network Calculus and 

classical statistical methods. (For example, see [23].) 

As is known [25], the results yielded by Network 

Calculus assume the worst combination of infor-

mation processing conditions in the system. Graph-

ically, this means that the segments with the greatest 

changes in the input flow are concentrated at the be-

ginning of the envelope curve (the worst scenario pre-

dicted based on the observed data). For the delay 

based on the minimum service curve, the worst sce-

nario is the largest data packet arriving when the serv-

er is busy and has low performance. When calculating 

the delay with the maximum service curve, the maxi-

mum data size corresponds to the maximum service 

characteristic: the maximum volume of data is ac-

companied by the maximum system performance, 

which is typical for normal operating conditions. 

In both cases, the delay estimated by Network 

Calculus corresponds to the delay calculated using 

statistical methods in the scenarios described above. 

The probability that the delay will reach this value in 

a real sample corresponds to the experimental proba-

bility of this scenario. During simulations, we calcu-

lated the probability that the real delay would be less 

than that yielded by Network Calculus. This probabil-

ity is close to 1 for the delay determined using the 

minimum service curve; see [22]. 

6. CALCULATING CONTROL SYSTEM DELAY:                

AN EXAMPLE 

We estimated the time characteristics of the real control 

system described above (Fig. 1). Note that the network data 

transmission delays between the components were also 
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measured to validate the simplified formula (23) for calcu-

lating the service curve of the entire system. 

Empirical distributions were calculated for the meas-

ured values, and spectral characteristics were additionally 

analyzed for the network delay. 

Consider the maximum data processing time in a com-

ponent with a cyclic operation algorithm estimated by Net-

work Calculus. 

The measurements were carried out for the components 

of level Z (Fig. 2). The volume of cyclic data processed is 

rather stable in normal operating conditions and has an av-

erage rate of change. However, under special conditions 

(actuation of equipment protection and lockouts or transi-

tion between modes), the volume of data and the algorithm 

(rate) of data processing can vary significantly. 

The empirical distribution of the cycle time ST  (Fig. 

10) differs from the Gaussian or Poisson and is multimode. 

In accordance with the algorithm of operation, each mode 

corresponds to a typical processing cycle for a certain class 

of data. 

For the given sample, the estimate of maximum delay 

using the service curves (10), (14) was made. The follow-

ing table presents the results obtained.  

 

Simulation results for component Z 

L ~ 10
3 

Dx p(Dx) D p(D)  D/Dx Dʹ p(Dʹ) Dʹ/Dx 

0.37 ~ 1 5.1 ~ 1 4.9 0.32 0.87 0.3 

 

Consider the parameters of the network data transmis-

sion  delay TE  between  the  system  components  shown in 

Fig. 2. As an example, the data on network packets passing 

between the components of levels S and Z are presented. 

The components in this example exchange data via the 

TCP/IP protocol. The data transmission characteristics be-

tween other components of the system are similar.  

In the experiment, the standard tcpdump utility of the 

OS was used for measuring the round-trip time (RTT) of a 

TCP packet, i.e., the period between sending the packet by 

the component S and receiving confirmation [26] from the 

component Z. The RTT measurements are shown in Fig. 

11.  

The typical round-trip time of a packet is tens of micro-

seconds. However, the RTT distribution significantly dif-

fers from the Gaussian distribution inherent in physical 

processes or the Poisson distribution widely used in queu-

ing theory (Fig. 12).  

The distribution in Fig. 12 has three distinct periods. At 

the same time, no long-term periods were revealed during 

the experiment. The RTT spectrum analysis in Fig. 13 con-

firms this fact: the spectrum is noisy.  

The maximum transit time of network packets is ap-

proximately 310  times smaller than the processing time of 

information in cycles. Hence, for this CS, the service curve 

can be calculated using the simplified formula (18).  

 
 

 

 
 

 

 

 

 

 

 

 

 

Fig. 10. The empirical probability density of cycle time for component  

Z. The firm line shows a smoothened envelope of the distribution.  

 

 
 

 

 

Fig. 11. RTT between the components S and Z of the real CS. The data 

are averaged on 10 s intervals.  

 

 
 

 

 

Fig. 12. The empirical probability density of RTT of TCP packets. 
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Fig. 13. The amplitude of RTT spectrum. The zero harmonic 

corresponding to the mean value is cut out. The data are reduced to a 

uniform scale with 2 s intervals between points.  

 
In the course of measurements on the real CS, we veri-

fied that the empirical distributions (Figs. 10 and 12) have a 

heavy tail. The algorithm for recognizing heavy-tailed dis-

tributions [27] was employed for this purpose. It demon-

strated better results than the tests based on the Kolmogo-

rov–Smirnov criterion. 

According to the real system test, the distributions of 

delays in the network components and the information pro-

cessing components belong to the class of heavy-tailed dis-

tributions. 

CONCLUSIONS. DISCUSSION OF THE RESULTS  

This paper has considered the problem of validat-

ing the time characteristics of digital control systems 

(CSs) during their testing. CS requirements often in-

clude restrictions on the processing time of individual 

CS components and the information transmission time 

between CS components. 

Constraints can be imposed on both average and 

maximum (limit) values of these characteristics. They 

are expressed either in statistical form (confidence 

intervals) or in standard form (admissible ranges of 

the absolute values) [27]. 

Estimating a random variable on a sample is a 

classical problem of mathematical statistics: it has 

long been developed and well described in the litera-

ture (for example, see [23]). However, the interpreta-

tion of the resulting estimates, which extends the ex-

perience of operating “ordinary” measurements of 

physical quantities with almost Gaussian distributions 

to estimating the time characteristics of digital control 

systems, may lead to incorrect conclusions. Let us 

formulate the main problems. 

The procedure for validating the requirements dur-

ing tests is primarily based on calculating the sample 

mean and sample variance (e.g., the IAEA methodol-

ogy [1]). If a random variable has a finite mean and 

variance, the sample mean is a consistent unbiased 

estimate of the theoretical mean and does not depend 

on the type of distribution. A known disadvantage of 

this method is low robustness under extraneous over-

shoots in the sample [29]. However, sample variance, 

both biased and unbiased, is a consistent estimate of 

the variable’s theoretical variance. 

When interpreting the resulting estimates of the 

mean and variance, engineers implicitly assume that 

the delays obey the Gaussian law and intuitively 

transfer the estimated confidence intervals for the 

Gaussian variable to control system delays. Indeed, if 

a random variable has the Gaussian distribution, the 

sample mean and variance can be used to estimate the 

confidence interval for the validated parameter. How-

ever, the distribution function of delays in CSs is gen-

erally non-Gaussian. 

The physical nature of the measured quantity 

(time) restricts the form of its distribution: at least, it 

is bounded on the left. If the technical requirements 

specify the maximum absolute value (e.g., the signal 

transit time between the CS components should not 

exceed a given threshold), this condition implies that 

the distribution of the random variable is also bound-

ed on the right. Therefore, the restrictions dictate that 

the distribution is not, in the strict sense, the distribu-

tion of a Gaussian random variable. 

According to the study of a real CS (see above), 

the distribution of delays in the network components 

and the components processing information signifi-

cantly differs from the Gaussian one: it often has a 

multimode nature and belongs to the class of heavy-

tailed distributions. 

In the general case, the Chebyshev inequality 

yields a (very rough) estimate for the probability that 

a random variable will exceed a given threshold. 

Therefore, when estimating time characteristics, it is 

necessary to obtain an appropriate distribution and 

then apply statistical estimation methods for this class 

of distributions or, as an alternative, use non-

statistical methods. 

This paper has considered a non-statistical ap-

proach to estimating the time delay in control systems 

based on Network Calculus. This method is not com-

pletely new; however, it is still underinvestigated by 

researchers. When applying it to computer systems 

analysis, we should consider some of the features of 

the method. One feature is insufficient transparency in 

correlating the results yielded by Network Calculus 

with those yielded by classical statistical methods for 

estimating time parameters of control systems. In ad-

dition, the system’s input data necessary for this 
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method are generally not specified as “passport pa-

rameters” of the system and the information processed 

by it. Such data include flow envelopes, service 

curves, scaling functions for uneven data flows, etc. 

The technical difficulties of Network Calculus are 

well known, and separate approaches have been de-

veloped to resolve them partially; for example, see [8, 

10, 11, 19, 30]. However, these solutions also require 

initial data about the system, which are unavailable 

for the user or are poorly formalized. Moreover, there 

is no general methodology for estimating the mini-

mum service curve, an important parameter of Net-

work Calculus. 

Therefore, this paper has proposed methods for es-

timating the minimum service curve using the input 

and output cumulative data flows. For a special case 

of a control system with a cyclic information pro-

cessing algorithm, a simplified formula without scal-

ing functions has been presented for calculating the 

system service curve. 

We have investigated the correlation between the 

maximum delay estimated by Network Calculus with 

the results obtained using the statistical analysis of 

time delay samples. In particular, it has been estab-

lished that the maximum delay in the data sample and 

the maximum delay estimated by Network Calculus 

are closest if the distribution of the sample data has 

single large overshoots. This property is inherent in 

heavy-tailed distributions. It has been hypothesized 

that the maximum delay relates to the probability of a 

rare event – the sequential arrival of a significant vol-

ume of data – under a low server performance for the 

minimum service curve. 

The research presented above allows developing 

non-statistical estimation methods for time character-

istics of digital control systems considering the pecu-

liarities of their operation. Also, it significantly ex-

pands the application area of Network Calculus for 

estimating the parameters of control systems. 

The problem of describing closed-loop paths, 

characteristic of control systems, goes beyond the 

scope of this paper. A corresponding mathematical 

apparatus has been developed within Network Calcu-

lus; see [6, 31]. However, it has not been properly 

validated for real systems. 
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