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Abstract. When interacting, active agents can behave independently, cooperate, or be connect-

ed by hierarchical relations. In turn, hierarchical impact may be exerted by administrative or 

economic methods with or without feedback. We systematically describe these organizational 

modes and control methods based on game-theoretic models with different information struc-

tures without considering uncertainty. It seems crucial to compare quantitatively the payoffs of 

individual agents and the whole set of them (social welfare) under these organizational modes 

and control methods. We propose a methodology for building the systems of social and private 

preferences in normal-form games and shares in the allocation of cooperative payoff. A system 

of relative efficiency indices is developed for detailed quantitative assessment. The proposed 

methodology is illustrated by several Cournot oligopoly models. 
 

Keywords: inefficiency of equilibria, methods of control and resource allocation, organizational modes 

for active agents. 
 

 

 

INTRODUCTION 

At first glance, it seems obvious that cooperation is 

better than confrontation. Combining the efforts of 

active agents produces better results than their inde-

pendent selfish behavior, much less hostility, and the 

additional coalition payoff can be allocated among all 

agents. 

Unfortunately, the things are not so simple. For the 

society, the cooperative payoff is always at least not 

smaller than under the independent behavior of the 

active agents composing the society or hierarchical 

relations between them. But this is not true for each 

agent. For example, the payoff of an upper-level agent 

in the hierarchy can exceed its share in the uniform 

allocation under cooperation, even considering the 

additional effect. Also, it is not so easy to negotiate a 

division of the additional payoff, even if there is an 

agreement to cooperate in principle, and ensure the 

agreement’s stability. Perhaps due to these considera-

tions, there are many examples of abandoning cooper-

ation in favor of conflict and competition for leader-

ship in economics, public life, international relations, 

and other areas. 

Therefore, a topical problem is to analyze in math-

ematical terms the conditions of profitable cooperation 

and compare the efficiency of different organizational 

modes of active agents, control methods, and alloca-

tion of the cooperative payoff. The fundamental foun-

dations of such mathematical analysis are provided by 

the theory of active systems and control in organiza-

tions [1, 2], the information theory of hierarchical sys-

tems [3–7], and the theory of incentives and mecha-

nism design [8]. The concept of sustainable manage-

ment of active systems based on considering and co-

ordinating the interests of active agents was proposed 

in [9, 10]. Game theory [11–15] is the main mathemat-

ical tool of the analysis. Complex dynamic problems 

of conflict control are solved using simulation model-

ing [16]. 

The problem of inefficiency of equilibria was ana-

lyzed in detail in [17–20]. The outcome of the rational 

behavior of independent selfish economic agents is 

usually worse for the society than that of centralized 

management or voluntary cooperation. An important 

question arises: how much worse is it? The price of 

anarchy is a common measure of the inefficiency of 

equilibria, defined as the ratio of the social payoff 
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function value in the worst-case equilibrium to its val-

ue in the optimal outcome [21]. A wider set of indica-

tors for dynamic games was proposed in [22].  The 

payoffs under different organizational modes of agents 

were compared in many papers on a game theory; for 

example, see [23–25]. 

However, the (in)efficiency of equilibria should be 

given a more general problem statement. First of all, 

the payoffs are to be compared in the basic organiza-

tional modes of active economic agents (equality, hi-

erarchy, and cooperation) under different control 

methods specifying the rules of their interaction. In 

addition, and more importantly, the comparison should 

be made in terms of social welfare and the interests of 

individual agents. As mentioned, a game outcome 

beneficial for the society under some organizational 

mode may not be such for each agent. 

Equality, hierarchy, and cooperation are the basic 

organizational models of interaction between active 

agents. Under equality, the agents (players) choose 

their actions simultaneously and independently, and 

Nash equilibrium is the solution of the arising normal-

form game. In a hierarchical organization, two main 

control modes are possible. In the first one, the Leader 

chooses an intended action and informs one or several 

players of his choice; then the other players optimally 

respond to this action. As a result, the Germeier game 

Γ1 arises, and Stackelberg equilibrium is considered its 

solution. (In English-language literature, it is also 

known as the Stackelberg game.) In the second control 

mode, the Leader chooses his strategy as a function of 

the expected actions of the Followers and informs 

them of his choice; then the Followers optimally re-

spond to this strategy. As a result, the Germeier game 

Γ2 arises, also called the inverse Stackelberg game in 

English-language literature. Its solution is calculated 

using Germeier’s principle of guaranteed result [4]. It 

is also reasonable to distinguish between administra-

tive (compulsion) and economic (impulsion) control 

methods. Compulsion is affecting the sets of admissi-

ble strategies of agents, whereas impulsion is affecting 

the payoff functions of agents [9, 10]. Another formal-

ization of hierarchical relations is the extensive form 

games where the players act sequentially. Such games 

are not considered below. Finally, in cooperation, all 

players join together and maximize the total payoff 

function over all control variables. This interpretation 

corresponds to the utilitarian approach, as opposed to 

the egalitarian approach when the agents maximize the 

smallest payoff [26]. As a result, the original game is 

reduced to an optimization problem, in which the co-

operative solution is Pareto-optimal. In this sense, the 

dynamic statements of conflict control problems (dif-

ferential or difference games) do not fundamentally 

differ from the static ones [11–15]. 

Besides the payoff functions, which characterize 

the efficiency of agents’ actions, game-theoretic mod-

els may contain additional constraints: coordination 

conditions [7] or sustainable development conditions 

[9, 10]. These conditions mean that the state of the 

controlled dynamic system should belong to some 

domain in the state space. In static models, these con-

ditions are formulated as control constraints. 

The contributions of this paper are as follows: 

 We systematically describe the interaction modes 

of active agents and their control methods using 

game-theoretic models without uncertainty. 

 We propose a comparative analysis methodology 

for the social and private efficiency of the control 

methods based on the agents’ payoffs in normal-

form games and their shares in the allocation of 

cooperative payoff in characteristic function 

games. 

 We develop a system of relative efficiency indi-

ces for detailed quantitative assessment.  

 We illustrate the proposed methodology by static 

and dynamic Cournot oligopoly models. 

Section 1 describes a game-theoretic formalization 

of organizational modes for the interaction of active 

agents and their control methods. Comparing the 

agents’ payoffs, we build the systems of social and 

private preferences. Note that comparative efficiency 

indices can be used for detailed quantitative character-

ization. Section 2 considers the comparative efficiency 

methodology based on game-theoretical models of 

conflict control. In Section 3, this methodology is il-

lustrated by several Cournot oligopoly models. The 

results of this paper and further research are discussed 

in the Conclusions. 

1. ORGANIZATIONAL MODES, CONTROL METHODS, AND 

SYSTEMS OF PREFERENCES 

1.1. Organizational Modes and Control Methods 

As noted, equality, hierarchy, and cooperation are 

the main organizational models of interaction between 

active agents. In a hierarchical organization, two main 

control methods are possible: compulsion (administra-

tive mechanisms) and impulsion (economic mecha-

nisms). These control mechanisms can be implement-

ed with or without feedback. 

Two questions arise during cooperation. First, how 

should the payoff of each coalition be defined? (How 

should the characteristic function be constructed?) Se-
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cond, how should the total payoff be allocated among 

the players? (Which optimality principle should be 

chosen?) It is also natural to treat payoff allocation as 

a control problem.  

Section 1 describes the interaction modes and con-

trol methods within static game-theoretic models. 

The interaction of equal agents is modeled by a 

normal-form game of n players: 

1( ) max,i n i iu x ,...,x x X ,i N   .        (1.1) 

Here {1 }N ,..., n  denotes the set of players (ac-

tive agents); 
iX  is the set of admissible actions of 

player i; 
ix  is a particular action chosen by player i; 

finally, iu : X R  is the payoff function of player i. 

Players from the set N  simultaneously and inde-

pendently choose their actions ix , resulting in a game 

outcome 1 1( ,..., )n nx x x X X ... X     . Players can 

be of different nature. In economics, they are individ-
ual entrepreneurs, households, firms, regions, or coun-

tries. In politics, they are individual voters, political 
parties, movements and associations, and executive 

and legislative bodies. In organizational management, 
they are individual employees, departments and struc-

tural units, and entire organizations. What is im-
portant, the interests of each player are completely 

described by maximization of the payoff iu  (the postu-

late of economic rationality). 

The solution of the game (1.1) is the set of Nash 

equilibria: 
NE

NE NE

NE {

( ) ( )},i i i i i i

x X : i N

x X u x u x ,x

   

  
  

1 1 1( )i i i nx x ,...,x ,x ,...,x   .               (1.2) 

In cooperation, players unite to maximize the total 

payoff (the utilitarian social welfare function) [26]  

( ) ( )i

i N

u x u x


 .                        (1.3) 

The cooperative solution is given by 

( ) max ( )C C C

x X
x X :u u x u x


   .       (1.4) 

Under hierarchical control, a dedicated player with 
subscript 0 (the Principal in the theory of active sys-

tems) is added to the set N . In the case of no feed-

back, the Principal chooses its action 0 0x X  and in-

forms the other players of it. Knowing the action 0x , 

the players choose their optimal responses. Anticipat-
ing this behavior, the Principal chooses the action 

0 0x X  to maximize its payoff on the set of optimal 

responses. Two cases are possible here. 

 If the Principal expects the benevolence of the 

other agents, its payoff is given by 

0 0 0

0 0 0
( )

sup sup ( , )B

x X x R x

u u x x
 

 ,              (1.5) 

where 
0( )R x  denotes the set of agents’ optimal re-

sponses to the Principal’s action 
0x . How is this set 

determined for interconnected agents? The question 

has no obvious answer. According to a standard as-

sumption, 0 0( ) NE( )R x x  provided that 

0 0NE( )x x  ; otherwise, the set 
0( )R x  should be 

defined separately for a particular model. The well-

known monograph [13] gave the following definition 

of Stackelberg equilibrium for finite three-player 

games. (It can be easily generalized to the case 3n  .) 

Consider a three-player game with one Leader (the 
first player) and two Followers (the second and third 

players). For player 1, 2, 3,i   we introduce the fol-

lowing notations: ix  and iX  are the strategy and the 

set of all admissible strategies of player i, respectively; 

1 2 3( , )iJ x , x x  is the payoff of player i in the outcome

1 2 3( , , ).x x x  Then 1

*x  is a hierarchical equilibrium 

strategy of the Leader if 

2 3 11 12 3 1

1 1 2 3 1 1 2 3
( ) ( )( ) ( )

min ( , , ) max min ( ),
*

*

x ,x R xx Xx ,x R x
J x x x J x , x , x


  

where 1( )R x  is the set of optimal responses of the Fol-

lowers. For each strategy 1 1x X  of the Leader, this 

set is given by 

1 2 3 2 3 2 1 2 3

2 1 2 3 3 1 2 3 3 1 2 3

2 2 3 3

( ) {( , ) : ( , , )

( , , ) ( , ) ( , , ),

, }.

R x y y X X J x y y

J x x x J x , y y J x x x

x X x X

   

 

  

 

Any triplet 1 2 3 2 3 1( , ), ( , ) ( )* * * * * *x x , x x x R x , is a 

Stackelberg equilibrium [13, pp. 145 and 146]. 

 Otherwise (under the conscious or involuntary 

malevolence of the agents), the Principal’s payoff 

is given by 

0
0 0

NB

0 0 0
( )

sup inf ( , )
x R xx X

u u x x


 .              (1.6) 

Let ST  denote the set of all Stackelberg equilibria 

(solutions of the hierarchical game between the Prin-

cipal and the agents).  

Remark 1.  Many researchers suppose that 

Stackelberg equilibrium is defined by formula (1.5) 

only, referring formula (1.6) to Germeier’s principle of 

guaranteed result. This is not true: in the widely 

known monograph [13], Stackelberg equilibrium was 

defined by formula (1.6). 

Remark 2. In many applied models, there exists a 

unique optimal response of agents (e.g., a Nash equi-

librium). In this case, the problem of agent’s benevo-

lence or malevolence does not arise. 

In hierarchical control with feedback, the Principal 

chooses its strategy 0 0 0

Xx X X  , i.e., 0x : X X , 

and informs the other players of it. Then the game has 

an information structure similar to the previous case 
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with a natural modification. Knowing the strategy 
0x , 

the players choose the optimal response. Anticipating 

this behavior, the Principal chooses the strategy 

0 0x X  to maximize its payoff on the set of optimal 

responses. If the Principal expects the benevolence of 

the agents, its payoff is given by 

00 0

0 0 0
( )

sup sup ( ( ), )B

x R xx X

u u x x x


 .             (1.7) 

Otherwise (under the conscious or involuntary ma-

levolence of the agents), the Principal’s payoff is giv-

en by 

0
0 0

NB

0 0 0
( )

sup inf ( ( ), )
x R xx X

u u x x x


 .             (1.8) 

Let IST  denote the set of solutions of the hierar-

chical game between the Principal and the agents un-

der control with feedback. 

Hierarchical control involves administrative meth-

ods (compulsion) or economic methods (impulsion) 

[9, 10]. We formalize these concepts in the case of 

control without feedback for unfavorable agents. The 

hierarchical game has the form 

0( , , ) max, ,u p q x p P q Q   ;         (1.9) 

( , ) max, ( ),i i i i iu p x x X q i N   .       (1.10) 

Here 1( )np p ,..., p  is the vector of the Principal’s 

economic controls applied to the agents’ payoff func-

tions; 1( )nq q ,...,q  is the vector of the Principal’s 

administrative controls applied to the sets of agents’ 

admissible actions. 

The set of compulsion equilibria in the game (1.9), 

(1.10) is the set of outcomes
COMP COMP COMP COMP COMP

0 0 0 0COMP {( , ): ( , ) = },x x u x x u  

where 
COMP

0 0
( )

sup inf ( , )
x R qq Q

u u q x


                (1.11) 

with a fixed value p . 

The set of impulsion equilibria in the game (1.9), 

(1.10) is the set of outcomes 
IMP IMP IMP IMP IMP

0 0 0 0IMP {( , ): ( , ) }x x u x x u  , where 

IMP

0 0
( )

sup inf ( , )
x R pp P

u u p x


                  (1.12) 

with a fixed value q . The case of control with feed-

back is formalized by analogy. 

Remark 3. Other information structures are 

known, e.g., the Germeier game Γ3 [7]. Therefore, the 

proposed classification does not claim to be exhaus-

tive: it covers the main organizational modes of active 

agents. 

Games in characteristic function form (cooperative 

games) [11, 12] are a reasonable framework to de-

scribe the allocation of the cooperative payoff (1.4).   

A characteristic function is a mapping 2Nv : R , 

and its value ( )v K  gives the payoff of a coalition 

K N . The most common example is the von Neu-

mann–Morgenstern characteristic function [27]: 
NM

1
,,

( ) val( , )

sup inf ( ,..., )
j

i

i n
x j N\Kx i K i K

v K K N \ K

u x x .
 

 


               (1.13) 

Also, the Petrosyan–Zaccour [28] 
PZ NE

,

( ) sup ( , )
i

i K N\K
x i K i K

v K u x x
 

              (1.14) 

and the Gromova–Petrosyan [29] 
PG

,
( ) inf ( , )

j

C

i K N\K
x j N\K

i K

v K u x x




            (1.15) 

characteristic functions were proposed with the fol-

lowing notations: xK is the set of strategies of all play-

ers from a coalition K, and xN\K is the set of strategies 

of all players from the anti-coalition N\K. (The super-

scripts NE and C indicate Nash equilibrium and the 

cooperative solution, respectively.) Note that for all 

characteristic functions (1.13)–(1.15), 

1

NM PZ PG

1
,...,

( ) ( ) ( ) = sup ( ,..., ) .
n

C

i n
x x i N

v N v N v N u x x u


    

In other words, the payoff of the maximal coalition 

always coincides with the cooperative payoff (1.4). 

The Shapley value [30] is a convenient solution of 

cooperative games: it always exists and is unique. The 

components of the Shapley value are given by 

( ) ( )[ ( ) ( { })], ,i n

i K

v k v K v K \ i i N


      

( )!( 1)!
( ) ,

!
n

n k k
k

n

 
  ,k |K | n | N |.   

 (1.16) 

The player’s share in the cooperative payoff allo-

cation based on the Shapley value shows his contribu-

tion to all his coalitions considering their power. 

 

1.2.  Systems of Preferences and Relative          

Efficiency Indices 

The efficiency of different organizational modes of 

active agents, control methods, and cooperative payoff 

allocation should be compared from two points of 

view: the society and individual agents. For the system 

of social preferences, indicators are the total payoffs 

(1.3). For the sake of convenience, assume that 

{0 1 }N , ,..., n , and player 0 does not differ from oth-

er players in the cases of equality and cooperation. 

The social payoffs are as follows: 

– under equality, 
NE

NE
min ( )
x

u u x


 ;                     (1.17) 

– under cooperation, 

max ( )C

x X
u u x


 ;                     (1.18) 
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– under hierarchical control without feedback, 
ST ST( )i

i N

u u x


 ;                    (1.19) 

– under hierarchical control with feedback, 
IST IST( )i

i N

u u x


 .                   (1.20) 

Formula (1.5) or (1.6) can be used to calculate the 

social payoff (1.19) and formula (1.7) or (1.8) to cal-

culate the payoff (1.20), depending on the agent’s be-

nevolence (malevolence) assumption. Also, we can 

take the set COMP (1.11), the set IMP (1.12), or their 

analogs (1.7), (1.8) under control with feedback in-

stead of IST as the solution of the hierarchical game 

instead of ST. As a result, we obtain the social payoffs
COMP IMP ICOMPu , u , u ,  and 

IIMPu , respectively. 

According to definition (1.4), the social payoff un-

der cooperation is always not smaller than under any 

other organizational mode or control method. To as-

sess the losses (the inefficiency of equilibria), we in-

troduce the social efficiency indices 
NE ST IST

NE ST IST

C C C

u u u
K , K , K

u u u
   , 

COMP
COMP

C

u
K

u
 ,

IMP
IMP

C

u
K

u
 , 

ICOMP
ICOMP

C

u
K

u
 ,  

IIMP
IIMP

C

u
K

u
 .                      (1.21) 

Remark 4. The indices (1.21) assume that all pay-

offs are positive; in this case, all these fractions do not 

exceed 1. This standard assumption in the theory of 

(in)efficiency of equilibria [17, p. 444] restricts the 

universality of the proposed approach. In fact, the ini-

tial values of the payoffs can be used for comparative 

efficiency analysis. The indices (1.21) serve for addi-

tional quantitative characterization when necessary.  

For the system of individual preferences of agents 

i N , we select the following indicators: 

 under equality, 
NE

NE
min ( )i i
x

u u x


                       (1.22) 

(the player’s payoff in the worst-case Nash equilibri-

um, the principle of optimality for this organizational 

mode); 

 under cooperation, 
C

C

i

u
u

| N |
 ,                          (1.23) 

or the Shapley value ( )i v  for the characteristic func-

tion (1.13), (1.14), or (1.15); 

 under hierarchical control without feedback, 
ST

iu ; 

 under hierarchical control with feedback, 
IST

iu .  

The sets ST and IST can be replaced by their ana-

logs COMP and ICOMP (compulsion) IMP and IIMP 

(impulsion). For a detailed quantitative comparative 

assessment, we propose the individual efficiency indi-

ces 
NE

NE i
i C

i

u
K

u
 , 

ST
ST i
i C

i

u
K

u
 , 

IST
IST i
i C

i

u
K

u
 ,

 
NM

NM i
i C

i

K
u


 , 

PZ
PZ i
i C

i

K
u


  

PG
PG i
i C

i

K
u


 , 

COMP
COMP i
i C

i

u
K

u
 , 

MP
IMP

I

i
i C

i

u
K

u
 , 

ICOMP
ICOMP i
i C

i

u
K

u
 , 

IIMP
IIMP i
i C

i

u
K

u
 , i N .                (1.24) 

The social and individual efficiency indicators and 

the corresponding indices are combined in Table 1. 

 
Table 1 

Social and individual efficiency: indicators and indices 

 Equality Cooperation Hierarchical control 

without feedback 

Hierarchical control 

with feedback 

Social efficiency 

indicators 

NEu  ( )Cu v N  
STu , 

COMPu , 
IMPu  

ISTu , 
ICOMPu , 

IIMPu  

Individual efficiency 

indicators, i N  

NE

iu  
C

iu , 
NM

i , 
PZ

i , 
PG

i  
ST

iu , 
COMP

iu , 
IMP

iu  
IST

iu , 
ICOMP

iu , 
IIMP

iu  

Social efficiency 

indices 

NE
NE

C

u
K

u
  – 

ST
ST

C

u
K

u
  

IST
IST

C

u
K

u
  

Individual efficiency 

indices, i N  

NE
NE i
i C

i

u
K

u
  

NM
NM i
i C

i

K
u


 ,

PZ
PZ i
i C

i

K
u


 ,

PG
PG i
i C

i

K
u


  

ST
ST i
i C

i

u
K

u
 , 

COMP
COMP i
i C

i

u
K

u
 ,

IMP
IMP i
i C

i

u
K

u
  

IST
IST i
i C

i

u
K

u
 ,

ICOMP
ICOMP i
i C

i

u
K

u
 ,

IIMP
IIMP i
i C

i

u
K

u
  
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The conditions of coordination (sustainable devel-

opment) have the form 

u U * ,                           (1.25) 

where U *  is a given set. These conditions can sup-

plement any model considered. 

2. AN APPROACH TO COMPARE EFFICIENCY  

A comparative analysis of the efficiency of organi-

zational modes of active agents, control methods, and 

allocation of the cooperative payoff includes the fol-

lowing steps. 

1. The set of active agents (players) 

{0 1 }N , ,..., n  is introduced. 

2. Under equality, agent 0 does not differ from the 

others. The normal-form game (1.1) is constructed, 

and the set of Nash equilibria (1.2) is found. Finally, 

the indicators (1.17) and (1.22) are calculated. 

3. Under cooperation, agent 0 does not differ from 

the others as well. The optimization problem (1.4) is 

solved, and the indicators (1.18) and (1.23) are calcu-

lated. 

4. Under hierarchical control, agent 0 acts as the 

Principal. (Any of the initially equal players can claim 

this role.) For the information structure with control 

without feedback, the payoffs (1.5) and (1.6) are cal-

culated, and the corresponding sets ST are found. Fi-

nally, the indicators (1.19) and 
ST

iu  are calculated. 

5. For the information structure with control with-

out feedback, the payoffs (1.7) and (1.8) are calculat-

ed, and the corresponding sets IST are found. Finally, 

the indicators (1.20) and 
IST

iu  are calculated. 

6. For the compulsion mode in the hierarchical 

game (1.9), (1.10), the set COMP (1.11) is found. 

Then the analogs of the indicators (1.19) and 
ST

iu  are 

calculated. 

7. For the impulsion mode in the hierarchical game 

(1.9), (1.10), the set IMP (1.12) is found. Then the an-

alogs of the indicators (1.20) and 
IST

iu  are calculated. 

8. The games in characteristic function form 

(1.13)–(1.15) are constructed based on the normal-

form game (1.1). Then the Shapley value (1.16) is cal-

culated for these games. 

9. The games in characteristic function form 

(1.13)–(1.15) are constructed based on the hierarchical 

game without or with feedback. In this case, three 

types of coalitions are possible: the agents only; the 

Principal only; the Principal and at least one agent (in-

cluding the maximal coalition). Finally, the Shapley 

value (1.16) is calculated for the constructed coopera-

tive games. 

10. The additional constraints (1.25) are consid-

ered. 

11. The system of social preferences is built by or-

dering the indicators (1.17), (1.19), and (1.20) and the 

values 
COMP IMP ICOMPu , u , u , and 

IIMPu . In addition, the 

losses due to the inefficiency of equilibria are assessed 

using the indices (1.21). 

12. The system of private preferences is built by 

ordering the indicators (1.22) and (1.23). The compar-

ative efficiency is assessed using the indices (1.24). 

Remark 5. In most cases, game-theoretic problems 

of conflict control can be solved only numerically. 

Then, the comparison involves the average values of 

all indicators over the set of computational experi-

ments for different input datasets. 

Remark 6. Some steps may be omitted depending 

on the problem statement and research capabilities. 

3.  COURNOT OLIGOPOLY MODELS 

As an illustrative example, we compare the effi-

ciency of several Cournot oligopoly models. 
Example 1. The Cournot oligopoly with symmetric 

agents. 

Let {1,..., }N n  be the set of equal symmetric agents 

(firms). For fixed costs including tax, the model has the 

form  

 ( ) (1 )[ ] max,

0 1/ ,

i i i

i

u x p D x x cx

x n i N.

    

  
 

Here ix  denotes the production output of firm i; D is the 

demand volume; c  is the specific costs of each firm; the 

parameter [0, 1]p  specifies a fixed tax rate; finally, 

1 nx x ... x   . For the sake of definiteness, assume that 

1, 1/D c n  . (In the paper [31], this parametrization was 

used for 2n  .) Then

 1
( ) (1 ) max,

0 1/ ,

i i

i

n
u x p x x

n

x n i N.

 
    

 

  

          (3.1) 

In addition, we denote 1( ) ( ) ( )nu x u x ... u x   . The 

first-order optimality conditions yield 

1
0 2 ,i

i j

j ii

u n
x x i N

x n 

 
    


 ; 

1
2 ,i j

j i

n
x x i N

n


   . 

Hence, in the Nash equilibrium, 

NE NE

2 2
NE NE NE

2 2 2

1 1
; ;

( 1) 1

(1 )( 1) (1 )( 1)
; 

( 1) ( 1)

NE

i

i

n n
x x x

n n n

p n p n
u u u .

n n n n

 
  

 

   
  

 

 (3.2) 
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Now let the agents from the set N  cooperate. The model 

takes the form 

1
( ) (1 ) max,

0 1/ ,i

n
u x p x x

n

x n i N.

 
    

 

  

 

Obviously, in this case,
ii N x x    and 

1
( ) (1 )

n
u x p nx nx

n

 
   

 
. 

The first-order optimality condition reduces to 

0 1 2
u

n nx
x


   


. 

Hence, the solution of the cooperative optimization problem 

and the corresponding payoffs are: 

2

2 2

3 2

1 1
; ;

22

(1 )( 1) (1 )( 1)
; 

4 4

C C C

i

C C C

i

n n
x x x

nn

p n p n
u u u .

n n

 
  

   
  

 

Suppose that agent 1 becomes the Principal: first choos-

es 
1x  and informs the other agents of it. Then, each agent 

solves the problem 

1

2

1
(1 ) max,

0 1/ , 2,...,

n

i j i

j

i

n
u p x x x

n

x n i n.



 
     

 

  


 

The first-order optimality conditions 

1

2

1
0 2

n
i

i j

j , j ii

u n
x x x

x n  

 
    


 , 2,...,i n , 

yield the best response of each agent: 

BR BR 1

2

1
, 2,...,i

n nx
x x i n

n

 
   . 

The Principal’s problem takes the form 

1

1 1 1 12

1 1 12

( 1)( 1 )1
( ) (1 )

1
( 1 ) max 0 1/

n n nxn
u x p x x

n n

p
n nx x , x n.

n

   
     

 


    

 

The first-order optimality conditions 

1

1

1

0 1 2
u

n nx
x


   


 

lead to the Stackelberg equilibrium 

ST ST

1 2

1 1
; , 2,..., ,

2 2
i

n n
x x i n

n n

 
    

the total output ST

2

( 1)(2 1)

2

n n
x

n

 
  and the payoffs 

2
ST

1 3

(1 )( 1)

4

p n
u

n

 
 ; 

2
ST

4

(1 )( 1)
, 2,...,

4
i

p n
u i n

n

 
  ; 

2
ST

4

(1 )( 1)( 1)

4

p n n n
u

n

   
 . 

Now consider the following case: the Principal is an ad-

ditional non-production agent 0 that assigns the tax rate p . 

Then the Principal’s problem can be written as 

2

0

1
max, 0 1

n
u x xp ap p

n

 
      
 

,       (3.3) 

where 0a   is the coefficient of tax collection costs. 

The optimal response of the agents is the Nash equilib-

rium in their game; see formula (3.2). The Principal’s prob-

lem takes the form 
2

2

0 2

( 1)
max, 0 1

( 1)

n
u p ap p

n n


    


.        (3.4) 

As a result, 
2

ST

2

( 1)

2 ( 1)

n
p

an n





, and the Stackelberg (impul-

sion) equilibrium is 
2

2

( 1) 1 1
ST=IMP , ,...,

( 1) ( 1)2 ( 1)

n n n

n n n nan n

   
  

  
. 

The payoffs of the Principal and agents are given by 
2 2 2

IMP

0 2 2

( 1) [( 1) ( 1) ]

2 ( 1)

n n an n
u

an n

   



; 

2 2 2
IMP

2 4

( 1) [2 ( 1) ( 1) ]
, 1,...,

2 ( 1)
i

n an n n
u i n

an n

   
 


; 

2 2 2
IMP

4

( 1) [2 ( 1) ( 1) ]

2 ( 1)

n an n n
u

an n

   



. 

Next, we impose an environmental constraint of the 

form 

maxdx P ,                                (3.5) 

where the coefficient d  characterizes the ratio of the vol-

ume of pollutant emissions to the total output, and 
maxP  is 

the maximum permissible limit of emissions. This con-

straint expresses a sustainable development condition to be 

ensured by the Principal (an additional constraint in the op-

timization problem (3.4)). In the Nash equilibrium, this 

condition reduces to 

max1

1

Pn

n d





;                             (3.6)  

under cooperation, to 

max1

2

Pn

n d


 .                            (3.7)  

If inequalities (3.6) or (3.7) hold, the equal or coopera-

tive behavior of agents is compatible with the sustainable 

development conditions. 

Otherwise, the Principal can use the impulsion mecha-

nism to stimulate sustainable development among equal 

agents: 

maxfor ,
( )

otherwise.

P
p x

p x dn

p








 



 

To examine the allocation of the cooperative payoff, we 

first construct the von Neumann–Morgenstern characteristic 
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function (1.13). Obviously, 1/ , ,ix n i N\ K   for any coa-

lition K . Therefore, 

NM 1 1
( ) (1 ) max 0,

i

i i
x

n n
v i p x x i N

n n

  
      

 
; 

NM

,

1
( ) (1 ) max ,

i

K K
x i K

n n k
v K p x x

n n

  
    

 
k | K | . 

Since 
ii K x x   , we have 

NM ( ) (1 )v K k p    

1
max

x

k
kx x

n

 
  

 
. 

The first-order optimality condition 
1

2 0
k

kx
n


   

yields 
1 1

2 2

k k
x* , x*

kn n

 
  , and consequently, 

2
NM

2

1 ( 1) 1 ( 1)
( ) (1 ) (1 )

2 2 4

k k k k k
v K k p p .

n kn kn n

    
     

 
 

Hence, 
2

NM

2

(1 )( 1)
( )

4

Cp n
v N u .

n

 
   

By definition, the Petrosyan–Zaccour characteristic 

function (1.14) here coincides with the von Neumann–

Morgenstern function. We construct the Gromova–

Petrosyan characteristic function (1.15): 

GP

2 2

2

4

1 1 1 1
( ) (1 )

2 2

(1 )( 1)
, ;

4

n n n n
v i p

n n n n

p n
i N

n

    
     

 

 
 

 

GP

2 2

4

1 ( 1) ( 1)
( ) = (1 )

2 2

( 1)( 2 )
(1 ) ;

4

n n k k n k n
v K p

n n n n

k n kn n k
p

n

    
    

 

  


 

2
GP

2

(1 )( 1)
( )

4

Cp n
v N u

n

 
  . 

Due to the symmetry of cooperative games, for all char-

acteristic functions, 

2 2
NM PZ GP

3 3

(1 )( 1) (1 )( 1)
=Φ ,...,

4 4

p n p n
.

n n

    
     

 
 

Obviously, in models with symmetric agents, social and 

private preferences coincide under equality and cooperation; 

the Shapley value-based allocations of the cooperative pay-

off are always the same for all characteristic functions. 

Note that in this model, 
ST ST

1 2C

iu u u , i ,..., n   . 

Thus, cooperation is more beneficial than hierarchical con-

trol for all agents except the Principal (who does not care). 

In this case, 
2

ST

2 2

2

4

(1 )( 1) 1
1

4

(1 )( 1)
( ( 2) 1) 0,

4

C p n n n
u u n

n n

p n
n n n

n

    
     

 

 
   

 

i.e., cooperation is more beneficial than hierarchical control 

for the society. The indices 

NE

2

4
0

( 1) n

n
K

n 
 


, 

2
ST

2

1
0

( 1) n

n n
K

n n 

 
 


 

show that the benefit of cooperation compared to equality 

and hierarchical control will grow with the number of 

agents. 

Example 2. The Cournot duopoly with asymmetric 

agents. 

The model has the form 

1 2(1 )(1 ) max,

0 1/2, 1, 2

i i i

i

u p c x x x

x i .

     

  
 

Compared to formula (3.1), (0, 1/2)ic   is the costs of 

firm i. If the agents behave equally, the Nash equilibrium is 

found from the system of equations 

0 1 2i

i

u
, i ,

x


 


.  

As is easily verified, 
NE (1 2 )/3, , 1, 2;i j ix c c i j   

 
NE

1 2(2 ) /3u c c   ,                       (3.8) 

and the payoffs are: 
NE 2(1 )(1 2 ) 9, 1 2i j iu p c c / i ,     ; 

NE 2 2
1 2 1 2 1 2(1 )(2 2 2 5 5 8 ) / 9u p c c c c c c .        

The cooperation of agents leads to the optimization 

problem 

1 1 2 2(1 )[(1 ) ] max,

0 1/2, 1, 2i

u p x x c x c x

x i .

     

  
 

The system of equations 0, 1, 2,iu x i     reduces to 

1 2 1

1 2 2

(1 )/2

(1 )/2

x x c ,

x x c .

  


  
 

Under the assumption 
1 2c c , it has no solution. On the 

boundary of the set of admissible controls, the total payoff 

function takes the following values: 

1 2

1

2

(0, 0) 0; (1/2, 1/2) (1 )( ) 0;

(1/2, 0)=(1 )(1/4 /2);

(0, 1/2)=(1 )(1/4 /2).

u u p c c

u p c

u p c

     

 

 

 

Thus, the solution to the cooperative problem and the 

corresponding payoffs are given by 

1 2 1

1

1 2 2

2

(1/2, 0), (1 )(1 2 )/4,

(1 )(1 2 )/8, 1, 2;

(0, 1/2), (1 )(1 2 )/4,

(1 )(1 2 )/8, 1, 2.

C

C

iC

C

C

i

c c u p c

u p c i
x

c c u p c

u p c i

     


   
 

    


   

 

In both cases, the total cooperative output is 1/2Cx  . 

Suppose that agent 1 becomes the Principal: first choos-

es 1x  and informs the other agents of it. Similarly to Exam-

ple 1, we arrive at the Stackelberg equilibrium 
ST ST

1 1 2 2 1 2(1 2 )/2 (1 2 3 )/4x c c ; x c c      . 
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In this case, the total output and payoffs are: 
ST

1 2(3 2 )/4x c c   ; 

ST

1 1 2(1 )(1 2 )/8u p c c    ; 

ST

2 1 2(1 )(1 2 3 )/16u p c c ;     

ST 2 2

1 2 1 1 2 2(1 )(3 4 2 12 20 11 )/16u p c c c c c c .        

Now consider the following case: the Principal is an ad-

ditional non-production agent 0 that assigns the tax rate p . 

By analogy with (3.3), the Principal’s problem can be writ-

ten as 
2

0 1 2(1 ) max, 0 1u c c x xp ap p        . 

The optimal response of agents to the Principal’s strate-

gy p  is the Nash equilibrium in their game (3.8). Similarly 

to Example 1, we obtain the Principal’s impulsion strategy 

IMP 1 2 1 2(1 2 2 )(2 )

18

c c c c
p

a

   
  

and the impulsion equilibrium 
IMP NE NE

1 2IMP ( , , )p x x .  

Finally, we introduce the environmental constraint (sus-

tainable development condition) (3.5). In the Nash equilib-

rium, this condition takes the form 

1 2 max(2 ) 3d c c P   ; 

under cooperation, 

2 maxd P . 

For 2n  , constructing the game in characteristic func-

tion form is unreasonable. 

 

CONCLUSIONS 

An obvious main result of this paper consists in the 

following. In deterministic models, cooperation is not 

worse for the society than any other organizational 

mode of the interaction of active agents because it 

leads to a nonnegative cooperative effect. The collec-

tive losses due to rejecting cooperation can be as-

sessed using various indices (the classical problem of 

the inefficiency of equilibria). 

However, individual agents may benefit more from 

seizing the leadership or keeping independence. The 

rules for allocating the cooperative payoff among 

agents are not obvious as well. Therefore, along with 

the social preferences, it is necessary to consider the 

private ones (generally, unequal for different agents). 

Here, comparative efficiency indices can be also used. 

Even in simple models, it is not easy to calculate 

the payoffs of individual agents and the society and 

compare them analytically. This paper has illustrated 

the proposed comparative analysis methodology in the 

case of symmetric agents. Further research will focus 

on a numerical study of the comparative efficiency of 

organizational modes, control methods, and alloca-

tions of the cooperative payoff for several static and 

dynamic Cournot oligopoly models. 
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