УДК 519.83

О НЕКОРРЕКТНОСТИ МЕТОДА АНАЛИЗА ИЕРАРХИЙ

В.В. Подиновский, О.В. Подиновская

Рассмотрено основное положение метода анализа иерархий, заключающееся в том, что сравнение вариантов по предпочтительности относительно каждого из критериев следует производить в шкале отношений, причем эти шкалы не связаны ни между собой, ни с приоритетами критериев. Утверждается, что это положение, согласно математической теории измерений, неправомерно. Приведен простой пример, показывающий, что основанная на указанном положении техника оценивания степеней предпочтений относительно критериев и последующие расчеты приоритетов вариантов могут привести к явно ошибочным результатам.

Ключевые слова: принятие многокритериальных решений, метод анализа иерархий, шкалы отношений и интервалов, приоритеты вариантов, теория важности критериев.

ВВЕДЕНИЕ

Метод анализа иерархий — МАИ (the analytic hierarchy process — AHP) [1, 2] — один из самых известных методов решения практических многокритериальных задач самого различного характера и сложности. Он декларируется как метод количественного измерения многокритериальных предпочтений в шкале отношений [1—3]. Метод и его приложения описываются во множестве публикаций — обзорах, монографиях, научных статьях, а также работах, популяризирующих этот метод (см., например, [3—12]). Он давно реализован в ряде компьютерных систем поддержки принятия решений, из которых самая известная Expert Choice [13, 14].

Разбору и развитию МАИ посвящено много работ (см. обзоры в работах [15—17]). В научных журналах («Отеда», «Мападетен Science» и др.) проводились дискуссии с анализом его методологических достоинств и недостатков. Однако не было приведено примера, который бы наглядно показал, что из-за недостатков в теоретической базе метода он может приводить к явно неверным результатам. На необходимость построения такого примера, точнее, контрпримера, Б.Г. Миркин указал одному из авторов статьи. Цель настоящей статьи — привести один из контрпримеров, построенных авторами, и выявить конкретную причину получения неверного результата при помощи МАИ.

1. ПОСТАНОВКА ЗАДАЧИ И ЕЕ РЕШЕНИЕ МЕТОДОМ АНАЛИЗА ИЕРАРХИЙ

Рассматривается задача с двумя критериям f_1 и f_2 , имеющими общую шкалу; во множестве шкальных оценок имеются оценки:

$$e$$
 — отлично (*excellent*), g — хорошо (*good*), m — посредственно (*mediocre*).

Имеются четыре варианта x^1 , x^2 , x^3 и x^4 с векторными оценками $y = f(x) = (f_1(x), f_2(x))$:

$$y^1 = f(x^1) = (e, g);$$
 $y^2 = f(x^2) = (m, e);$
 $y^3 = f(x^3) = (g, g);$ $y^4 = f(x^4) = (e, m).$

Требуется ранжировать варианты по предпочтительности или же выбрать наилучший (оптимальный) вариант.

Рассмотрим решение задачи методом анализа иерархий. Варианты сравниваются с помощью аддитивной функции ценности следующего вида:

$$h(x) = w_1 p_1(x) + w_2 p_2(x), \tag{1}$$

где w_1 и w_2 — приоритеты критериев f_1 и f_2 (их относительные веса), $p_1(x)$ и $p_2(x)$ — приоритеты варианта x относительно критериев f_1 и f_2 соответственно. Величина h(x) называется интегральным приоритетом варианта x. Наилучшим считается вариант с наибольшим интегральным приоритетом. Ранжирование вариантов по предпочтитель-

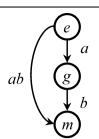


Рис. 1. Представление степеней превосходства в предпочтительности согласно методу анализа иерархий

ности осуществляется согласно их интегральным приоритетам.

Приоритеты критериев w_1 и w_2 и приоритеты вариантов p_1 и p_2 для функции (1) оцениваются методом количественных парных сравнений, использующим понятие собственного вектора матрицы оценок степеней превосходства в важности или предпочтении [1—3, 12].

Предположим, что оба критерия имеют одинаковую важность, т. е. матрица результатов парных сравнений критериев по важности имеет вид:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

правый собственный нормированный вектор которой, соответствующий ее максимальному собственному числу 2, есть вектор приоритетов критериев w = (1/2, 1/2). Этот вектор, конечно, легко получить и непосредственно из информации о равноважности критериев.

Пусть, в соответствии с допущением МАИ об измерении предпочтений в шкале отношений, a — степень превосходства в предпочтительности шкальной оценки e над оценкой g и b — степень превосходства в предпочтительности шкальной оценки g над оценкой m. Разумеется, a > 1 и b > 1. Степень превосходства оценки e над оценкой m равна $a \cdot b$. Схематически это представлено на рис. 1.

Тогда согласованные матрицы парных сравнений вариантов по предпочтительности относительно первого и второго критериев должны выглядеть (в табличном представлении) так, как показано в таблице.

Для этих матриц получаем следующие векторы приоритетов как их правые собственные нормированные векторы, соответствующие их максимальному собственному числу 4 (векторы приоритетов легко вычислить и непосредственно с учетом заданных степеней превосходства):

$$(p_1(x^1), p_1(x^2), p_1(x^3), p_1(x^4)) = \left(\frac{ab}{2ab+b+1}, \frac{1}{2ab+b+1}, \frac{b}{2ab+b+1}, \frac{ab}{2ab+b+1}\right);$$

$$(p_2(x^1), p_2(x^2), p_2(x^3), p_2(x^4)) = \left(\frac{b}{ab + 2b + 1}, \frac{ab}{ab + 2b + 1}, \frac{b}{ab + 2b + 1}, \frac{1}{ab + 2b + 1}\right).$$

Выясним, как могут соотноситься по предпочтительности варианты x^2 и x^4 , для чего найдем разность их интегральных приоритетов:

$$h(x^{2}) - h(x^{4}) = \frac{1}{2} \left(\frac{1}{2ab+b+1} + \frac{ab}{ab+2b+1} \right) - \frac{1}{2} \left(\frac{ab}{2ab+b+1} + \frac{1}{ab+2b+1} \right) = \frac{b(a-1)(ab-1)}{2(2ab+b+1)(ab+2b+1)}.$$

Поскольку эта разность при любых a, b > 1 положительна, то, согласно МАИ, вариант x^2 предпочтительнее варианта x^4 .

Вариант x^2 будет считаться более предпочтительным, чем вариант x^1 , если окажется, что $h(x^2) > h(x^1)$, т. е. если будет выполняться неравенство

$$\frac{1}{2}\left(\frac{1}{2ab+b+1}+\frac{ab}{ab+2b+1}\right) >$$

$$> \frac{1}{2}\left(\frac{ab}{2ab+b+1}+\frac{1}{ab+2b+1}\right)$$

или

$$ab(1 + ab) + b + 1 > b^{2}(3a + 1).$$

Для того чтобы величины a, b и ab лежали на рекомендуемой в МАИ шкале оценок степеней превосходства $\{1, ..., 9\}$, можно взять одну из следующих трех комбинаций значений параметров a

Матрицы парных сравнений вариантов по критериям

f_1	x^1	x^2	x^3	x^4
x^1	1	ab	a	1
x^2	1/ab	1	1/ <i>b</i>	1/ <i>ab</i>
x^3	1/ <i>a</i>	b	1	1/a
x^4	1	ab	a	1
f_1 x^1 x^2 x^3 x^4 f_2 x^1 x^2 x^3 x^4	x^1	x^2	x^3	x^4
x^1	1	1/ <i>a</i>	1	b
x^2	а	1	a	ab
x^3	1	1/ <i>a</i>	1	b
x^4	1/b	1/ <i>ab</i>	1/b	1

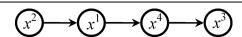


Рис. 2. Упорядочение вариантов по предпочтительности согласно методу анализа иерархий

и b: a = 3, b = 2; a = 3, b = 3; a = 4, b = 2. Так, для a = 3, b = 3 имеем:

$$(p_1(x^1), p_1(x^2), p_1(x^3), p_1(x^4)) = \left(\frac{9}{22}, \frac{1}{22}, \frac{3}{22}, \frac{9}{22}\right);$$

$$(p_2(x^1), p_2(x^2), p_2(x^3), p_2(x^4)) = \left(\frac{3}{16}, \frac{9}{16}, \frac{3}{16}, \frac{1}{16}\right);$$

$$h(x^1) = \frac{210}{2 \cdot 16 \cdot 22} \cong 0,298;$$

$$h(x^2) = \frac{214}{2 \cdot 16 \cdot 22} \cong 0,304;$$

$$h(x^3) = \frac{114}{2 \cdot 16 \cdot 22} \cong 0,162;$$

$$h(x^4) = \frac{166}{2 \cdot 16 \cdot 22} \cong 0,236.$$

Таким образом, при a = b = 3 (а также при a = 3, b = 2 или a = 4, b = 2) оптимальным оказывается вариант x^2 , а ранжировка (упорядочение по предпочтительности) всех вариантов схематически представлена на рис. 2.

2. АНАЛИЗ ПОЛУЧЕННОГО РЕШЕНИЯ ЗАДАЧИ

Если внимательно посмотреть на сравниваемые варианты и учесть симметрию предпочтений (равную важность критериев, имеющих общую шкалу), то станет интуитивно совершенно ясно, что вариант x^2 с векторной оценкой (m, e) не может считаться более предпочтительным, чем вариант x^4 , имеющий векторную оценку (e, m): они должны полагаться одинаковыми по предпочтительности (безразличными).

Далее, вариант x^2 не может рассматриваться как наилучший (при любых a > 1 и b > 1): он должен считаться менее предпочтительным, чем вариант x^1 . Действительно, в силу той же симметрии предпочтений вариант x^1 с векторной оценкой (e, g) должен считаться безразличным с некоторым гипотетическим вариантом x^5 , имеющим векторную оценку (g, e). А последний явно лучше варианта x^2 с векторной оценкой (m, e), так как оценки e по второму критерию у них одинаковы, а по первому критерию оценка g у варианта x^1 выше оценки m у варианта x^2 . Считая (как и в МАИ), что предпоч-

тения транзитивны, следует признать, что вариант x^1 предпочтительнее варианта x^2 .

Для теоретического обоснования этих утверждений можно привлечь теорию важности критериев [18—23], предлагающую интуитивно понятное строгое определение понятия равной важности критериев. Согласно этой теории критерии f_1 и f_2 (с общей порядковой шкалой!) называются равноважными, если одинаковы по предпочтительности векторная оценка y и полученная из нее перестановкой компонент векторная оценка \tilde{y} , т. е. $yI^{1\approx 2}z$ при $z=\tilde{y}$. В рассматриваемой задаче варианты x^2 и x^4 одинаковы по предпочтительности, поскольку $(m,e)I^{1\approx 2}(e,m)$. Вариант x^1 предпочтительнее, чем x^4 , поскольку $(e,g)P^0(e,m)$, где P^0 — отношение Парето (отношение покомпонентного доминирования). Верны соотношения

$$(e, g)I^{1\approx 2}(g, e)$$
 и $(g, e)P^{0}(m, e)$,

и поэтому вариант x^1 с векторной оценкой (e, g) предпочтительнее варианта x^2 с векторной оценкой (m, e).

Далее, поскольку $(e, g)P^0(g, g)$, то вариант x^1 предпочтительнее, чем x^3 . А вот вариант x^2 (как и x^4) несравним с вариантом x^3 . Чтобы выяснить, какой из них предпочтительнее, следует привлечь информацию о характере возрастания предпочтений вдоль шкалы критериев [23—25].

Частичная упорядоченность всех вариантов, полученная методами теории важности критериев, представлена на рис. 3. Полученная ранее ранжировка (см. рис. 2) противоречит этой упорядоченности.

3. АНАЛИЗ ПРИЧИН ПОЛУЧЕНИЯ МЕТОДОМ АНАЛИЗА ИЕРАРХИЙ НЕВЕРНОГО РЕШЕНИЯ

Отметим следующие особенности исходных данных в рассмотренной задаче.

• Матрицы парных сравнений согласованы, так что возможное влияние несогласованности исключено. Более того, приоритеты критериев и приоритеты вариантов относительно критериев можно рассчитать и без обращения к методу количественных парных сравнений.

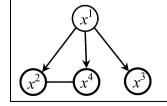


Рис. 3. Частичная упорядоченность вариантов по двум равноважным критериям с порядковой шкалой

10

- Результат получен для наборов значений числовых параметров, характеризующих степени превосходства в предпочтительности одних шкальных оценок над другими, что позволило снять вопрос о влиянии обоснованности назначения словесным градациям числовых оценок.
- Задача имеет простую, одноуровневую критериальную структуру, так что влияния иерархичности не возникает.
- Оба критерия имеют общую шкалу; это позволило при анализе задачи не поднимать вопрос о согласовании шкал критериев.
- Размах значений обоих критериев на множестве вариантов одинаков от *m* до *e*; это позволило не ставить вопрос об увязке весов (приоритетов) критериев с размахами значений критериев [26].
- Критерии имеют одинаковую важность, так что влияние ошибок в определении значений степеней превосходства в важности исключено.

В чем же причина столь резкого отличия полученного с помощью МАИ результата от очевидно ожидаемого? Она заключается в том, что шкалы приоритетов вариантов по отдельным критериям (нижнего уровня) в МАИ полагаются шкалами отношений, и притом не связанными друг с другом и с приоритетами (весами) критериев. Исходя из этого допущения, принимается как соответствующая форма представления информации о сравнении предпочтений при переходе от одной шкальной оценки к другой, так и соответствующее правило нормировки приоритетов.

Поясним сказанное. Вначале заметим, что для представления предпочтений используется (ординальная) функция ценности v (ordinal value function): полагается, что $v(y') \ge v(y'')$ верно тогда и только тогда, когда вариант x' с векторной оценкой y' не менее предпочтителен, чем вариант x'' с векторной оценкой y''. Рассмотрим сначала общий случай, когда каждый из критериев имеет «свою» шкалу и «свое» множество шкальных оценок. Наиболее простой и самой распространенной является аддитивная функция ценности

$$v(y) = \sum_{i=1}^{n} v_i(y_i),$$
 (2)

где $v_i(y_i)$ — частные функции ценности (отдельных критериев), n — число критериев. Необходимое условие существования аддитивной функции ценности заключается во взаимонезависимости критериев по предпочтению. Если же множества шкальных оценок (области значений критериев) представляют собой числовые промежутки, а предпочтения обладают «достаточно хорошими»

свойствами, то при числе критериев $n \ge 3$ условие взаимонезависимости по предпочтению является и достаточным (при n=2 требуется выполнение условия соответственных замещений) [27]. Более того, если v'- другая аддитивная функция ценности, также представляющая предпочтения, то существуют числа c > 0 и d_1 , ..., d_n такие, что [28]:

$$v'_i = cv_i + d_i, \quad i = 1, ..., n.$$
 (3)

Таким образом, при существовании аддитивной функции ценности шкалы отдельных критериев должны быть совместными интервальными шкалами (conjoint interval scales), и их нельзя считать независимыми друг от друга: коэффициент c для всех критериев един! Поэтому, если производить нормировку значений каждой частной функции ценности v_i по отдельности (вводя «свои» начало отсчета и единицу измерения), то необходимо ввести и шкальные множители (scale factors), или коэффициенты масштабирования $\lambda_i > 0$ [28], т. е. перейти от функции ценности вида (2) к функции вида

$$v(y) = \sum_{i=1}^{n} \lambda_i v_i(y_i). \tag{4}$$

Следовательно, нормирование приоритетов вариантов по каждому из критериев по отдельности должно быть неразрывно связано с коэффициентами λ_i в функции (4). С другой стороны, при использовании аддитивной функции ценности вида (2) или (4) допустимо сравнивать не степени превосходства в предпочтительности одних шкальных оценок над другими по каждому из критериев, а приращения предпочтений при переходе от одной шкальной оценки к другой для пар таких оценок [29].

Пусть теперь все критерии однородны — имеют одну и ту же (общую) область значений, или, иначе, все множества шкальных оценок идентичны. В этом случае аддитивная функция ценности приобретает вид:

$$v(y) = \sum_{i=1}^{n} \lambda_i v_0(y_i), \tag{5}$$

где v_0 — (одномерная) функция ценности, измеряющая предпочтения на множестве шкальных оценок в шкале интервалов [28]. Если для анализа многокритериальной задачи применяются подходы и методы количественной теории важности [30, 31], основанной на точном определении понятия «один из критериев в h раз важнее другого» (это базовое определение сформулировано для критериев с по-

рядковой шкалой), то множители λ_i в формуле (5) оказываются коэффициентами важности и обозначаются α_i . Отметим, что количественная важность критериев должна измеряться в шкале отношений.

В нашей задаче с двумя равноважными (в смысле приведенного ранее определения) критериями функция (5) переписывается так: $v(y) = \alpha_1 v_0(y_1) + \alpha_2 v_0(y_2)$, причем $\alpha_1 = \alpha_2 = 1/2$. Здесь следовало бы получить количественную оценку

$$s = \frac{v_0(e) - v_0(g)}{v_0(g) - v_0(m)}.$$

Понятно, что s > 0. Положив без ограничения общности $v_0(m) = 0$ и $v_0(e) = 1$ (это и есть допустимая нормализация, так как у критериев общая шкала интервалов), получим $v_0(g) = 1/(s+1)$.

Значения ценности вариантов:

$$v(f(x^{1})) = \frac{s+2}{2(s+1)}; \quad v(f(x^{2})) = \frac{1}{2};$$
$$v(f(x^{3})) = \frac{1}{s+1}; \quad v(f(x^{4})) = \frac{1}{2}.$$

Поэтому при любом s > 0 верно:

$$v(f(x^1)) > v(f(x^2)) = v(f(x^4)); \quad v(f(x^1)) > v(f(x^3)).$$

Соотношения по предпочтительности между вариантами x^2 (или x^4) и x^3 определяются знаком разности s-1, поскольку

$$v(f(x^2)) - v(f(x^3)) = \frac{s-1}{2(s+1)}$$
.

Ранее шла речь об ординальной аддитивной функции ценности. У измеримой функции ценности (measurable value function) v, значения которой отражают упорядоченность вариантов по предпочтительности, а разности значений — приращения предпочтений при переходе от одного варианта к другому, при определенных условиях также существует аддитивная форма (2); причем для другой функции ценности v', обладающей такими же свойствами, существуют числа c > 0 и $d_1, ..., d_n$ такие, что выполнены соотношения (3), т. е. шкалы критериев также взаимосвязаны [32].

Однако в МАИ делается существенно более сильное допущение о том, что аддитивная функция ценности (1) является кардинальной (cardinal value function), т. е. измеряющей предпочтения в шкале отношений. Это допущение принято в методе по ряду причин. Одна из них состоит в том, что ресурсы между вариантами предлагается распределять пропорционально их интегральным

приоритетам. Другая заключается в том, что при построении двух иерархий, одна из которых отражает «эффективность», а другая — «издержки», сравнивать варианты по предпочтительности рекомендуется путем сопоставления соответствующих им значений «удельной эффективности» — отношений интегральных приоритетов по «эффективности» к приоритетам по «издержкам». Теория кардинальных аддитивных функций ценности, насколько известно авторам, не создана. Ясно, однако, что и для них функции ценности отдельных критериев не могут быть несвязанными между собой и с приоритетами критериев. Это подтверждает приведенный нами контрпример.

Отметим, что критические замечания о применении в МАИ шкал отношений для измерения предпочтительности вариантов относительно критериев высказывались в работах [15, 33].

ЗАКЛЮЧЕНИЕ

В теоретических основаниях метода анализа иерархий — одного из самых распространенных методов решения многокритериальных задач выбора и ранжирования — имеется целый ряд недостатков, пробелов и ошибочных допущений. Одно из них состоит в том, что шкалы, в которых осуществляется оценивание (измерение) степеней предпочтений вариантов по каждому из критериев, полагаются шкалами отношений, и притом не связанными друг с другом и с приоритетами критериев. Это допущение в свете математической теории измерений неправомерно.

В статье представлен простой контрпример, который доказывает, что техника оценивания и последующих расчетов приоритетов, основанная на указанном допущении, может привести к явно ошибочным результатам. Следует иметь в виду, что эта же техника инкорпорирована и в обобщение метода анализа иерархий — метод анализа сетей [34].

Выполненный анализ позволяет сделать следующий вывод: метод анализа иерархий, предполагающий для проведения анализа многокритериальных задач принятия решений с использованием аддитивной функции ценности оценивание предпочтений в шкале отношений, несостоятелен.

Таким образом, имеется явная необходимость разработки на базе теории важности критериев корректных и эффективных методов анализа многокритериальных задач с иерархической критериальной структурой и реализации этих методов в компьютерных системах поддержки принятия решений. На актуальность этой проблемы ранее было указано в работе [35].

Авторы признательны Φ .Т. Алескерову и Б.Г. Миркину за полезное обсуждение работы.

ЛИТЕРАТУРА

- Saaty T.L. The analytic hierarchy process. N.-Y.: McGraw Hill, 1980. — 288 p.
- Саати Т. Принятие решений. Метод анализа иерархий / Пер. с англ. — М.: Радио и связь, 1993. — 320 с.
- 3. *Saaty R.W.* The analytic hierarchy process: what is it and how it is used // Mathematical modeling. 1987. Vol. 9. P. 161—176.
- Zahedi F. The analytic hierarchy process a survey of the method and its applications // Interfaces. — 1986. — Vol. 16. — P. 96—108.
- Saaty T.L. How to make a decision: the analytic hierarchy process // European journal of operational research. 1990. Vol. 48. P. 9—26.
- Takeda E. The analytic hierarchy process: an overview // Systems, control and information. 1990. Vol. 34. P. 669—675.
- Saaty T. Decision making with the analytic hierarchy process // International journal of services sciences. — 2008. — Vol 1. — P. 83—98.
- Forman T.Y., Gass S.I. The analytic hierarchy process an exposition // Operations research. 2001. Vol. 21. P. 469—486.
- Saaty T.L. The seven pillars of the analytic hierarchy process / In: Multiple criteria decision making in the new millennium. — Berlin: Springer, 2001. — P. 1—15.
- Bodin L., Gass S.I. On teaching the analytic hierarchy process // Computer and operations research. — 2003. — Vol. 30. — P. 1487—1497.
- Vaidia J.S., Kumar S. Analytic hierarchy process: an overview of applications // European journal of operational research. — 2006. — Vol. 168. — P. 1—29.
- 12. Saaty T.L. Decision-making with the AHP: why is the principal eigenvector necessary // European journal of operational research. 2003. Vol. 145. P. 85—91.
- Buede D.M. Software review: three packages for AHP: Criterium, Expert choice, and HIPRE 3+ // Journal of multi-criteria decision analysis. 1992. Vol. 1. P. 119—121.
- Ossadnik W., Lange O. AHP-based evaluation of AHP-software // European journal of operational research. — 1999. — Vol. 118. — P. 578—588.
- Belton V., Stewart T.J. Multiple criteria decision analysis. An integrated approach. — Boston: Cluwer, 2003. — 374 p.
- Ishizaka A., Labib A. Analytic hierarchy process and Expert Choice: benefits and limitation // ORinsight. — 2009. — Vol. 24. — P. 201—220.
- 17. *Подиновская О.В.* Метод анализа иерархий как метод поддержки принятия многокритериальных решений // Информационные технологии моделирования и управления. 2010. № 1 (60). С. 71—80.
- 18. Подиновский В.В. Многокритериальные задачи с однородными равноценными критериями // Журнал вычислительной математики и математической физики. 1975. № 2. С. 330—344.
- 19. *Подиновский В.В.* Многокритериальные задачи с упорядоченными по важности однородными критериями // Автоматика и телемеханика. 1976. № 11. С. 118—127.

- 20. *Подиновский В.В.* Коэффициенты важности критериев в задачах принятия решений. Порядковые, или ординальные, коэффициенты важности // Автоматика и телемеханика. 1978. № 10. С. 130—141.
- 21. *Подиновский В.В.* Аксиоматическое решение проблемы оценки важности критериев в многокритериальных задачах принятия решений // Современное состояние теории исследования операций / Под ред. Н.Н. Моисеева. М., 1979. С. 117—145.
- 22. Подиновский В.В. Многокритериальные задачи оптимизации с упорядоченными по важности критериями // Методы оптимизации в экономико-математическом моделировании / Под ред. Е.Г. Гольштейна. М., 1991. С. 308—324.
- Подиновский В.В. Введение в теорию важности критериев в многокритериальных задачах принятия решений. М.: Физматлит, 2007. 64 с.
- 24. Podinovski V.V. On the use of importance information in MCDA problems with criteria measured on the first ordered metric scale // Journal of Multi-Criteria Decision Analysis. 2009. Vol. 15. P. 163—174.
- 25. *Подиновский В.В.* Количественная важность критериев с дискретной шкалой первой порядковой метрики // Автоматика и телемеханика. 2004. № 8. С. 196—203.
- Edwards W., Barron F.H. SMARTS and SMARTER: improved simple methods for multiattribute utility measurement // Organization Behavior and Human Processes. — 1994. — Vol. 60. — P. 306—325.
- Кини Р.Л., Райфа X. Принятие решений при многих критериях: предпочтения и замещения / Пер. с англ. М.: Радио и связь, 1981. 560 с.
- Foundation of measurement / D.H. Krantz, R.D. Luce, P. Suppes, A. Tverski. Vol. 1. Academic Press, 1971. 578 p.
- 29. Fishburn P.C. Decision and value theory. N.-Y.: Wiley, 1964.-452 p.
- Подиновский В.В. Количественная важность критериев // Автоматика и телемеханика. — 2000. — № 5 — С. 110—123.
- 31. *Podinovski V.V.* The quantitative importance of criteria for MCDA // Journal of Multi-Criteria Decision Analysis. 2002. Vol. 11. P. 1—15.
- 32. *Dyer J.M., Sarin R.K.* Measurable multiattribute value function // Operations research. 1979. Vol. 4. P. 810—822.
- 33. *Dyer J.M.* Remarks on the analytic hierarchy process // Management science. 1990. Vol. 36. P. 249—258.
- Саати Т.Л. Принятие решений при зависимостях и обратных связях: Аналитические сети / Пер. с англ. М.: Издательство ЛКИ, 2008. 360 с.
- 35. *Подиновский В.В.* Основные направления развития теории важности критериев в многокритериальных задачах принятия решений // Современные проблемы информатизации в экономике и обеспечении безопасности. 2009. Вып. 14. С. 72—74.

Статья представлена к публикации членом редколлегии Ф.Т. Алескеровым.

Подиновский Владислав Владимирович — д-р техн. наук, Государственный университет — Высшая школа экономики,

(495) 621-14-32,

podinovski@mail.ru,

13