
S ystems Analysis

20 CONTROL SCIENCES No. 6 ● 2025

CONTINUITY AS COMPUTABILITY

N. N. Nepeivoda

Ailamazyan Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalessky, Russia

 nnn@nnn.botik.ru

Abstract. The relationship between computability and continuity is studied. Computability over

an arbitrary initial basis of data types and functions (a base) is considered using McCarthy recur-

sive schemata and strongly typed operators of finite types. In this case, computable operators are

proved to be strongly continuous in the Baire sense: for parameter functions with any value of the

other arguments, it is possible to find a finite collection of their values that uniquely determines

the result. Based on relative computability, an approach to constructive topology is developed

within which the pointwise approach (an element is a fundamental sequence of neighborhoods)

and the approximation approach of abstract topology (a function over topological spaces is a

neighborhood relation) are equivalent. The concept of B-spaces is formulated, allowing one to

constructivize separable spaces with a countable base of neighborhoods. The continuity of

pointwise constructive functions of B-spaces and their transformability into neighborhood rela-

tions are proved. The equivalence of the concepts of computability relative to a certain base and

continuity is established. The concept of a relatively constructive function is formulated: such a

function transforms each element into an element constructible relative to its argument and a

fixed base. Its equivalence to the concept of a countably continuous function formed by the union

of a countable family of functions continuous on subspaces is established. Since any separable

space with a countable base can be described as a B-space, this result contains no constructive

restrictions. The connection between the proposed approach and other approaches to constructive

topology is discussed.

Keywords: relative computability, separability, countable base, pointwise spaces, abstract topology, approx-

imation approach, Baire continuity, continuity on subspaces.

INTRODUCTION

In research devoted to computability in topological

spaces, its connection with continuity is necessarily

present; see the discussion in Section 3. Computability

is considered on the basis of a uniform standard

model, i.e., Turing machines. The question arises

about the relationship between the abstract general

concept of computability and continuity. It will be

addressed below.

1. ALGORITHMIC FORMALISM

1.1. Recursive Schemata

Programming practice has shown that functional

programs for discrete and continuous tasks are written

in different styles. The standard definition of

computability in computer science using Turing

machines or  -calculus [1] is pragmatically correct

primarily for discrete tasks. Although almost all

variants of computability considered in theory are

formally equivalent, their areas of practical

applicability may differ. Since computability here will

be analyzed for continuous tasks, we should be careful

in choosing an appropriate definition of computability

for the programming style used. In this paper, the main

concept of computability is the relative computability

of McCarthy recursive schemata [2] over a base: the

basis of initial functions and predicates. It is

generalized to the strongly typed calculus of operators

of finite types. Formally, this is a restriction of the

definition of λ-operators of finite types with a fixed-

point combinator, direct products, and conditional

operators, which was studied in detail in computer

science [1, 3, 4].
Definition 1 (a tower of data types).

1. A finite collection of data types 0 that

necessarily includes the bool type.

mailto:nnn@nnn.botik.ru

21 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

2. All types from 0 belong to .

3. A type 1(, ,)n  is called a record. If

1, , n   and are not records, then

1(, ,)n .   If all members of a record are types

from 0 , then this record belongs to the subclass 1 .

4. If 1, , n   , then 1(, ,)n     . Such

types are called functional.
5. Each type is assigned an infinite collection of

variables of that type.
Definition 2 (a base).

1. Each data type from 0 is assigned with a non-

empty data set that necessarily contains the “soft

error” element  . The bool type is assigned the set

{ , , }T F  .

2. For any types of the form 1(, ,)n  , there are

functions

1 1: (, , (, ,)),n njoin     

1: ((, ,)),i n ipr    

satisfying the condition

1((, ,)) = for 1 .i n ipr join a a a i n (1)

3. A finite collection of initial typed functions with

arguments and values from 1 and constants with

types from 0 . (The logical constants true and false

are present in any case.) All functions are stable

relative to  :

If 1 1(, , , , , ,) =n kf x x y y z and z  ,

then 1 1(, , , , , ,) =n kf x x x y y z for all x .

(Such functions are called generic in computer

science.) Constants from the base are called initial.

Tuples whose elements are all constants are also

considered constants.
Functions with a logical result value are called

predicates. ♦

Hereinafter, a sequence of expressions 1, , na a

will often be denoted by a . Accordingly,  is a

sequence of  . Condition (1) means that the type of a

record is isomorphic to the direct product of the value

sets of the types that compose it. But the situation is

somewhat more subtle: the value sets of functional

types are not defined and, accordingly, there are no

constants of these types until explicit definitions

appear, with the exception of the initial functions.

Therefore, condition (1) means that if some values of

the corresponding types exist, then there is also a

value corresponding to their n-tuple.
Furthermore, there are no restrictions on the

appearance of  as elements of a record. Obviously,

the functions join and ipr are stable relative to  .

Hence, Clarke’s warning can be avoided by

considering only functions with one argument or with

one subject argument and one functional argument.
Hereinafter, the join function will be omitted

whenever no ambiguities occur.
Definition 3 (terms).
1. The constants and variables of type  are terms

of type  .

2. If f is a term of type 1(, ,)n    and

1, , nt t are terms of types 1, , n  , respectively,

then 1(, ,)nf t t is a term of type . (Such a term

sequence t is called suitable for f.)
3. If b is a term of the bool type and r and u are

terms of type τ, then

b r uif then else fi

is a term of type  . Such terms are called

conditional. ♦

The designation 1 1{ , , , , , },n kt f f x x

abbreviated as { , },t f x means that only the listed

constants and variables, except for the initial ones, are

used in the term. Note that some of the variables may

be of functional type. The parameters of a term

1(, ,)nf t t are all it that do not have the form

1(, ,)kr r , and all ir for such records. Due to type

restrictions, this definition is not recursive. The meta-

designation 1< , , >nf t t means that 1, , nt t is a list

of all parameters of the term, rearranged in a

convenient order. The order in the expressions

1< , , >nf r r does not change in the same sentence.

Definition 4 (a recursive schema). Let 1, , nf f

be new constants of functional types called recursive

functions. Then a collection of definitions of the form

1 1 1(, ,) [, , , , ,],i k n kf x x t f f x x

where x is a sequence of variables suitable for if , is

called a recursive schema. ♦
The order of definitions within a recursive schema

makes no sense.
Definition 5. A computational environment

defined by a recursive schema consists of a base and

functions defined by this schema (recursive functions).

1.2. Abstract Computability

Consider programs operating based on recursive

schemata; let us rigorously define their execution and

computational capabilities.
A term is called closed if it does not contain

variables.

22 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

We will define a computational process in the

spirit of term rewriting rules to make a computational

system a subsystem of recursive operators of finite

types from [1]; and the results established there will be

utilized accordingly.
For fundamental reasons (operators must work not

only with the arguments defined by them),

computations may involve constants for all elements

of types from 0 .

Definition 6. A normal form is a term to which no

transformation rule can be applied. The process of

computing a closed term is defined as a sequence of

subterm replacements until obtaining a normal form (if

this ever happens). If a computation process does not

terminate, then the value is  . A term is computed by

applying one of the rewriting rules to it. A term

disappears in the cases specified in the rewriting rules,

or when it is a subterm of a disappearing term.
1. If a term has normal form, then the process is

complete, and this normal form is its value.

2. If a term has the form ()f t , where f is a basic

function and all parameters are constants, then it is

replaced by the result of computing f .

3. If a term has the form < , >f c t , where f is a

basic function, c are constants, and < , >f c    ,

then it is replaced by the result of computing

< , >f c  , and all elements of t disappear.

4. A term 1((, ,))i npr join t t is replaced by it , and

all other jt disappear.

5. r uif true then else fi is replaced by r , and u

disappears.
6. u rif false then else fi is replaced by r , and u

disappears.

7. ir uif then else f is replaced by  , and r

and u disappear.

8. If a term has the form ()f t , where f is a

recursive function, then it is replaced by the definition

of ,f with the variables therein replaced by the terms

from t .
The result of transformations is intermediate if

only rule 8 can be applied to it.

Remark 1. The genericness condition essentially

means that the given argument  is not used in

computations. Rule 3 expresses that this condition is

valid for all initial functions.
Consider the structure of intermediate results.
Let us define a computation discipline that

guarantees a result if it is possible.
Definition 7. A computation is regular if it

satisfies the following constraints.

1. Rule 8 applies only in an intermediate term.

2. In the term 1(, ,)nf t t r uif then else fi , the

terms r and u and their subterms are not computed.
3. In an intermediate term in the subterm

1(, ,)nf t t , where f is not the initial function, it

are not computed.

4. Any subterm 1(, ,)nf t t appearing in an

intermediate term either disappears in further

computation or is computed. ♦
Definition 8. A recursive function is total if any of

its regular computation terminates. A function is

general
1
 if it is total and any of its computation with

arguments not equal to  does not yield  . A

recursive operator is total (general) if, under any

substitution of total (general) functions into this

operator instead of its functional parameters, the

resulting function is total (general).

A function f of the type  , where all

1,i  , is computable if there exists a recursive

function with ()f c as its result computed for each

value c of the arguments of f . An operator

< , >f x , where x and the result have types from

1 and f are of the types  , where all

1, ,i  is computable if there exists a recursive

operator  such that when extending the base by any

f of suitable types and substituting c for x , the

result of computing (,)f c is equal to (,)f c . ♦

Remark 2. In total functions, an error appears as a

calculated value and can be processed. If a function

loops, being calculated infinitely, then such a situation

is generally impossible to process.
Definitions for operators are not limited to

functions defined in the base. They must work on any

functions. Also, note that any external function is total.
We do not attempt to define computability for

operators of higher types, since the set of functions of

such types remains uncertain.

1.3. Computability Properties

Theorem 1 (on correct computations).
1. All terminating computations yield the same

result.
2. If a computation terminates, then all regular

computations terminate as well.
P r o o f. Item 1 (the first statement of this theorem) is a

consequence of the theorem on correct rewriting rules for

typed  -calculus with recursion; see [1, Ch. 5].

1 This term is given by analogy with the general recursive func-

tion.

23 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

Item 2 is a consequence of the theorem on head

recursion [1, Sect. 3.7].

Lemma 1. No computable operator can produce a

new function as a component of the result.
P r o o f. According to syntactic restrictions, all normal

forms are constants.

Since it is impossible to compute a new function, we

define the concept of function transformation using a

computable operator.

Definition 9. An operator < , >f x transforms a

function f into g if, after adding the function f to

the base, < , > = ()f c g c for all c . ♦

This definition is naturally generalized to the

transformation of a tuple of functions into a tuple of

functions.
Lemma 2. Any computable operator 

transforms computable functions into computable

ones.
P r o o f. Let us add the definitions of the argument

functions f to the definition of the operator  . Without

extending the base, we obtain the definition of the result

function:

() (,).x f x 

Definition 10. A finite collection X of values of the

arguments () =i i if b d of an operator < , >f x

guarantees a value y on c if, when substituting any

functions satisfying () = ,i if b d the value is

< , > =f c y . If any of its subsets does not

guarantee the value, it guarantees it exactly. We will

define the collection X as a set of pairs (,)i ic d

(called a function fragment). A function has a

fragment X if it takes the values id on all ic . ♦

A practical criterion for checking that a fragment

exactly guarantees a value is to test the operator with

the following functions: F equal to  everywhere

except for a given set, that yields id on ic , and its

modifications that additionally yield an error on one of

ic . But this is not a universal solution: if a recursive

schema loops, we will not receive a response. This can

also happen during an “illegal” call to a function

parameter, as a result of which the calculation

proceeded a different path.
The restrictions imposed (the absence of initial

operators) allow us to establish Baire’s continuity of

computable functions, which is violated in a more

general case.
Theorem 2 (the first continuity theorem). For

any closed term t whose recursive schema contains

only functional variables 1, , nf f and whose regular

computation is finite, there exist fragments iX such

that when substituting other functions with the same

fragments into it, the term’s value does not change.
P r o o f. The computation contains only a finite

number of calls to parameter functions. If other functions

have the same values on the given parameters, the

computation will be repeated with the same result.

Example 1. This example illustrates the significance of

type complexity restrictions for the base. The continuity

theorem is violated if we add the original operator of the

second type, : (())FZ  nat nat bool , with the

definition

if there exists no such that () =
()

otherwise.

T i f i
FZ f


 


♦

Thus, the above concept of computability is

adapted to relativization to many initial spaces and any

initial functions, giving the strong continuity of

computable operators of the second type.
Example 2. The minimal base generating standard

computable functions of natural numbers is the type system

{ }nat, bool , where nat is interpreted as the type of natural

numbers, constant 0nat , a predicate ()Z nat bool ,

and functions ,S Pd of the type ()nat nat , interpreted

as
() (= 0), () = 1,

if = 0
() =

1 if > 0

Z x x S x x

x
Pd x

x x .

 






Recall that truth and falsehood are always added.

Summation and multiplication are defined by the

recursive schema

(,) () ((), ())

(,) () 0 ((, ()),) .

A x y Z y x A S x Pd y

M x y Z y A M x Pd y x






if then else fi

if then else fi

The second-order function I iterates the application of

the argument f , x times, Err formally always gives an

error; in fact, its execution never ends, and the yield is

nothing:

(, ,) ()

((), (),)

() ()

I x y f Z x y

I Pd x f y f

Err x Err x .




 

if then

else fi

Lisp logic connectives [5] are defined by schemata, so

we will use them freely below:

.

A B A B F

A B A T B

A A F T

 


 
 

if then else fi

if then else fi

if then else fi

If natural numbers are present or simulated in the

environment, we use standard designations for operations

and identify natural numbers with their code.

1.4. Properties of a Generalized Graph

As noted above, we can consider operators with

two arguments––the initial type and the functional

type––without loss of generality. The following

24 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

convention allows using the results of standard

algorithm theory.
Convention on enumerability and lists. For each

initial type, an equality predicate and an enumeration

function, denoted by en , are added so that the

sequence 0()nen a enumerates without repetition all

elements of this type, where 0a is a constant. At least

one of the initial types is infinite.
Then this infinite type can be used as an

isomorphism of natural numbers. Let the ith element

be simply denoted by i . Of course, if there are natural

numbers among the initial types, they can be used

directly. As in standard computability theory, we

define primitively recursive encodings of n-tuples,

lists, and finite sets by numbers, the union and

intersection operations of encoded sets, and the

predicate of belonging of a given number to a set. For

convenience, we specify the encoding of a set as a list

without duplicate elements.
Definition 11. A generalized graph is an

enumerable set of triples (, ,)X c d , where the value

c does not contain
2
 the constant  , and for any triples

(, ,)i iX c d with the same c none of iX is nested in

another jX . A generalized graph is a graph of an

operator (,)F f x if in all triples X is a fragment

ensuring d on c . A graph is complete if for any , c

for which the computation of (,)F c terminates, the-

re exists (, ,)X c d in which X is a fragment of . ♦

We define, in the form of a specification

implemented by standard programming methods, an

operator for computing an operator (,)F f x on a

complete graph G :

If the enumeration of has a triple (, ,),

 where is a fragment of , then ;

otherwise, one operates infinitely.

G X x d

X f d







Thus, a complete generalized graph is a strong and

adequate definition of an operator. It would be great if

a recursive schema for it could be constructed using

syntactic transformations of the operator schema.

Consider the difficulties arising in this case.
Lemma 3 (call tracing). Let a recursive schema

define an operator  with functional parameters if

and a subject parameter x (i.e., from 1). Then:

1. When computing other functions of this schema,

if can be applied only if the given function is also an

operator and if is substituted as one of its functional

parameters.

2 Recall that the element  does not turn an entire record into an

error.

2. All places of potential application of if in a

term t can be found statically by analyzing the

recursive schema, and they have the form ()()jpr F t ,

where F is a functional parameter of some function.
3. The application of if will occur if and only if

the place of potential application of if is found on the

path of computing the parameter ()jpr F with the

value of if .

Proof. Let us outline the proof. Since if is neither an

initial function nor a function defined in the schema, it can

only be the value of some parameter. This proves item 1

(the first statement) of Lemma 3.

Next, we construct a list of functional parameters of the

schema for Φ whose components can be replaced by f. This

list includes fi itself. If, inside the definition of a certain

function, a function from Φ is substituted for the parameter

g, then g is added to Φ. Applications of parameters from 

are potential applications of fi. Item 2 of this lemma is

established. Finally, item 3 follows from item 2. ♦

The traceability lemma also works in the case

when a schema contains operators computing

functions, since they cannot compute new functions.

Subsequent constructs can, in principle, be carried out

for the case when such operators are allowed. But this

is not essential for the main objective of the paper

(operators on functions of a topological space are not

considered here). Therefore, the analysis will be

restricted to second-order schemata that do not define

functions yielding functions.
Task 1. Modify the definition of an operator so

that when terminating the work on given parameters, it

would yield a fragment of the parameter function that

exactly guarantees the result.
Task 2. Modify the definition of a term with one

functional variable so that it would take a fragment as

a parameter instead of a function and, if possible, yield

not only the result but also a diagnosis of whether the

fragment is sufficient for correct computation.
Let f and []T f denote a function parameter and a

term computed, respectively. Note that the schema

transformations are performed for this particular term

since preliminary tracing is necessary. Based on

tracing, in Task 1, we can label the subterms in the

original recursive schema; in Task 2, we can label the

subterms of the transformed term and those of the

definitions in the original recursive schema as well.
Definition 12. A subterm is red if it contains a call

to f . A subterm is yellow if it does not contain such a

call but is a direct component of a red term (an

argument of a red function, a component of a red

record, or an alternative of a conditional expression

with a red condition). A subterm is white in all other

cases. If []T f is white, we label it as yellow. ♦

25 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

Using the traceability lemma, one can color the

subterms of any term.
It is more convenient to process the error indicator

first, so it is always equipped with the true flag.

Hereinafter,  indicates an empty set;  stands for

an n-tuple of empty sets; finally, { }x means a

singleton. Without limiting generality, assume that all

functions defined in a schema yield a record with n

components. If S is a record, then (,)x S is the result

of adding a component x to it. This does not lead to

ambiguities: in a type tower, records cannot be

components of records. Note that the standard folding

of an n-tuple into a list code is not always correct due

to Clarke’s warning: a list code containing an error as

one of its elements is always an error. To avoid

unnecessary effort while dealing with particular

numbers, we define the function

1 2((, ,)) = (, ,)n ntail x x x x for each type of n-tuples

encountered in a schema.
Let us construct the following auxiliary functions

using standard methods:
1. the function (,)Ev X a , which yields (,)bfalse

if (,)a b X for some b , and (,)Atrue otherwise;

2. the function  , which constructs the union of

two sets.
We denote by A a constant that will replace the

value unnecessary below.

Modification 1. [,]pt X t , computation with

guaranteed success. It is obtained by adding a subject

parameter X to all operators defined in a schema that

contain potential applications of f, and by recursively

replacing all calls ()f r to the function parameter,

traced using Lemma 5, with ((,))ptail Ev X r . This

modification provides the simplest partial solution to

Task 2 without diagnosing errors associated with a

parameter missing in a fragment. Note that even this

partial solution is individual for []T f since the

coloring depends on T .
Modification 2. Tracing and collecting the

applications of a parameter functions: processing T

into vT .
For each function with a red entry, we define its

red variant with an additional parameter 1X of the

fragment type.

1. The red variant of f :

1 2

1 1 2

2

() () (, (),)

(((, (())), { ()},

((, (()))) .

vf x pr x pr x A

pr Ev X tail tail x X pr x

pr Ev X tail tail x





if then true

else

fi

 (2)

2. The red variant of the remaining initial

functions:

1 1 2(,) () (, (),)v X x pr x pr x A  if then true

2(, (), ((()))) .pr x tail tail xelse false fi

3. The red variant of the function, defined as

(,) ,x t   has the form

1(, ,) ,v vX x t  

where
vt is computed recursively according to the

rules specified below.
We recursively make the following substitutions.
1. All white subterms remain unchanged. We

replace all yellow t with

= (, ,)vt ttrue .

2. The record
1 1(, ,) (, ,)v v

n nt t t t :

1 1 2 1 2(() (, () (),)v v v

npr t pr t pr t A if then true elif

1 2 1 2() (, () (),)v v v

n npr t pr t pr t A elif then true

2 1 2

1

(, () (),

(()), , (())) .

v v

n

v v

n

pr t pr t

tail tail t tail tail t

 else false

fi

3. The conditional term vb r uif then else fi :

1 2() (, (),)v vpr b pr b Aif then true ,

2 1

2 2

() ((),

() (), (())),

v v

v v v

pr b pr r

pr b pr r tail tail r

elif then

1 2 2((), () (), (()))v v v vpr r pr b pr u tail tail uelse fi .

4. The red function ()s :

1 2

1 2 2

() (, (),)

((), () (), (())) .

v v

v v v v

pr s pr s A

pr r pr b pr u tail tail u

if then true

else fi

This complex program restructuring corresponds to

the concept of a continuation in functional programs

[1, 6]. Unlike the works cited, we do not add a third-

level operator here, managing to restructure the

function with level reduction.
Theorem 3 (generalized graph). Based on the

schema of a general operator  , one can construct a

definition of a function that enumerates its generalized

graph.
P r o o f. Let us make an additional modification to the

schema
vT for the term 0 0= (,)T f x , where 0 0(,)f x

are constants.
3
 We introduce a new variable for a fragment

X and add it as a parameter to all definitions and

applications of functions , without using it anywhere inside

the definitions (except for the mandatory parameter when

calling any function). The only exception is (2), where it is

3 Here, 0f can be either a new initial function or one defined in the

same schema; this affects the process of constructing vT but not

new modifications.

26 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

used in Ev . In this regard, we redefine the original operator

 as

(,) [,]g vX x X x . 

With standard methods, we construct a certain

enumeration ()Enum i of pairs (,)X x (a fragment and a

subject parameter) starting from zero.

Let us define a function for constructing the initial

segment of the generalized graph. For brevity and clarity,

we write the frequently occurring expression

1 2((()), (()))g pr Enum i pr Enum i simply as []g :

(, ,) = 1Gr i G n i n G if then

1([]) (1, ,)gpr Gr i G n elif then

2(1, {(([]),gGr i G pr  else

3 2([]), (()))},) .gpr pr Enum i n fi

It adds, step by step, the found fragments that verifiably

guarantee 2 (())pr Enum i on 1(())pr Enum i . In the limit, we

obtain the complete graph of the operator.

Remark 3. This algorithm produces an

enumeration with repetitions. This can be eliminated

using standard methods.
A complete study of the relationships between

operators and generalized graphs requires separate

consideration. Here, we merely mention that the

syntactic transformation of an arbitrary operator into a

graph is generally impossible: its existence would

mean, in particular, the solvability of the looping

problem. Therefore, special cases are important.

2. APPLICATION TO TOPOLOGY

2.1. B-spaces

Yu.L. Ershov defined the constructivization of

topological spaces with a countable basis of

neighborhoods (A-spaces) [7, 8]. Let us give a

generalized definition for the case of subspaces of

arbitrary separable spaces with a countable basis of

neighborhoods, using the ideas of P. Martin-Löf [9]

and A. Lacombe [10]. In doing so, we will eliminate

the initial binding to natural numbers, which is

adopted by the above authors and is standard for all

works on constructive topology listed in the

fundamental monograph [11]. When dealing with

natural numbers, we will explicitly note this fact.

Definition 13. A B0-space is a separable complete

space in which a countable basis of neighborhoods is

selected. This basis, with the empty set added, will be

denoted by A . Let us define a base on A .
1. The constants  and U (an empty set and the

entire space).

2. A general countability function : ()e A A

such that the sequence . ()nn e  runs through the

entire space A without repetition.
4

3. The general intersection operation of

neighborhoods, A B .
4. The general predicate A B (A is thinner than

B), meaning that either the closure of A is nested in

B , or =A B and B is an open-closed singleton.
5. The general predicate A# B (A is separated

from B), meaning that the closures of their

neighborhoods do not intersect.
6. (Optional) Some additional functions and

predicates on A . ♦

Item 2 defines a bimorphism A in nat, which is

not an isomorphism: the base does not contain the

function Pd and the equality predicate (even =a ).

It is necessary to guarantee constructivization of the

countability of A . According to Definition 2, n-tuples

of neighborhoods are also constructive objects.
Proposition 1. If the equality predicate of

neighborhoods =a b is computable in a space B0,

then the neighborhoods form a model of natural

numbers and all partially recursive functions on them

are computable.
P r o o f. To establish this result, it suffices to construct

the function ()Pd a since () =Z a a  .

(,)

() ((),)

() (,).

if then

elif then else fi

Pda x a a

e x a x Pda e x a

Pd a Pda a

  



  

If there is an equality, then known functions of natural

numbers are freely used, in particular, tuples and operations

over them. In this case, tuples are also tuples of

neighborhoods. ♦

Definition 14 (a metric B0-space). A B0-space is

metric if there exists a computable general measure

function  that assigns to each neighborhood a

rational number () 0a and:

1. () = 0A if and only if A contains at most one

point.

2. If A B and A B , then () < ()A B  .

3. If #A B , A C , and B C , then

() () < ()A B C   .

4. Every point 0xB has a base neighborhood of

arbitrarily small measure.
Example 3. If the basic neighborhoods in a certain

space have a tree of nesting, then A B means that when

B is not a leaf, A lies on a path from B . But a leaf is the

end point of a path, and then = .A B

4 In this case,  is a commonly accepted quantifier of functionali-

ty and belongs to the metalanguage.

27 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

Consider Hausdorff B0-spaces. It is natural to consider

the equivalence class of computable convergent sequences

of nested neighborhoods as a computable element of a B0-

space. According to N.A. Shanin [12], this is not sufficient:

it is also necessary to have an explicitly given computable

convergence regulator for such a sequence. Since no

measure or uniform structure of neighborhoods is assumed,

one must be careful.

Definition 15 (a computable element). A Shanin

point is a pair of everywhere defined functions ,f r ,

where ((())) ())x f e x f x  , and the function (,)r x y

(regulator) is such that, for any pair of neighborhoods

x y , either ((,))f r x y y or ((,))f r x y # x . If ,f r

are computable, then an element of a B0-space is

constructive relative to the given base.

Shanin points (,)f r and 1 1(,)f r are equivalent

1 1(,) (,)f r f r if, for any n , 1 1(((()), ()))f r f e n f n

()f n and 1 1(((()), ()))f r f e n f n  1().f n

Remark 4. The essential meaning is that a

regulator allows getting either into a smaller

neighborhood or into the gap between the smaller and

larger ones. Hence, it is possible to avoid the case,

unpleasant from a constructive standpoint, when the

boundary of the tested neighborhood falls exactly on

the limit f (as a result, it cannot be separated from the

members ()f n , whereas ()f n cannot get inside).

Definition 16. A B-space is a non-empty subset of

a B0-space X  (the parent space), X X , with a

base of generalized neighborhoods, each representing

the intersection of a basis neighborhood from A with

the set X . ♦
Thus, all of the above functions and predicates are

inherited by a B-space from its parent B0-space.
Lemma 4 (properties of Shanin points).
1. If a pair of functions is a Shanin point, then the

intersection of all ()f a contains at most one element.

2. In a complete space, this intersection is non-

empty.

3. In a metric space, a Shanin sequence f has a

measure of members tending to zero.
P r o o f. Consider two different points ,x y . Then, by

separability, there are basic neighborhoods x A , y B ,

#A B . Let us take 1A A , 1x A . Since 1 1((,))f r A A A ,

we have 1((,))#f r A A B , and thus y does not belong to the

intersection of all ()f n . Item 1 is established. Item 2 is

valid by the definition of completeness. Item 3 is satisfied

because, for any neighborhood where ()
a
f a A , we

have (())f r A A . ♦

In the case of metric spaces (see Martin-Löf’s and

other works listed in [13]), regulators are not needed,

as it suffices to require rapid convergence of a

sequence (e.g., that the measure of each ()f n does not

exceed 2 n). In the general case, in the absence of

regulators, the counterexamples from the fundamental

work [12] are valid, destroying the constructiveness of

considerations.

Proposition 2. Any separable space  with a

countable base of neighborhoods can be represented

as a B-space.

P r o o f. A B0-space 0 is the complement of  . It

also has a countable base of neighborhoods. We define a

base on it and obtain a B-space. The neighborhoods will be

the intersections of the neighborhoods from the base 0

with  .

Note that the base for  is not specified. All operators

work over 0 and the belonging to  is specified

externally and is not used in any computations.
Definition 17. A computable function over the

elements of B-spaces, :f  , is a computable

operator

: (((,) (,)), , (,))  nat natA A A A A A

that transforms any Shanin point (,); ()
a

f r f a 

into a function , . ((,), ,)s r mn nm  that is a Shanin

point (,); ()
a

g q g a  , where

1 1 1 1(,) (,) ((,)) ((,)).s r s r s r s r   (3)

Here, (,)s r is understood in the sense of the

transformation of functions defined above.

Remark 5. Thus, Definition 17 can be translated

into a more familiar language: for a Shanin pair (,)s r

representing x ,  yields a Shanin point (,)g q

representing ()f x as follows:

(, , ,) = ((), (,)).s r i j g i q i j

The arguments of the functions run through the

entire space 0 ; only the results and the correctness

requirement are restricted. Totality and generalness are

also considered on the entire space 0 .

Example 4. This example illustrates the important role

of continuity regulators. Let us take the common space of

real numbers with a basis of neighborhoods defined by the

intervals of rational points
1 1

,
2 2n n

a a
 

  
 

. Consider an

operator that processes each neighborhood

1 1
,

2 2n n
a a
 

  
 

 into
1 1

1 , 1
2 2n n

 
  

 
 if its lower bound is

greater than zero, into
1 1

1 , 1
2 2n n

 
    
 

 if the upper

bound is less than zero, and into
1 1

,
2 2n n

 
  
 

 if 0 is

28 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

inside the interval. It processes every computable

convergent sequence into a computable convergent

sequence, but a regulator cannot be obtained because it must

yield neighborhoods of zero for sequences whose members

all include zero. But then it must yield
1 1

,
2 2

 
 
 

 for a finite

number of its members, and by replacing it with a sequence

that separates from zero at the next step, we obtain an

incorrect result (the deception method).

Remark 6. Functions are not assumed to be

defined everywhere as operators on elements of a

space. Moreover, there arises another case when a

function is not defined, i.e., if the correctness

condition (3) fails for Shanin pairs representing a

given element. Correct operation must be ensured only

on elements of the set  . The equivalence of result

regulators for different Shanin representations of the

argument is not required.

2.2. The Main Theorem

Theorem 4. A function is continuous on a B-space

if and only if it is computable relative to some base.
The proof of this theorem requires several

additional constructs.
Lemma 5. A computable function transforms

constructive points of  into constructive points of .
Corollary of Lemma 2. Note that the arguments

of a computable function are not assumed to be

computable. It must work correctly on any arguments.

This is a fundamental difference from standard

concepts of constructiveness [11], even if they are

relativized.
Lemma 6. All computable functions are

continuous on their definitional domain.
P r o o f.

Corollary of Theorem 1 (on continuity). Let Y be a

neighborhood of the result ,g q . Then its regulator gives

()q Y such that (())g q Y Y . According to the continuity

theorem, only a finite number of values

[(), , (())]nf f e  of the argument function f are used

to find (())g q Y . Now let us take an arbitrary Shanin point

1 1,f g from (())nf e  . By replacing 1 1[(), , (())]nf f e 

with [(), , (())]nf f e  and all values 1()g a such that

1(()) (())nf e g g a  with ()ne  , we obtain an equivalent

Shanin point. It belongs to (())g q Y and, hence, to Y .

Thus, for any neighborhood of the result, we can find a

neighborhood of the argument that maps into it.

The main theorem is proven in one direction. For each

continuous function on a B-space, it remains to find a base

relative to which this function will be constructive. ♦

Functions in this context are not full-fledged

values. There is no collection of computable functions.

They form a set that is external to the computational

model. This is especially true for operators. However,

there is a well-known topological transformation, i.e.,

one can move from a continuous function to a relation

between the neighborhoods of the result and the

argument. Its constructive form was proposed by

Martin-Löf [9]: here, it will be generalized to non-

metric spaces.

Definition 18 (type demotion). An approximation

is a function enumerating neighborhoods such that,

for any a and b , there exists c : () () = ()a b c .

An approximation is maximal if for any a b there

exists c such that ()a# c or ()c b .

An open set is a function whose values are

neighborhoods and, for any a , if ()b a , then there

exists c such that () =c b .

A neighborhood relation is a function R from A

into pairs of neighborhoods (,)X Y of points

,x y  such that < >R X is an approximation

in  and 1 < >R Y is an open set in  . ♦

To ensure constructiveness, we design enumerating

functions of an approximation and open sets via R .
Lemma 7 (a function as a relation). For any

continuous function :f  of B-spaces, one can

find a neighborhood relation R such that for any

neighborhood a of the argument x , < >R a contains

()f x , for a neighborhood b of the result ()f x , the

union of neighborhoods
1 < >R b

 contains
5

1(())f f x , and for any ()z# f x , there exists a

neighborhood a such that some neighborhood from

< >R a is separated from z .
P r o o f. Let us take an arbitrary continuous function

:f  . Since f is continuous, for any neighborhood

Y of the result ()f x there exist neighborhoods X of the

argument x such that ()f x Y for any x X . They form

the desired relation R . ♦

At the same time, < >R X is maximal for x X .

Let us construct a search function sf(a,b) that is

computable relative to the parent space and R :

0(, ,)

(,)

#

0(, , 1)

(,) 0(, , 0).

sf a b x a b

R a x

x a x x a x

sf a b x

sf a b sf a b

 









if then

if then

if then elif then fi

else fi

else fi

(4)

5

1f  is treated as a relation, not as a function:

1 = {(,) (,) }R x y | y x R  .

29 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

This function finds, in approximation, a

neighborhood that is either nested in or separated from

the smaller of any pair of nested neighborhoods from

the approximation.
6

Lemma 8 (type promotion). If a neighborhood

relation R represents a function f , then f is

computable relative to the parent B0-spaces, the

predicate = , and R .

P r o o f. Since there is the equality predicate,

neighborhoods can be identified with natural numbers, and

standard recursive functions can be used accordingly.

Let us construct the result sequence . ()n g n using a

function f from a Shanin point. The invariant of the

function created is:

For any n , (), ()f n g n R and (1) ()g n g n  .

We define the auxiliary function (,):sr a b

1 2

2

0(, ,) (()) = (())

(()) 0(, , ())

(,) 0(, , 0).

sr a b n pr R n a pr R n b

pr R n sr a b S n

sr a b sr a b

  






if

then else fi

Provided that the computation of sr for given ,a b is

finite, it satisfies the following invariant:

(, (,)) (,) .a sr a b R sr a b b  

The function g is defined by the schema

2 1() () (0) ((), (()) .g n Z n f sr f n g Pd n if then else fi

The finite computation of g is guaranteed if f belongs

to the definitional domain of the function serving as the

base for constructing R .

The regulator for the neighborhood relation has already

been constructed above (see formula (4)); we only need to

replace the found neighborhood with its number in the

result of the desired function.

Thus, the main theorem is proved. ♦

It has the following corollary.
Lemma 9. The result f(x) of a continuous function

is constructive relative to R and x .

P r o o f. The function sf gives the result, and sr

gives its regulator.

2.3. Computability of the Neighborhood Relation

The question arises about the computability of the

neighborhood relation relative to the base for which a

given continuous function is computable. Here, one

has to use multistage nontrivial transformations of the

function definition and a nontrivial programming

6 From a constructive standpoint, proving the correctness of this

function needs application of Brouwer’s bar induction [16], which

once again demonstrates that the countability of the basis of
neighborhoods is an important requirement.

technique. Since this technique is secondary to the

logical results of the paper, here we will describe only

the ideas for such transformations and formulate the

results; the study of the resulting concept of

computability, which has some nontrivial properties

and, at the same time, sufficient power, is the subject

of other research works.
To compute the neighborhood relation, we would

like to run the function at least for all constructive

numbers. This is impossible due to the lack of means

to change the values of functional variables. However,

this difficulty can be circumvented for general

functions by using the main theorem. Therefore, the

proof of the theorem requires several auxiliary

constructs. Being of independent interest, they are

carried out for the general case, but involve quite

cumbersome technicalities. The idea behind them is

simple and transparent.
Theorem 5 (computation of the relation). By the

definition of an operator  that computes a general

function f , it is possible to construct a definition of

the neighborhood relation for this function in the same

base supplemented by the predicate of equality.
P r o o f. After an analysis of the function’s definition,

we construct an enumeration of the generalized graph of the

operator (the main technical part of the work) and replace in

it all pairs ((,),)F y z with
1(, ())x pr z , where x is the

smallest neighborhood in
1()pr F . The first element of the

Shanin pair decreases monotonically; hence, if there are

enough other elements surrounding it, the function’s result

will fall within a neighborhood from
1()pr z in the

neighborhood of x , and the constructs of the regulator do

not affect the function’s value and are omitted.

2.4. Relative Constructiveness

The question arises: is relative constructiveness a

characteristic of some class of functions?
Definition 19 (relative constructiveness). A

function  on a B-space is constructive relative to

: ()f  if, for every number x , there exists a

constructive function  over the base , , ,S Pd Z f

such that () = ()x x .  ♦

First of all, the following answer is trivial: this

class is broader than computable (continuous)

functions. The result of the Dirichlet function is 0 or

1 and is constructive. But this function itself is not

constructive relative to any basis.
Definition 20. A function is countably continuous

if the B-space can be divided into a countable set of B-

spaces on each of which it is continuous.
Theorem 6 (the equivalence of concepts). A

function is relatively constructive if and only if it is

countably continuous.

30 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

P r o o f.

The necessity part. Let a function be relatively

constructive. Since each of its results is generated by an

operator defined over the base , , ,S Pd Z F and is a

constructive function, we can assign to all numbers the

operators that compute them. Since the collection of

computable operators is countable and each constructive

function is continuous, we arrive at the required

decomposition.

The sufficiency part. Let a function be countably

continuous. We take the neighborhood operators
i

defining each of the continuous fragments and combine

them into the function (,) = ()ii n n  . Then each ()f x is

computable relative to  . ♦

This design is fundamentally nonconstructive. It is

impossible to combine constructive fragments into a

uniform constructive function on the space. Thus, the

question of which function applies to a given element

is unsolvable relative to any base. Note that the above

constructs do not involve the predicate of belonging of

an element to the B-space support or the properties

distinguishing the B-space from the parent space.
Example 5. Finally, we construct a function of a real

variable that is not countably continuous. Let us take the

first ordinal of the cardinality of the continuum and order

the real numbers according to this ordinal as follows. To

each ordinal, we assign a real number that cannot be

constructively represented via the previously ordered

numbers. Such a number can be found since the cardinality

of each ordinal number smaller than the first continuum one

is less than the continuum, and only a countable collection

of numbers can be constructively defined via each number.

Then the function assigning to each x its follower 1x is

not relatively constructive for any number and, therefore, is

not countably continuous.

3. DISCUSSION AND APPLICATION OF RESULTS

3.1. The Relationship with Other Concepts of

Constructiveness in Topology

First of all, we note that in the works used and

described in [11], the continuity of constructive

operators, in one form or another, was assumed in

advance.

The continuity of functions of a real variable was

proven completely independently only in soviet

constructivism [14], albeit for “hackerish” operators.

First, such operators have to process only constructive

functions; second, the source code of the algorithm of

any function is considered known, and anything can be

done with it. As shown in [15], the first feature is

harmless when discarding the second: the space of

functions in intuitionism can consist only of

algorithmically computable ones, but there should be

no access to their programs.

A slight modification of the definition of higher-

type operators (the absence of initial, externally given

higher-order operators) led to strong Baire continuity

and, simultaneously, to the possibility of processing

any functions. This continuity can be justified

intuitionistically by accepting Brower’s bar induction

principle [16]. Thus, another step was taken. One can

assume the existence of function algorithms when

allowing to use them as in modern computer science:

by calling closed modules.

In topology, we adhere to the lines of Ershov [7, 8]

and Martin-Löf [9]. For instance, Martin-Löf used

algorithms and introduced topology as point-free,

based on approximations, and functions on topological

spaces as neighborhood relations. Martin-Löf’s

followers limited their consideration to compactness

and, as a consequence, traditional spaces of real

numbers as well as Cantor and Baire spaces; they were

more inclined towards formal topology. The research

works of Martin-Löf’s line were reviewed in [17].

E. Bishop developed a concept of constructiveness,

which was aptly characterized in a conversation by A.

G. Dragalin: use only algorithms, but never confirm or

deny this [18]. Bishop’s concept was developed [19–

21] by introducing the notion of continuity indirectly,

through the Heine–Borel theorem, which is equivalent

to Brouwer’s bar induction. This line of research,

based on Bishop’s concept, was reviewed in [13]. The

notion of a subspace in both schools is subject to

strong restrictions.

The notion used here is more abstract and

independent of a particular basis of computability.

With this notion, we can consider arbitrary subspaces

selected in a nonconstructive way, as well as avoid the

use of a distinguishing predicate in constructive

design. In addition, the derivative concept of a base on

a B-space does not satisfy the conventional

requirements for a base of open sets. In particular,

objects intersecting as basic neighborhoods may have

empty intersection as sets, and basic neighborhoods as

sets may be empty. However, they are inherited from

the parent B0-space, allowing one to handle them

correctly.

We have succeeded in combining the advantages

of the approximation approach (from the author’s

standpoint, equivalent to the formal topology

approach) and the pointwise approach. Also, we have

succeeded in defining functions purely functionally

(through elements) and obtaining both continuity and

the capability to process elements not specified by

algorithms. A partial similarity with soviet

constructivism is the requirement that operators are

specified by a program; but this program is used

correctly as a callable module only to conduct

experiments, being applied to various arguments

31 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

(including those specified externally), and the

collection of programs is not used as a whole.

The only significant limitation remaining is the

countable basis of open sets. Additional studies are

needed to find out the transferability of the results to

inseparable spaces and spaces with an uncountable

base.

3.2. Connection with Applications and Metrology

Hereinafter, computational problems are

understood as those related to real numbers or other

Hausdorff spaces, as opposed to discrete problems.

When defining a regulator, the subtlety

corresponds to the absence of the dichotomy

, ()x y x y y x    in constructive analysis and its

replacement with the inaccurate comparison

(> 0 , (> <)).x y y x y x    

In computational practice with the representations

of real numbers with overlap, this makes the equality

operation difficult to compute, and real numbers are

rejected on this base. From a physical viewpoint,

however, there are no exact real numbers. In

algorithms, comparing numbers for equality leads to a

multitude of difficult-to-detect errors and instabilities.

In each case, it would be necessary to consider the

degree of precision required to compare data, but this

is hindered by a pedagogical issue: almost

everywhere, rational numbers are treated as a subset of

real numbers, which ignores their fundamentally

different nature.

Accordingly, we arrive at another practically

important conclusion: the frequently encountered

objection to represent real numbers by overlapping

systems (see an example of such systems in [22])—the

complexity of computing the equality—is

unreasonable from applied and scientific standpoints.

The equivalence between constructiveness and the

purely topological concept established in this paper is

new. A distant analogy is the following theorem: the

cardinality of a collection of continuous functions on a

space with a countable base of neighborhoods is the

continuum. Previously, constructiveness was only a

special case of topology, but now it turns out to be

topology itself. This is a consequence of an important

methodological principle: any binding to particular

representations and data structures limits our view.

(Recall I. Kant, who said that we can only think of

things in space and time; this is unfair to modern logic,

mathematics, and physics.) And real numbers most

often turn out to be such structures. Therefore, the

transition to the most abstract representations has

repeatedly demonstrated its power in mathematics and

logic. However, one should keep in mind that in this

case, the transition from ideal objects to real ones is

more difficult and may involve multiple stages.

The initial “undeveloped” concepts of Martin-Löf

and Shanin have proven to be the best for

generalization and modification. This confirms

another methodological principle: optimization

reduces flexibility, i.e., the capability to generalize and

change. In evolution, this means the extinction of

well-adapted species when the environment changes.

Martin-Löf was the first to show, using examples,

that the same function spaces in constructive

mathematics can have different spaces of constructive

operators. But he did not explicitly emphasize the

difference between his operators and those of soviet

constructivism. Later, it became clear that

discrepancies could also arise at higher levels. The

concept of computability proposed in this paper is one

example. It differs from Martin-Löf’s concept at the

third level.

From a practical viewpoint, we can draw the

following conclusion: if a program is written in a

functional style without using incorrect operations

over real numbers from a constructive standpoint

(equality, , sign()x , etc.), then it defines a

continuous function, and no other proofs are needed.

In addition, the restrictions accepted on higher-order

computability show why the style of functional

programming in numerical problems is different from

that in discrete counterparts: for example, categorical

constructs are not used. Categorical operators are of a

higher order than those allowed in the base, and they

destroy computability on topological spaces (see

Example 1). But their use as macros deteriorates

nothing.

A theoretical and practical question arises: what

program transformations are allowable as macros in

computational problems? It seems that this is

supercompilation [23]. But it has been studied

primarily for discrete problems so far.

CONCLUSIONS

This study raises a series of theoretical questions

concerning the concept of computability used. It is

formally weaker than the common concept of

computable operators of finite type. While eliminating

the need to explicitly construct models of sets of

operators of finite types, it serves to solve fairly strong

problems. Further research is required here,

particularly into possible extensions preserving

topological properties and allowing the computation of

operators with external program restructuring

required.

32 CONTROL SCIENCES No. 6 ● 2025

SYSTEMS ANALYSIS

The results of subsection 2.4 were partially

presented at the Thirteenth National Supercomputing

Forum (NSCF-2024) and published in its online

proceedings. The results of this work were announced

at the Smirnov Readings. The full text of the paper

was reported at Ailamazyan Program Systems

Institute, the Russian Academy of Sciences, on April

10, 2025.

Acknowledgments. This work was carried out within pro-

ject no. 125021302067-9 of Ailamazyan Program Systems

Institute, the Russian Academy of Sciences.

REFERENCES

1. Mitchell, J.C., Foundations for Programming Languages,

Cambridge: MIT Press, 1996.

2. McCarthy, J., A Basis for a Mathematical Theory of

Computation, in Computer Programming and Formal Systems,

Braffort, P., and Hirshberg, D., Amsterdam: North-Holland,

1963, pp. 33–70.

3. Barendregt, H.P., The Lambda Calculus. Its Syntax and

Semantics, Studies in Logic and the Foundations of

Mathematics, Amsterdam: North-Holland, 1984.

4. Mitchell, J.C., Concepts in Programming Languages,

Cambridge: Cambridge University Press, 2003.

5. Stark, R.W., LISP, Lore, and Logic, New York: Springer-

Verlag, 1990.

6. Strachey, C. and Wadsworth, C.P., Continuations: A

Mathematical Semantics for Handling Full Jumps, Higher-

Order and Symbolic Computation, 2000, vol. 13, no. 1/2, pp.

135–152.

7. Ershov, Yu.L., Theory of A-spaces, Algebra i Logika, 1973,

vol. 12, no. 4, pp. 369–416. (In Russian.)

8. Ershov, Yu.L., Teoriya numeratsii (Theory of Numberings),

Moscow: Nauka, 1977. (In Russian.)

9. Martin-Löf, P., Notes on Constructive Mathematics,

Stockholm: Almqvist & Wiksell, 1970.

10. Lacombe, A., Quelques procedes de definition en topologie

recursive, in Constructivity in Mathematics, Amsterdam: North-

Holland, 1959, pp. 129–158.

11. Bridges, D., Ishihara, H., Rathjen, M., and Schwichtenberg, H.,

Handbook of Constructive Mathematics, Cambridge:

Cambridge University Press, 2023.

12. Shanin, N.A., Constructive Real Numbers and Constructive

Functional Spaces, Trudy Mat. Inst. Steklov., 1962, vol. 67, pp.

15–294. (In Russian.)

13. Kawai, T., Bishop Metric Spaces in Formal Topology, in

Handbook of Constructive Mathematics, Bridges, D., Ishihara,

H., Rathjen, M., and Schwichtenberg, H., Eds., Cambridge:

Cambridge University Press, 2023, pp. 395–425.

14. Kushner, B.A., Lectures on Constructive Mathematical

Analysis, American Mathematical Society, 1984.

15. Kreisel, G. and Troelstra, A.S., Formal Systems for Some

Branches of Intuitionistic Analysis, Ann. Math. Logic, 1970,

vol. 1, no. 3, pp. 229–387.

16. Heyting, A., Intuitionism: An Introduction, Amsterdam: North-

Holland, 1966.

17. Ciraulo, F., Subspaces in Pointfree Topology: Towards a New

Approach to Measure Theory, in Handbook of Constructive

Mathematics, Bridges, D., Ishihara, H., Rathjen, M., and

Schwichtenberg, H., Eds., Cambridge: Cambridge University

Press, 2023, pp. 426–444.

18. Bishop, E., Foundations of Constructive Analysis, New York:

McGrawHill, 1967.

19. Kawai, T., Localic Completion of Uniform Spaces, Log. Meth.

Comput. Sci., 2017, vol. 13, no. 3, art. no. 22, pp. 1–39.

20. Kawai, T., Point-Free Characterisation of Bishop Compact

Metric Spaces, J. Log. Anal., 2017, vol. 9, no. 5, pp. 1–30.

21. Kawai, T., A Point-Free Characterisation of Bishop Locally

Compact Metric Spaces, J. Log. Anal., 2017, vol. 9, no. c2, pp.

1–41.

22. Nepeivoda, N.N., Grigorevsky, I.N., and Lilitko, E.P., New

Representation of Real Numbers, Program Systems: Theory

and Applications, 2014, vol. 5, no. 4 (22), pp. 105–121. URL

http://psta.psiras.ru/read/psta2014_4_105-121.pdf. (In Russian.)

23. Klimov, A.V. and Romanenko, S.A., Supercompilation: Main

Principles and Basic Concepts, Preprints of the Keldysh

Institute of Applied Mathematics, Moscow, 2018, no. 111. DOI:

10.20948/prepr-2018-111. URL: http://library.keldysh.ru/

preprint.asp?id=2018-111. (In Russian.)

This paper was recommended for publication

by RAS Academician S.N. Vassilyev,

a member of the Advisory Board.

Received May 13, 2025,

and revised August 25, 2025.

Accepted October 2, 2025.

Author information

Nepeivoda, Nikolai Nikolaevich. Dr. Sci. (Phys.–Math.), Ailama-

zyan Program Systems Institute, Russian Academy of Sciences,

Pereslavl-Zalessky, Russia

 nnn@nnn.botik.ru

ORCID iD: https://orcid.org/0000-0001-8845-7627

Cite this paper

Nepeivoda, N.N., Continuity as Computability. Control Sciences

6, 20–32 (2025).

Original Russian Text © Nepeivoda, N.N., 2025, published in

Problemy Upravleniya, 2025, no. 6, pp. 24–38.

This paper is available under the Creative Commons Attribution

4.0 Worldwide License.

Translated into English by Alexander Yu. Mazurov,

Cand. Sci. (Phys.–Math.),

Trapeznikov Institute of Control Sciences,

Russian Academy of Sciences, Moscow, Russia

 alexander.mazurov08@gmail.com

http://psta.psiras.ru/read/psta2014_4_105-121.pdf
http://library.keldysh.ru/preprint.asp?id=2018-111
http://library.keldysh.ru/preprint.asp?id=2018-111
mailto:nnn@nnn.botik.ru
https://orcid.org/0000-0001-8845-7627
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:alexander.mazurov08@gmail.com
http://creativecommons.org/licenses/by/4.0/

