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Abstract. This paper is devoted to an Attacker–Defender–Target (ADT) game in the 3D space. 

The Target makes flat circumferential movements with a constant velocity. The Attacker moves 

uniformly and rectilinearly from an arbitrary point in the upper hemisphere. The distinctive fea-

ture of the problem statement is that the Target has an onboard mobile Defender. The Defender is 

intended to intercept the Attacker’s possible paths dangerous to the Target (in the pointwise meet-

ing sense). This task is complicated since the Target and Defender do not see the Attacker during 

the movements. They know only the initial bearing; the current bearing and the initial and current 

distances to the Attacker remain uncertain. For this reason, the Target and Defender are assumed 

to move along a program path. 
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INTRODUCTION  

The interest in the mathematical formalization of 

interaction processes of mobile objects, such as un-

manned aerial vehicles (UAVs) or autonomous un-

derwater vehicles (AUVs), has been growing recently. 

This trend is due to several objective reasons known to 

everybody. 

One formalization is the so-called Attacker–

Defender–Target (ADT) games, also known as Mis-

sile–Target–Defender (MTD) games in the literature. 

In addition to the conventional participants of pursuit–

evasion games (Pursuer and its evading Target), they 

involve the third player (Defender). Acting in coordi-

nation, the Defender and Target form a coalition and 

play against the Attacker. The Defender’s task is to 

intercept the Attacker on its motion path or divert the 

Attacker from its intended pursuit path in cases where 

the Defender acts as a false target (Decoy).  

In these tasks, a crucial issue concerns a priori and 

current information available to players during pursuit 

and evasion. 

A flat differential game of one Pursuer against a 

coalition of a true Target and a Decoy was solved in 

[1]. In this game, the Pursuer with a circular detection 

zone of radius R minimizes the time until crossing the 

detection circle by the Decoy; initially located outside 

the detection zone, the true Target maximizes the min-

imum distance to the pursuer. 

In [2], the interception problem was solved for the 

Pursuer equipped with a detection zone; all Pursuer’s 

paths under which the Target enters the detection zone 

were considered dangerous for it. In this paper, we 

build and optimize a Decoy’s path under incomplete a 

priori information about the Pursuer’s state-space co-

ordinates. The publication [2] continues the research 

initiated in [3–5]. 

The basic idea proposed in [2], also used below, is 

to build an appropriate Decoy’s path to intercept the 

Pursuer on those paths endangering the true Target 

moving along a chosen evasion path. In this case [2], 

the path dangerous for the true Target is the only pur-

suer’s path implementing its task (meeting the true 

Target on a chosen rectilinear evasion path). 

Recent results in this field of research were pre-

sented in [6–22]. In the papers cited, all statements 

concern problems with accurate information about the 

current positions of all players. The problem consid-

ered below is related to incomplete information. The 

Target knows only two parameters about the Attacker: 

its velocity and initial bearing. Important information 

about the distance to the Attacker is not available. 
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This formulation is the simplest mathematical for-

malization of the subsequent actions in the following 

real-life situations. 

 A heavy bomber is evading attack with an air-to-

air missile. By assumption, the aircraft is equipped 

with a (passive) electro-optical sensor for information 

transfer.  

 A submarine is evading a torpedo attack.  

 A submarine is evading a mobile search system. 

Note that this research continues R. Boyell’s stud-

ies [4, 5]. However, it is not a game-theoretic analysis 

of the Target defense scenario; the main attention is 

paid to the kinematics of combat under incomplete a 

priori information. Once again, we emphasize the fol-

lowing features: the Pursuer does not maneuver, main-

taining its course, but this course and the distance to 

the Pursuer are unknown to the coalition defending the 

Target. 

1. PROBLEM STATEMENT 

Consider the game of three players in a 3D space, 

namely, Attacker (A), Defender (D), and Target (T). It 

is known that the Target moves along a circle of a 

fixed radius R  with a constant linear velocity Tv . 

At the initial time instant, the Target receives in-

formation that the attacking object A has been 

launched at the Target from a selected straight line 

(the initial bearing line). In addition, the Attacker’s 

starting point is uncertain to the Target, but the At-

tacker is known to move from the upper hemisphere 

along a pre-selected straight line with a constant ve-

locity .A Tv v  In response, at the same time instant, 

the Target releases the Defender with a programmed 

motion of a constant velocity   Dv , where 

.T D Av v v    

It is required to build a Defender’s path intercept-

ing the Attacker on all its possible paths dangerous for 

the Target (in the pointwise meeting sense). 

2. THE GEOMETRICAL DESCRIPTION OF THE PROBLEM 

Let τ  denote the parametric time of the problem. 

Assume that the Defender plans to intercept the At-

tacker at some preemptive time instant  τ .t t  For a 

fixed value of τ , Fig. 1 illustrates the geometrical de-

scription of the problem.  

The point O  indicates the center of the Target’s 

motion circle. Points A and T correspond to the posi-

tions of the Attacker and Target, respectively, at the 
  

 

 

 
Fig. 1. The geometrical description of the problem. 

 
time instants specified by the superscripts. For exam-

ple, the points 0T  and 0A  are the initial positions of 

the Target and Attacker (at the initial time instant 

τ 0 ).  In turn, the points 0π A  and π t
A  are the projec-

tions of the points 0A  and tA  on the plane 0 τOT T , 

respectively.  

The arc 0 τtT T T  (set off in blue in Fig. 1) is the 

Target’s path during the time τ . At the time instant 

τ 0 , the Target receives the following information: 

the attacking object is moving straight with a constant 

velocity from some unknown initial point 0A  in the 

upper hemisphere located on a known ray coming 

from the point 0T . The slope of the straight line 0 0A T  

is given by two angles: 0 0π γAOT   and 

0 0 0π λ.AA T   

Then, to intercept the Target at the point T   at the 

time  , the Attacker must move along the segment 
0 τA T  from the initial point 0A . In this case, the At-

tacker will travel the path of length 0 τ τAA T v  since 

the start.  

To counteract the Attacker (to prevent it from in-

tercepting the Target at the point τ )T , the Target re-

leases the Defender at the initial time instant τ 0  . 

The task of this player is to intercept the Attacker at 

the preemptive point tA  at some time instant  τ τt  . 

To describe this episode analytically, we introduce 

a cylindrical frame centered at the point O , with the 

Oz  axis directed upwards perpendicular to the plane 
0 τ ,OT T  and the angle θ  counted from the straight line 
0OT  in the direction of the Target’s motion. 
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3. SOLUTION OF THE PROBLEM 

Let us find the coordinates of the point tA  in the 

cylindrical frame. For the triangle Δ OT
0
T

τ
, the fol-

lowing relations are valid: 

0 0 τ η
η τ,   2 sin .

2

TvT OT T T L R
R

           (1) 

Then 

0 0 π η
π ζ γ.

2
AT T


     

Denoting 
0 τ νT T  , for the triangle Δ OT

0
T

 τ
 we 

have
 
 

 
2

2 2 2 τ 0cos λ 2 νcosλcosζ πAL L T     

by the cosine theorem. On the other hand, 

   
2 2

τ 0 0 0 2 2 0 0π π τ ,  where   π νsin λ.A A A AT A v A  
 

Therefore, ν  satisfies the quadratic equation 

2 2 2 2ν 2 νcosλcosζ   τ 0.AL L v     

The solution is given by 

 2 2 2 2 2ν   cosλcosζ cos λcos ζ 1 τ .AL L v     

Proposition. For A Tv v  and τ 0,    

 2 2 2 2 2
1ν   cosλcosζ cos λcos ζ 1 τ 0 .AL L v      

P r o o f.  

If the first term is below 0, the inequality will hold au-

tomatically. Hence, let the first term be nonnegative. 

Transferring the root to the right-hand side of the ine-

quality and squaring the resulting expression, we obtain the 

inequality 

 2 2 2 2 2 2 2 2cos λcos ζ cos λcos ζ 1 τ .AL L v    

Obviously, this condition is equivalent to 

2 2 2.AL v   

In view of the relations (1), the last inequality is equiva-

lent to 

2 sin τ τ.
2

T
A

v
R v

R

 
 

 
 

Considering the functions in the left- and right-hand 

sides, the inequality will be true under the corresponding 

inequality for the derivatives of these sides at τ 0 :  

,T Av v  

which is the case by the hypotheses of the proposition. ♦  

In this case, due to the similarity of the triangles 
τ 0 0Δ πAT A  and 

τΔ πt t
AT A  (setoff in yellow in Fig. 1), 

the coordinate z of the point A
t
 can be written as 

τ
π νsin λ .

τ

t t
A

t
z A


    

The next step is to find the cosine of the angle 
τ 0π ωAOT  . To this end, we apply the cosine theo-

rem for the triangles 0 0Δ πAOT  and τ 0Δ πAOT : 

 
2

0 2 2 2π ν cos λ 2 νcosλcosγ,AO R R    

 
2

0 2 2 2 2 2

2 2 2 2

π τ ν sin λ

2 τ ν sin λ cosω.

A A

A

O R v

R v

  

 

 

Equating the right-hand sides of the equalities 

yields 
2 2 2

2 2 2 2

τ 2 νcosλcosγ ν
cosω .

2   ν sin

A

A

v R

R v

 


  
 

Next, applying the cosine theorem for the triangle 

Δ t
AOT  , we derive the expression 

   

 

2 22 2 2

22 2 22 cos .

t
A A

A

O r R v t

z R v t z

     

     

 

Similarly, with the sine theorem applied to the 

same triangle,  

 
22 2

sin sin ,
Av t z

r

  
    where t

AT O   . 

Thus, in the cylindrical frame, the point A
t
 is local-

ized at 

sin ,
t

z
 

   


                         (2) 

 

 

22 2 2 2

22 22 cos ,

A

A

r R v t z

R v t z

    

    

                 (3) 

 
22 2

arcsin sin .
Av t z

r

  

  
  

           (4) 

Remark. Also, there is another location of the 

straight line 0πAO , different from that in Fig. 1 (when 

it intersects the segment 0 τT T ). With this configura-

tion of the geometrical objects, the final coordinate 

angle θ  will be expressed by the difference of angles 

(5) instead of the sum (4):  

θ η φ.                                 (5)  

This feature should be taken into account during simu-

lation. 

In addition, direct verification shows that changes 

in other values, e.g., the angle ζ , do not affect the fi-

nal result. ♦ 
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Thus, at the time instant t, the Defender must be at 

the point A
t
 with the coordinates (2)–(4). As is known 

[23], the square of absolute velocity in the cylindrical 

frame satisfies the equality 

2 2 2 2 2  ,Dv r r z                           (6) 

where the dot denotes the differentiation operator 
d

d
. 

In view of     ,r r t   , , and 

  ,z z t   , substituting the expressions (2)–(4) 

into formula (6) gives the following dynamics equa-

tion for the intercept time  τ :t  

        2,   ,   , 0.A t t B t t C t              (7) 

The coefficients of equation (7) are obtained by 

differentiating equations (2)–(4). The analytical ex-

pressions for these coefficients were obtained using 

the Maple symbolic computing package; in particular, 

   2, AA t v   . Due to the cumbersome form, the 

other coefficients are not presented here.  

Equation (7), as a quadratic one in  τ ,t  can be re-

solved with respect to the derivative: 

    

         

   

2

1

τ τ , τ

τ , τ 4 τ , τ τ , τ

2 τ , τ .

t B t

B t A t C t

A t


 

 



 

As the initial condition we choose  0 0.t   The 

reason is that, in order to intercept the Target at the 

time 0  ,  the Attacker and Target must be at the 

same point of space. In other words, the Defender’s 

position must coincide with those of the Target and 

Attacker at the same time instant, i.e., the intercept 

time is zero. 

4. NUMERICAL SIMULATION 

Let us select the following model parameters: 

3 1
1,   1,   ,   ,

4 2
A D TR v v v     

 γ ,   λ 0.05  ,  τ .0, 3.
6

5


     

The numerical simulation results under these pa-

rameter values are shown in Fig. 2. The cylinder of 

radius R, built on the Target’s evasion circle O, is set 

off in gray. The thick blue line (the arc ◡ 0 tT T T  ) 

corresponds to the Target’s path; the thick red line (the 

segment 0ˆ tA A ), to the Attacker’s path; the thick green 

line ( 0 tT A ), to the Defender’s path. The dotted line is 

the part of the path lying inside the cylinder. 

The straight line 0 0ˆT A  is the initial bearing line; 

the point 0Â  is the point from which the Attacker 

must start moving to intercept the Target at T  ; the 

point 0
A  is the projection of the point 0Â  on the plane 

of the circle O. 

Let us increase the simulation time to 5, keeping 

the same parameter values. The simulation results are 

shown in Figs. 3 and 4. 

 
 

 

 

Fig. 2. Numerical simulation results for  τ 0, 3.5 .  

 

 
 

 

 

Fig. 3. Numerical simulation results for  τ 0, 5 . 

 

  ,t  



 

 
 

 

 
 

52 CONTROL SCIENCES  No. 5 ● 2024 

CONTROL OF MOVING OBJECTS AND NAVIGATION 
 

Figures 3 and 4 have almost the same notations as 

Fig. 2; 0Â  is the initial point from which the Attacker 

must start moving to intercept the Target at the time 

instant 3.5   (i.e., it coincides with the point 0Â  in 

Fig. 2), and 0A  is the point from which the Attacker 

must start moving to intercept the Target at the point 
τT  at the time instant τ 5 . 

If we extend the simulation horizon to τ 7 , the 

Defender will continue moving along the curve tA D

after the point tA  up to some point D  and further. 

 
 

 

 

Fig. 4. Numerical simulation results for  τ 0, 5  in the projection on 

the xy plane. 

 

The case of two or more Defenders is also interest-

ing. It makes no sense within the current problem 

statement: the possible interception point can be un-

ambiguously reconstructed using the available infor-

mation about the Attacker’s motion. However, for ex-

ample, let the Attacker’s velocity be unknown but take 

finitely many values; then it is possible to build a set 

of possible interception points, which in turn can be 

distributed among the Defenders to apply the algo-

rithm to each of them. Moreover, in such a formula-

tion, it seems reasonable to distribute attacking objects 

by the degree of danger, which will be discussed later. 

The range of the Attacker’s velocity may also be 

known. In this case, it makes sense to pose an optimi-

zation problem: find the Defender’s path that ensures 

the minimum probability of Target interception. It is 

natural to expect that using more than one Defender in 

such a problem may significantly increase the surviva-

bility of the defended object.  

CONCLUSIONS 

In this paper, we have considered an evasion ma-

neuver of a Target with uniform flat circumferential 

movements from an attack by a uniformly and recti-

linearly moving attacking player from the upper hemi-

sphere of the circle. To disrupt the attack, the Target 

uses a mobile Defender with program movements; 

based on angular information about the Attacker at the 

pursuit start, the Defender builds its maneuver so as to 

intercept all the Attacker’s paths dangerous for the 

Target (in the pointwise meeting sense).  
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