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Abstract. The relationship between computability and continuity is studied. Computability over
an arbitrary initial basis of data types and functions (a base) is considered using McCarthy recur-
sive schemata and strongly typed operators of finite types. In this case, computable operators are
proved to be strongly continuous in the Baire sense: for parameter functions with any value of the
other arguments, it is possible to find a finite collection of their values that uniquely determines
the result. Based on relative computability, an approach to constructive topology is developed
within which the pointwise approach (an element is a fundamental sequence of neighborhoods)
and the approximation approach of abstract topology (a function over topological spaces is a
neighborhood relation) are equivalent. The concept of B-spaces is formulated, allowing one to
constructivize separable spaces with a countable base of neighborhoods. The continuity of
pointwise constructive functions of B-spaces and their transformability into neighborhood rela-
tions are proved. The equivalence of the concepts of computability relative to a certain base and
continuity is established. The concept of a relatively constructive function is formulated: such a
function transforms each element into an element constructible relative to its argument and a
fixed base. Its equivalence to the concept of a countably continuous function formed by the union
of a countable family of functions continuous on subspaces is established. Since any separable
space with a countable base can be described as a B-space, this result contains no constructive
restrictions. The connection between the proposed approach and other approaches to constructive
topology is discussed.

Keywords: relative computability, separability, countable base, pointwise spaces, abstract topology, approx-

imation approach, Baire continuity, continuity on subspaces.

INTRODUCTION

In research devoted to computability in topological
spaces, its connection with continuity is necessarily
present; see the discussion in Section 3. Computability
is considered on the basis of a uniform standard
model, i.e., Turing machines. The question arises
about the relationship between the abstract general
concept of computability and continuity. It will be
addressed below.

1. ALGORITHMIC FORMALISM

1.1. Recursive Schemata

Programming practice has shown that functional
programs for discrete and continuous tasks are written
in different styles. The standard definition of
computability in computer science using Turing

machines or A -calculus [1] is pragmatically correct
primarily for discrete tasks. Although almost all
variants of computability considered in theory are
formally equivalent, their areas of practical
applicability may differ. Since computability here will
be analyzed for continuous tasks, we should be careful
in choosing an appropriate definition of computability
for the programming style used. In this paper, the main
concept of computability is the relative computability
of McCarthy recursive schemata [2] over a base: the
basis of initial functions and predicates. It is
generalized to the strongly typed calculus of operators
of finite types. Formally, this is a restriction of the
definition of A-operators of finite types with a fixed-
point combinator, direct products, and conditional
operators, which was studied in detail in computer
science [1, 3, 4].
Definition 1 (a tower of data types T).

1. A finite collection of data types T, that
necessarily includes the bool type.

20

CONTROL SCIENCES No. 6 e 2025


mailto:nnn@nnn.botik.ru

SYSTEMS ANALYSIS @

2. All types from T, belongto T.
3. A type (t,...,7,) is called a record. If

T, T, €L and are not records, then

(t5,.., 7,) € T. If all members of a record are types
from T, , then this record belongs to the subclass T; .

4.1f 1,...,7, €T, then (t;,..., 7, >1)€T. Such
types are called functional.

5. Each type is assigned an infinite collection of
variables of that type.

Definition 2 (a base).

1. Each data type from T, is assigned with a non-

empty data set that necessarily contains the “soft
error” element L. The bool type is assigned the set

{T,F, 1}.

2. For any types of the form (t,,..., T,), there are
functions

join:(t,..., 1, > (1., T,),
pr: (Tye-0T,) > 7))
satisfying the condition
pr.(join(a,,...,a,))=a forl<i<n. (1)

3. A finite collection of initial typed functions with

arguments and values from T, and constants with

types from T . (The logical constants true and false

are present in any case.) All functions are stable
relativeto L:

If f(X,...., %, L Y,..., V)= Z and z =L,

then f(X,.., X;, X, Yy,eory ¥y ) = 2 forall x.
(Such functions are called generic in computer
science.) Constants from the base are called initial.
Tuples whose elements are all constants are also
considered constants.

Functions with a logical result value are called
predicates. 4

Hereinafter, a sequence of expressions &;..., @,

will often be denoted by &. Accordingly, 1 is a
sequence of L. Condition (1) means that the type of a
record is isomorphic to the direct product of the value
sets of the types that compose it. But the situation is
somewhat more subtle: the value sets of functional
types are not defined and, accordingly, there are no
constants of these types until explicit definitions
appear, with the exception of the initial functions.
Therefore, condition (1) means that if some values of
the corresponding types exist, then there is also a
value corresponding to their n-tuple.

Furthermore, there are no restrictions on the
appearance of L as elements of a record. Obviously,

the functions join and Pr; are stable relative to L.
Hence, Clarke’s warning can be avoided by
considering only functions with one argument or with
one subject argument and one functional argument.

Hereinafter, the join function will be omitted
whenever no ambiguities occur.

Definition 3 (terms).

1. The constants and variables of type t are terms
of type 1.

2. If f is a term of type (t,...,t, —>71) and

t,...,t, are terms of types t,..., T

then f(t,..., t) is a term of type t. (Such a term

sequence t is called suitable for f.)
3. If b is a term of the bool type and r and u are
terms of type 1, then
if bthenrelseufi
is a term of type t. Such terms are called
conditional. ¢

The designation

respectively,

n?

t{f,n f X0 X

abbreviated as t{f, X}, means that only the listed

constants and variables, except for the initial ones, are
used in the term. Note that some of the variables may
be of functional type. The parameters of a term

f(t,....t,) are all t that do not have the form

(f,...,r), and all r, for such records. Due to type
restrictions, this definition is not recursive. The meta-
designation f <t,...,t,> meansthat t,,..., . isa list
of all parameters of the term, rearranged in a
convenient order. The order in the expressions
f <r,..., I, > does not change in the same sentence.

Definition 4 (a recursive schema). Let f,..., f,

be new constants of functional types called recursive
functions. Then a collection of definitions of the form

£ X ) <t T X X ]
where X is a sequence of variables suitable for f, | is

called a recursive schema. ¢

The order of definitions within a recursive schema
makes no sense.

Definition 5. A computational environment
defined by a recursive schema consists of a base and
functions defined by this schema (recursive functions).

1.2. Abstract Computability

Consider programs operating based on recursive
schemata; let us rigorously define their execution and
computational capabilities.

A term is called closed if it does not contain
variables.

CONTROL SCIENCES No. 6 e 2025
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We will define a computational process in the
spirit of term rewriting rules to make a computational
system a subsystem of recursive operators of finite
types from [1]; and the results established there will be
utilized accordingly.

For fundamental reasons (operators must work not
only with the arguments defined by them),
computations may involve constants for all elements
of types from T.

Definition 6. A normal form is a term to which no
transformation rule can be applied. The process of
computing a closed term is defined as a sequence of
subterm replacements until obtaining a normal form (if
this ever happens). If a computation process does not
terminate, then the value is L. A term is computed by
applying one of the rewriting rules to it. A term
disappears in the cases specified in the rewriting rules,
or when it is a subterm of a disappearing term.

1. If a term has normal form, then the process is
complete, and this normal form is its value.

2. If a term has the form f(t), where f is a basic
function and all parameters are constants, then it is
replaced by the result of computing f .

3. If a term has the form f <G, t >, where f isa

basic function, ¢ are constants, and f <¢, L >= L,
then it is replaced by the result of computing
f <¢, L > ,and all elements of t disappear.

4. Aterm pr;(join(t,,..., t,)) isreplaced by t;, and
all other t; disappear.

5.if true then r else u fi is replaced by r, and u

disappears.
6.if false then u else r fi is replaced by r, and u

disappears.
7.if Lthenrelseufi is replaced by L, and r

and u disappear.

8. If a term has the form f(t), where f is a
recursive function, then it is replaced by the definition
of f, with the variables therein replaced by the terms

from t .

The result of transformations is intermediate if
only rule 8 can be applied to it.

Remark 1. The genericness condition essentially
means that the given argument L is not used in
computations. Rule 3 expresses that this condition is
valid for all initial functions.

Consider the structure of intermediate results.

Let us define a computation discipline that
guarantees a result if it is possible.

Definition 7. A computation is regular if it
satisfies the following constraints.

1. Rule 8 applies only in an intermediate term.
2. In the term if f(t,...,t,)thenrelseufi, the

terms r and u and their subterms are not computed.

3. In an intermediate term in the subterm
f(t,...,t,), where f is not the initial function, t;
are not computed.

4. Any subterm f(t,...,t,) appearing in an
intermediate term either disappears in further
computation or is computed. ¢

Definition 8. A recursive function is total if any of
its regular computation terminates. A function is
general® if it is total and any of its computation with
arguments not equal to L does not yield L. A
recursive operator is total (general) if, under any
substitution of total (general) functions into this
operator instead of its functional parameters, the
resulting function is total (general).

A function f of the type ©—m, where all

t;, me Ty, is computable if there exists a recursive
function with f(C) as its result computed for each
value ¢ of the arguments of f . An operator

o< f, x>, where X and the result have types from

T, and f are of the types T—m, where all
1;, te Ty, is computable if there exists a recursive
operator @ such that when extending the base by any

f of suitable types and substituting ¢ for X, the
result of computing @(f, ¢) is equal to o(f, ). ¢

Remark 2. In total functions, an error appears as a
calculated value and can be processed. If a function
loops, being calculated infinitely, then such a situation
is generally impossible to process.

Definitions for operators are not limited to
functions defined in the base. They must work on any
functions. Also, note that any external function is total.

We do not attempt to define computability for
operators of higher types, since the set of functions of
such types remains uncertain.

1.3. Computability Properties

Theorem 1 (on correct computations).

1. All terminating computations yield the same
result.

2. If a computation terminates, then all regular
computations terminate as well.

Proof. Item 1 (the first statement of this theorem) is a
consequence of the theorem on correct rewriting rules for
typed A -calculus with recursion; see [1, Ch. 5].

! This term is given by analogy with the general recursive func-
tion.
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Item 2 is a consequence of the theorem on head
recursion [1, Sect. 3.7].

Lemma 1. No computable operator can produce a
new function as a component of the result.

P r o o f. According to syntactic restrictions, all normal
forms are constants.

Since it is impossible to compute a new function, we
define the concept of function transformation using a
computable operator.

Definition 9. An operator ¥ < f, x> transforms a

function f into g if, after adding the function f to
the base, W < f,c>=g(c) forall c. e

This definition is naturally generalized to the
transformation of a tuple of functions into a tuple of
functions.

Lemma 2. Any computable operator ¥
transforms computable functions into computable
ones.

P r oo f. Let us add the definitions of the argument
functions f to the definition of the operator ¥ . Without

extending the base, we obtain the definition of the result
function:

y(X) < ¥(f, X).

Definition 10. A finite collection X of values of the
arguments fi(Bi):di of an operator W< f, x>
guarantees a value y on c if, when substituting any
functions satisfying f(Bi)zdi, the value is
Y<f,c>=y. If any of its subsets does not
guarantee the value, it guarantees it exactly. We will
define the collection X as a set of pairs (c,d,)
(called a function fragment). A function has a
fragment X if it takes the values d; onall C;. ¢

A practical criterion for checking that a fragment
exactly guarantees a value is to test the operator with
the following functions: F equal to L everywhere

except for a given set, that yields d, on C;, and its
modifications that additionally yield an error on one of
C,. But this is not a universal solution: if a recursive

schema loops, we will not receive a response. This can
also happen during an “illegal” call to a function
parameter, as a result of which the calculation
proceeded a different path.

The restrictions imposed (the absence of initial
operators) allow us to establish Baire’s continuity of
computable functions, which is violated in a more
general case.

Theorem 2 (the first continuity theorem). For
any closed term t whose recursive schema contains

only functional variables f,..., f, and whose regular
computation is finite, there exist fragments X; such

that when substituting other functions with the same
fragments into it, the term’s value does not change.

P r o o f. The computation contains only a finite
number of calls to parameter functions. If other functions
have the same values on the given parameters, the
computation will be repeated with the same result.

Example 1. This example illustrates the significance of
type complexity restrictions for the base. The continuity
theorem is violated if we add the original operator of the

second type, FZ:((nat —»nat)—>bool), with the

definition
T if there exists no i such that f (i) =L

FZ(f)« . .

1 otherwise.

Thus, the above concept of computability is
adapted to relativization to many initial spaces and any
initial functions, giving the strong continuity of
computable operators of the second type.

Example 2. The minimal base generating standard
computable functions of natural numbers is the type system

{nat, bool}, where nat is interpreted as the type of natural
numbers, constant 0 e nat, a predicate Z € (nat — bool),

and functions S, Pd of the type (nat — nat), interpreted

as
Z(X)=(x=0), S(x)=x+1

Lifx=0
Pd(X)_{x—lifx>0.

Recall that truth and falsehood are always added.
Summation and multiplication are defined by the
recursive schema

A(x, y) «if Z(y) then x else A(S(x), Pd(y)) fi
{M(x, y) «if Z(y) then 0 else A(M(x, Pd(y)), x) fi.
The second-order function | iterates the application of
the argument f , X times, Err formally always gives an
error; in fact, its execution never ends, and the vyield is
nothing:
I(x,y, f)«if Z(x) theny
else 1(Pd(x), f(y), f)fi
Err(x) < Err(x).
Lisp logic connectives [5] are defined by schemata, so
we will use them freely below:
AAB <« if Athen B else F fi
Av B «if AthenT else B fi
—A «if Athen F elseT fi.

If natural numbers are present or simulated in the
environment, we use standard designations for operations
and identify natural numbers with their code.

1.4. Properties of a Generalized Graph

As noted above, we can consider operators with
two arguments—the initial type and the functional
type—without loss of generality. The following
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convention allows using the results of standard
algorithm theory.

Convention on enumerability and lists. For each
initial type, an equality predicate and an enumeration
function, denoted by en, are added so that the

sequence en"(a,) enumerates without repetition all

elements of this type, where @, is a constant. At least
one of the initial types is infinite.

Then this infinite type can be used as an
isomorphism of natural numbers. Let the ith element
be simply denoted by 1. Of course, if there are natural
numbers among the initial types, they can be used
directly. As in standard computability theory, we
define primitively recursive encodings of n-tuples,
lists, and finite sets by numbers, the union and
intersection operations of encoded sets, and the
predicate of belonging of a given number to a set. For
convenience, we specify the encoding of a set as a list
without duplicate elements.

Definition 11. A generalized graph is an
enumerable set of triples (X, c, d), where the value

c does not contain? the constant L, and for any triples
(X;, ¢, d;) with the same ¢ none of X, is nested in
another X;. A generalized graph is a graph of an

operator F(f, x) if in all triples X is a fragment
ensuring d on c. A graph is complete if for any ¢,c
for which the computation of F(¢, ¢) terminates, the-
re exists (X, ¢, d) inwhich X is afragment of ¢.¢

We define, in the form of a specification
implemented by standard programming methods, an
operator for computing an operator F(f,Xx) on a
complete graph G:

If the enumeration of G has a triple (X, x, d),
where X is a fragment of f, then d;
otherwise, one operates infinitely.

Thus, a complete generalized graph is a strong and
adequate definition of an operator. It would be great if
a recursive schema for it could be constructed using
syntactic transformations of the operator schema.
Consider the difficulties arising in this case.

Lemma 3 (call tracing). Let a recursive schema
define an operator @ with functional parameters f;
and a subject parameter x (i.e., from T,). Then:

1. When computing other functions of this schema,

f, can be applied only if the given function is also an

operator and f; is substituted as one of its functional
parameters.

2 Recall that the element L does not turn an entire record into an
error.

2. All places of potential application of f; in a
term t can be found statically by analyzing the
recursive schema, and they have the form pr;(F)(t),

where F is a functional parameter of some function.
3. The application of f; will occur if and only if

the place of potential application of f; is found on the
path of computing the parameter pr;(F) with the
value of f;.

Proof. Let us outline the proof. Since f; is neither an
initial function nor a function defined in the schema, it can
only be the value of some parameter. This proves item 1
(the first statement) of Lemma 3.

Next, we construct a list of functional parameters of the
schema for ® whose components can be replaced by f. This
list includes f; itself. If, inside the definition of a certain
function, a function from @ is substituted for the parameter
g, then g is added to ®. Applications of parameters from @
are potential applications of f;. Item 2 of this lemma is
established. Finally, item 3 follows from item 2. ¢

The traceability lemma also works in the case
when a schema contains operators computing
functions, since they cannot compute new functions.
Subsequent constructs can, in principle, be carried out
for the case when such operators are allowed. But this
is not essential for the main objective of the paper
(operators on functions of a topological space are not
considered here). Therefore, the analysis will be
restricted to second-order schemata that do not define
functions yielding functions.

Task 1. Modify the definition of an operator so
that when terminating the work on given parameters, it
would yield a fragment of the parameter function that
exactly guarantees the result.

Task 2. Modify the definition of a term with one
functional variable so that it would take a fragment as
a parameter instead of a function and, if possible, yield
not only the result but also a diagnosis of whether the
fragment is sufficient for correct computation.

Let f and T[f] denote a function parameter and a

term computed, respectively. Note that the schema
transformations are performed for this particular term
since preliminary tracing is necessary. Based on
tracing, in Task 1, we can label the subterms in the
original recursive schema; in Task 2, we can label the
subterms of the transformed term and those of the
definitions in the original recursive schema as well.
Definition 12. A subterm is red if it contains a call
to f . Asubterm is yellow if it does not contain such a

call but is a direct component of a red term (an
argument of a red function, a component of a red
record, or an alternative of a conditional expression
with a red condition). A subterm is white in all other
cases. If T[f] is white, we label it as yellow. ¢

24
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Using the traceability lemma, one can color the
subterms of any term.

It is more convenient to process the error indicator
first, so it is always equipped with the true flag.
Hereinafter, & indicates an empty set; & stands for
an n-tuple of empty sets; finally, {x} means a
singleton. Without limiting generality, assume that all
functions defined in a schema yield a record with n
components. If S is a record, then (X, S) is the result
of adding a component x to it. This does not lead to
ambiguities: in a type tower, records cannot be
components of records. Note that the standard folding
of an n-tuple into a list code is not always correct due
to Clarke’s warning: a list code containing an error as
one of its elements is always an error. To avoid
unnecessary effort while dealing with particular
numbers, we define the function
tail ((x,,..., X,)) = (X,,..., X,) for each type of n-tuples
encountered in a schema.

Let us construct the following auxiliary functions
using standard methods:

1. the function Ev(X, a), which yields (false, b)
if (a,b)e X forsome b, and (true, A) otherwise;

2. the function w, which constructs the union of
two sets.

We denote by A a constant that will replace the
value unnecessary below.

Modification 1. tP[X,t], computation with
guaranteed success. It is obtained by adding a subject
parameter X to all operators defined in a schema that
contain potential applications of f, and by recursively
replacing all calls f(r) to the function parameter,

traced using Lemma 5, with tail(Ev(X, r®)). This

modification provides the simplest partial solution to
Task 2 without diagnosing errors associated with a
parameter missing in a fragment. Note that even this
partial solution is individual for T[f] since the
coloring dependson T .

Modification 2. Tracing and collecting the
applications of a parameter functions: processing T
into T".

For each function with a red entry, we define its
red variant with an additional parameter X, of the
fragment type.

1. The red variant of f :

fY(x) «if pr,(x) then (true, pr,(x), A)
else (pr,(Ev(X, tail(tail(x))), X, u{pr,(x)}, (2)
pr, (Ev(X, tail(tail (x)))) fi.

2. The red variant of the remaining initial
functions:

¢’ (X,, X) «if pr,(x) then (true, pr,(x), A)
else (false, pr,(x), o(tail(tail(x)))) fi.
3. The red variant of the function, defined as
¢(o, X) «—t, has the form

@' (X, o, X) «t",
where t' is computed recursively according to the
rules specified below.
We recursively make the following substitutions.
1. All white subterms remain unchanged. We
replace all yellow t with
t' = (true, J, t).
2. Therecord (t,,...,t,)"(t,..., t,)":

(if pr.(t/)then (true, pr,(t)w---Upr,(t), A)elif...
elif pr,(t)) then (true, pr,(t/))w---U pr(t)), A)
else (false, pr,(t)) u---U pr,(t)),
tail(tail (t,')),..., tail (tail (t;))) fi.

3. The conditional term if b then r else u fi" :
if pr,(b") then (true, pr,(b"), A),
elif pr,(b")then(pr,(r"),
pr,(b") L pr,(r"), tail(tail (r"))),

else(pr,(r"), pr,(b")w pr,(u"), tail (tail (u"))) fi .
4. The red function ¢(S) :

if pr,(s") then (true, pr,(s"), A)
else(pr,(r"), pr,(b") U pr,(u"), tail (tail (u*))) fi.

This complex program restructuring corresponds to
the concept of a continuation in functional programs
[1, 6]. Unlike the works cited, we do not add a third-
level operator here, managing to restructure the
function with level reduction.

Theorem 3 (generalized graph). Based on the
schema of a general operator @, one can construct a
definition of a function that enumerates its generalized
graph.

P r o o f. Let us make an additional modification to the
schema TV for the term T =®(f,, x,), where ®(f,, x,)
are constants.® We introduce a new variable for a fragment
X and add it as a parameter to all definitions and
applications of functions , without using it anywhere inside

the definitions (except for the mandatory parameter when
calling any function). The only exception is (2), where it is

3 Here, fO can be either a new initial function or one defined in the
same schema; this affects the process of constructing T* but not
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used in EV . In this regard, we redefine the original operator
® as

D¢ (X, X) « D[X, X].

With standard methods, we construct a certain
enumeration Enum(i) of pairs (X, X) (a fragment and a
subject parameter) starting from zero.

Let us define a function for constructing the initial

segment of the generalized graph. For brevity and clarity,
we write the frequently occurring  expression

®° (pr,(Enum(i)), pr, (Enum(i))) simply as [@°]:
Gr(i, G, n)«ifi=n+1then G
elif pr,([®°]) then Gr(i+1, G, n)
else Gr(i+1, G U{(pr, ([®°]),
pr; ([D°]), pr,(Enum(i))}, n) fi.

It adds, step by step, the found fragments that verifiably
guarantee pr,(Enum(i)) on pr,(Enum(i)). In the limit, we
obtain the complete graph of the operator.

Remark 3. This algorithm produces an
enumeration with repetitions. This can be eliminated
using standard methods.

A complete study of the relationships between
operators and generalized graphs requires separate
consideration. Here, we merely mention that the
syntactic transformation of an arbitrary operator into a
graph is generally impossible: its existence would
mean, in particular, the solvability of the looping
problem. Therefore, special cases are important.

2. APPLICATION TO TOPOLOGY

2.1. B-spaces

Yu.L. Ershov defined the constructivization of
topological spaces with a countable basis of
neighborhoods (A-spaces) [7, 8]. Let us give a
generalized definition for the case of subspaces of
arbitrary separable spaces with a countable basis of
neighborhoods, using the ideas of P. Martin-Lo6f [9]
and A. Lacombe [10]. In doing so, we will eliminate
the initial binding to natural numbers, which is
adopted by the above authors and is standard for all
works on constructive topology listed in the
fundamental monograph [11]. When dealing with
natural numbers, we will explicitly note this fact.

Definition 13. A By-space is a separable complete
space in which a countable basis of neighborhoods is
selected. This basis, with the empty set added, will be
denoted by 2U. Let us define a base on I .

1. The constants & and £ (an empty set and the
entire space).

2. A general countability function e:(— %)
such that the sequence Ane"(<&) runs through the
entire space 2 without repetition.*

3. The general intersection operation of
neighborhoods, AN B.

4. The general predicate A<B (A is thinner than
B), meaning that either the closure of A is nested in
B,or A=B and B is an open-closed singleton.

5. The general predicate A#B (A is separated
from B), meaning that the closures of their
neighborhoods do not intersect.

6. (Optional) Some additional functions and
predicates on 2 . ¢

Item 2 defines a bimorphism 2(in nat, which is
not an isomorphism: the base does not contain the
function Pd and the equality predicate (even a=J).
It is necessary to guarantee constructivization of the
countability of 2(. According to Definition 2, n-tuples
of neighborhoods are also constructive objects.

Proposition 1. If the equality predicate of
neighborhoods a=b is computable in a space By,
then the neighborhoods form a model of natural
numbers and all partially recursive functions on them
are computable.

P r oo f. To establish this result, it suffices to construct
the function Pd(a) since Z(@)=a=9.

Pda(x, a) «if a=d then L
elif e(x) =a then x else Pda(e(x), a) fi
Pd(a) <« Pda(>, a).

If there is an equality, then known functions of natural
numbers are freely used, in particular, tuples and operations
over them. In this case, tuples are also tuples of
neighborhoods. ¢

Definition 14 (a metric Bo-space). A Bg-space is
metric if there exists a computable general measure
function p that assigns to each neighborhood a

rational number p(a)>0 and:

1. w(A)=0 if and only if A contains at most one
point.

2.1f A<B and A=B, then u(A) <u(B).

3. If A#B, A<C, and B<C, then
w(A) +u(B) <u(C).

4. Every point xeB, has a base neighborhood of

arbitrarily small measure.

Example 3. If the basic neighborhoods in a certain
space have a tree of nesting, then A<B means that when
B is not a leaf, A lies on a path from B . But a leaf is the
end point of a path, and then A= B.

*In this case, 1 is a commonly accepted quantifier of functionali-
ty and belongs to the metalanguage.
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Consider Hausdorff Bg-spaces. It is natural to consider
the equivalence class of computable convergent sequences
of nested neighborhoods as a computable element of a By-
space. According to N.A. Shanin [12], this is not sufficient:
it is also necessary to have an explicitly given computable
convergence regulator for such a sequence. Since no
measure or uniform structure of neighborhoods is assumed,
one must be careful.

Definition 15 (a computable element). A Shanin

point is a pair of everywhere defined functions f,r,
where Vx(f(e(x))) < f(x)), and the function r(X, y)
(regulator) is such that, for any pair of neighborhoods
x<vy,either T(r(x,y))<y or f(r(x, y)#x.I1ff,r
are computable, then an element of a By-space is
constructive relative to the given base.

Shanin points (f,r) and (f, r,) are equivalent
(f, r)=(f, r) if, for any n, f(r(f,(e(n)), f,(n)))
< f(n) and f(r(f(e(n)), f(n))< f,(n).

Remark 4. The essential meaning is that a
regulator allows getting either into a smaller
neighborhood or into the gap between the smaller and
larger ones. Hence, it is possible to avoid the case,
unpleasant from a constructive standpoint, when the

boundary of the tested neighborhood falls exactly on
the limit f (as a result, it cannot be separated from the

members f(n), whereas f(n) cannot get inside).

Definition 16. A B-space is a non-empty subset of
a Bo-space X_ (the parent space), X < X_, with a
base of generalized neighborhoods, each representing
the intersection of a basis neighborhood from 2[ with
theset X . ¢

Thus, all of the above functions and predicates are
inherited by a B-space from its parent Bo-space.

Lemma 4 (properties of Shanin points).

1. If a pair of functions is a Shanin point, then the
intersection of all f(a) contains at most one element.

2. In a complete space, this intersection is non-
empty.

3. In a metric space, a Shanin sequence f has a
measure of members tending to zero.

P r o o f. Consider two different points X, Y. Then, by
separability, there are basic neighborhoods X€ A, yeB,
A#B . Letustake A <A, xeA.Since f(r(A, A)<A,
we have f(r(A, A))#B, andthus Y does not belong to the

intersection of all f(n). Item 1 is established. Item 2 is
valid by the definition of completeness. Item 3 is satisfied
because, for any neighborhood where ﬂaf(a)eA, we

have f(r(A)<A.e¢
In the case of metric spaces (see Martin-Lof’s and
other works listed in [13]), regulators are not needed,

as it suffices to require rapid convergence of a
sequence (e.g., that the measure of each f(n) does not
exceed 27"). In the general case, in the absence of
regulators, the counterexamples from the fundamental
work [12] are valid, destroying the constructiveness of
considerations.

Proposition 2. Any separable space = with a
countable base of neighborhoods can be represented
as a B-space.

Proof ABgspace E, isthe complement of Z. It

also has a countable base of neighborhoods. We define a
base on it and obtain a B-space. The neighborhoods will be
the intersections of the neighborhoods from the base Z,
with 2.

Note that the base for 2 is not specified. All operators

work over =, and the belonging to = is specified

externally and is not used in any computations.
Definition 17. A computable function over the
elements of B-spaces, f:=Z—Y, is a computable

operator
D (A, 2A) — (A, A)), nat, nat — (A, 2A))
that transforms any Shanin point (f, r); (.f(a)eE

into a function An,m.d((s, r), n, m) that is a Shanin
point (g, q); (),g(a) e Y, where

(5, N)=(s, 1) >O((s, 1)) =D((s,, ). (3)
Here, (S,r) is understood in the sense of the

transformation of functions defined above.

Remark 5. Thus, Definition 17 can be translated
into a more familiar language: for a Shanin pair (s, r)
representing x, @ vyields a Shanin point (g, q)
representing f (x) as follows:

(s, r, 1, J)=(9(). ad, J))-

The arguments of the functions run through the
entire space =, ; only the results and the correctness
requirement are restricted. Totality and generalness are
also considered on the entire space Z,.

Example 4. This example illustrates the important role
of continuity regulators. Let us take the common space of
real numbers with a basis of neighborhoods defined by the

. . . 1 1 .

intervals of rational points [a——, a+—j. Consider an
2" 2"

operator that

a—i, a+i into 1—i,1+ij if its lower bound is
2" 2" 2" 2"

processes each neighborhood

greater than zero, into (—1—2—ln,—1+2—1nj if the upper

bound is less than zero, and into (—i +ij if 0 is
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inside the interval. It processes every computable
convergent sequence into a computable convergent
sequence, but a regulator cannot be obtained because it must
yield neighborhoods of zero for sequences whose members

all include zero. But then it must yield (—% %j for a finite

number of its members, and by replacing it with a sequence
that separates from zero at the next step, we obtain an
incorrect result (the deception method).

Remark 6. Functions are not assumed to be
defined everywhere as operators on elements of a
space. Moreover, there arises another case when a
function is not defined, i.e.,, if the correctness
condition (3) fails for Shanin pairs representing a
given element. Correct operation must be ensured only
on elements of the set =. The equivalence of result
regulators for different Shanin representations of the
argument is not required.

2.2. The Main Theorem

Theorem 4. A function is continuous on a B-space
if and only if it is computable relative to some base.

The proof of this theorem requires several
additional constructs.

Lemma 5. A computable function transforms
constructive points of Z into constructive points of Y.

Corollary of Lemma 2. Note that the arguments
of a computable function are not assumed to be
computable. It must work correctly on any arguments.
This is a fundamental difference from standard
concepts of constructiveness [11], even if they are
relativized.

Lemma 6. All computable functions are
continuous on their definitional domain.

Proof.

Corollary of Theorem 1 (on continuity). Let Y be a
neighborhood of the result §,q. Then its regulator gives

q(Y) such that g(q(Y))<Y . According to the continuity
theorem, only a finite number of  values
[f(D),..., f(e"(D))] of the argument function f are used
to find g(q(Y)) . Now let us take an arbitrary Shanin point
f, g, from f(e"(D)) . By replacing [f,(D),..., f,(e"(D))]
with [f(D),..., f(e"(Z))] and all values g,(a) such that
f(e" (D)) < g(g9,(a)) with e"(), we obtain an equivalent

Shanin point. It belongs to g(q(Y)) and, hence, to Y .
Thus, for any neighborhood of the result, we can find a
neighborhood of the argument that maps into it.

The main theorem is proven in one direction. For each
continuous function on a B-space, it remains to find a base
relative to which this function will be constructive. ¢

Functions in this context are not full-fledged
values. There is no collection of computable functions.

They form a set that is external to the computational
model. This is especially true for operators. However,
there is a well-known topological transformation, i.e.,
one can move from a continuous function to a relation
between the neighborhoods of the result and the
argument. Its constructive form was proposed by
Martin-Lof [9]: here, it will be generalized to non-
metric spaces.

Definition 18 (type demotion). An approximation

is a function A enumerating neighborhoods such that,
for any a and b, there exists ¢: A(a) N A(b) = A(c).
An approximation is maximal if for any a<b there
exists ¢ such that a# A(c) or A(c)<b.

An open set is a function @ whose values are
neighborhoods and, for anya, if b<O(a), then there
exists ¢ such that O(c) =b.

A neighborhood relation is a function R from 2
into pairs of neighborhoods (X,Y) of points
XeZ, ye Y such that R< X > is an approximation
in Y and R*<Y > isanopensetin Z. ¢

To ensure constructiveness, we design enumerating
functions of an approximation and open sets via R .

Lemma 7 (a function as a relation). For any
continuous function f:Z— Y of B-spaces, one can
find a neighborhood relation R such that for any
neighborhood a of the argument x, R <a> contains
f(x), for a neighborhood b of the result f(x), the

union of neighborhoods R™*<b> contains®
f1(f(x)), and for anyz#f(x), there exists a

neighborhood a such that some neighborhood from

R<a> isseparated from z.
P r oo f. Letus take an arbitrary continuous function

f:Z—>Y.Since f is continuous, for any neighborhood
Y of the result f(X) there exist neighborhoods X of the

argument x such that f(x) €Y forany xe X . They form
the desired relation R . ¢

At the same time, R < X > is maximal for xe X .
Let us construct a search function sf(a,b) that is
computable relative to the parent space and R :

sf0(a, b, X) « if a<b then
if R(a, x)then
if x<athen x elif x#a then x fi 4)
else sf0(a, b, x+1) fi
else | fi

sf (a, b) « sf0(a, b, 0).

5t is treated as a relation, not as a function:

R™={(x, V)I(y, x) eR}.

28
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This  function finds, in approximation, a
neighborhood that is either nested in or separated from
the smaller of any pair of nested neighborhoods from
the approximation.®

Lemma 8 (type promotion). If a neighborhood
relation R represents a function f, then f s
computable relative to the parent Bg-spaces, the
predicate = , and R.

P r o o f. Since there is the equality predicate,

neighborhoods can be identified with natural numbers, and
standard recursive functions can be used accordingly.

Let us construct the result sequence An.g(n) using a
function f from a Shanin point. The invariant of the
function created is:

Forany n, f(n), g(n)eR and g(n+1)<g(n).

We define the auxiliary function sr(a, b):

sr0(a, b, n) «if pr,(R(n)) =an pr,(R(n)) <b

then pr, (R(n)) else srO(a, b, S(n)) fi
sr(a, b) <« sr0(a, b, 0).

Provided that the computation of sr for given a,b is
finite, it satisfies the following invariant:

(a, sr(a, b)) e Rasr(a, b) <h.
The function ¢ is defined by the schema
g(n) «if Z(n) then f,(0) else sr(f,(n), g(Pd(n)) fi.

The finite computation of § is guaranteed if f belongs
to the definitional domain of the function serving as the
base for constructing R .

The regulator for the neighborhood relation has already
been constructed above (see formula (4)); we only need to
replace the found neighborhood with its number in the
result of the desired function.

Thus, the main theorem is proved. ¢

It has the following corollary.

Lemma 9. The result f(x) of a continuous function
is constructive relative to R and x.

Proof The function Sf gives the result, and sr
gives its regulator.

2.3. Computability of the Neighborhood Relation

The question arises about the computability of the
neighborhood relation relative to the base for which a
given continuous function is computable. Here, one
has to use multistage nontrivial transformations of the
function definition and a nontrivial programming

® From a constructive standpoint, proving the correctness of this
function needs application of Brouwer’s bar induction [16], which
once again demonstrates that the countability of the basis of
neighborhoods is an important requirement.

technique. Since this technique is secondary to the
logical results of the paper, here we will describe only
the ideas for such transformations and formulate the
results; the study of the resulting concept of
computability, which has some nontrivial properties
and, at the same time, sufficient power, is the subject
of other research works.

To compute the neighborhood relation, we would
like to run the function at least for all constructive
numbers. This is impossible due to the lack of means
to change the values of functional variables. However,
this difficulty can be circumvented for general
functions by using the main theorem. Therefore, the
proof of the theorem requires several auxiliary
constructs. Being of independent interest, they are
carried out for the general case, but involve quite
cumbersome technicalities. The idea behind them is
simple and transparent.

Theorem 5 (computation of the relation). By the
definition of an operator ® that computes a general
function f, it is possible to construct a definition of

the neighborhood relation for this function in the same
base supplemented by the predicate of equality.

P r o o f. After an analysis of the function’s definition,
we construct an enumeration of the generalized graph of the
operator (the main technical part of the work) and replace in
it all pairs ((F, y), z) with (X, pr,(z)), where x is the
smallest neighborhood in pr,(F). The first element of the
Shanin pair decreases monotonically; hence, if there are
enough other elements surrounding it, the function’s result
will fall within a neighborhood from pr(z) in the
neighborhood of X, and the constructs of the regulator do
not affect the function’s value and are omitted.

2.4, Relative Constructiveness

The question arises: is relative constructiveness a
characteristic of some class of functions?

Definition 19 (relative constructiveness). A
function y on a B-space is constructive relative to

f:(N—N) if, for every number x, there exists a
constructive function ¢ over the base S, Pd, Z, f
such that y(x) = @(x). ¢

First of all, the following answer is trivial: this
class is broader than computable (continuous)
functions. The result of the Dirichlet function is O or
1 and is constructive. But this function itself is not
constructive relative to any basis.

Definition 20. A function is countably continuous
if the B-space can be divided into a countable set of B-
spaces on each of which it is continuous.

Theorem 6 (the equivalence of concepts). A
function is relatively constructive if and only if it is

CONTROL SCIENCES No. 6 e 2025
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Proof.

The necessity part. Let a function be relatively
constructive. Since each of its results is generated by an
operator defined over the base S, Pd,Z,F and is a
constructive function, we can assign to all numbers the
operators that compute them. Since the collection of
computable operators is countable and each constructive
function is continuous, we arrive at the required
decomposition.

The sufficiency part. Let a function be countably
continuous. We take the neighborhood operators @,
defining each of the continuous fragments and combine
them into the function ¥(i, n) = ®,(n) . Then each f(X) is

computable relative to V. ¢

This design is fundamentally nonconstructive. It is
impossible to combine constructive fragments into a
uniform constructive function on the space. Thus, the
guestion of which function applies to a given element
is unsolvable relative to any base. Note that the above
constructs do not involve the predicate of belonging of
an element to the B-space support or the properties
distinguishing the B-space from the parent space.

Example 5. Finally, we construct a function of a real
variable that is not countably continuous. Let us take the
first ordinal of the cardinality of the continuum and order
the real numbers according to this ordinal as follows. To
each ordinal, we assign a real number that cannot be
constructively represented via the previously ordered
numbers. Such a number can be found since the cardinality
of each ordinal number smaller than the first continuum one
is less than the continuum, and only a countable collection
of numbers can be constructively defined via each number.

Then the function assigning to each X, its follower X g, is

not relatively constructive for any number and, therefore, is
not countably continuous.

3. DISCUSSION AND APPLICATION OF RESULTS

3.1. The Relationship with Other Concepts of
Constructiveness in Topology

First of all, we note that in the works used and
described in [11], the continuity of constructive
operators, in one form or another, was assumed in
advance.

The continuity of functions of a real variable was
proven completely independently only in soviet
constructivism [14], albeit for “hackerish” operators.
First, such operators have to process only constructive
functions; second, the source code of the algorithm of
any function is considered known, and anything can be
done with it. As shown in [15], the first feature is
harmless when discarding the second: the space of
functions in intuitionism can consist only of
algorithmically computable ones, but there should be
no access to their programs.

A slight modification of the definition of higher-
type operators (the absence of initial, externally given
higher-order operators) led to strong Baire continuity
and, simultaneously, to the possibility of processing
any functions. This continuity can be justified
intuitionistically by accepting Brower’s bar induction
principle [16]. Thus, another step was taken. One can
assume the existence of function algorithms when
allowing to use them as in modern computer science:
by calling closed modules.

In topology, we adhere to the lines of Ershov [7, 8]
and Martin-Lof [9]. For instance, Martin-Lof used
algorithms and introduced topology as point-free,
based on approximations, and functions on topological
spaces as neighborhood relations. Martin-L6f’s
followers limited their consideration to compactness
and, as a consequence, traditional spaces of real
numbers as well as Cantor and Baire spaces; they were
more inclined towards formal topology. The research
works of Martin-Lo6f’s line were reviewed in [17].

E. Bishop developed a concept of constructiveness,
which was aptly characterized in a conversation by A.
G. Dragalin: use only algorithms, but never confirm or
deny this [18]. Bishop’s concept was developed [19—
21] by introducing the notion of continuity indirectly,
through the Heine—Borel theorem, which is equivalent
to Brouwer’s bar induction. This line of research,
based on Bishop’s concept, was reviewed in [13]. The
notion of a subspace in both schools is subject to
strong restrictions.

The notion used here is more abstract and
independent of a particular basis of computability.
With this notion, we can consider arbitrary subspaces
selected in a nonconstructive way, as well as avoid the
use of a distinguishing predicate in constructive
design. In addition, the derivative concept of a base on
a B-space does not satisfy the conventional
requirements for a base of open sets. In particular,
objects intersecting as basic neighborhoods may have
empty intersection as sets, and basic neighborhoods as
sets may be empty. However, they are inherited from
the parent B,-space, allowing one to handle them
correctly.

We have succeeded in combining the advantages
of the approximation approach (from the author’s
standpoint, equivalent to the formal topology
approach) and the pointwise approach. Also, we have
succeeded in defining functions purely functionally
(through elements) and obtaining both continuity and
the capability to process elements not specified by
algorithms. A partial similarity with  soviet
constructivism is the requirement that operators are
specified by a program; but this program is used
correctly as a callable module only to conduct
experiments, being applied to various arguments
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(including those specified externally), and the
collection of programs is not used as a whole.

The only significant limitation remaining is the
countable basis of open sets. Additional studies are
needed to find out the transferability of the results to
inseparable spaces and spaces with an uncountable
base.

3.2. Connection with Applications and Metrology

Hereinafter,  computational  problems  are
understood as those related to real numbers or other
Hausdorff spaces, as opposed to discrete problems.

When defining a regulator, the subtlety
corresponds to the absence of the dichotomy
VX, Y(X<y vy 2>X) in constructive analysis and its

replacement with the inaccurate comparison
Ve(e>0D VX, Y(Y>X—eVvy<X+g)).

In computational practice with the representations
of real numbers with overlap, this makes the equality
operation difficult to compute, and real numbers are
rejected on this base. From a physical viewpoint,
however, there are no exact real numbers. In
algorithms, comparing numbers for equality leads to a
multitude of difficult-to-detect errors and instabilities.
In each case, it would be necessary to consider the
degree of precision required to compare data, but this
is hindered by a pedagogical issue: almost
everywhere, rational numbers are treated as a subset of
real numbers, which ignores their fundamentally
different nature.

Accordingly, we arrive at another practically
important conclusion: the frequently encountered
objection to represent real numbers by overlapping
systems (see an example of such systems in [22])—the
complexity of computing the equality—is
unreasonable from applied and scientific standpoints.

The equivalence between constructiveness and the
purely topological concept established in this paper is
new. A distant analogy is the following theorem: the
cardinality of a collection of continuous functions on a
space with a countable base of neighborhoods is the
continuum. Previously, constructiveness was only a
special case of topology, but now it turns out to be
topology itself. This is a consequence of an important
methodological principle: any binding to particular
representations and data structures limits our view.
(Recall 1. Kant, who said that we can only think of
things in space and time; this is unfair to modern logic,
mathematics, and physics.) And real numbers most
often turn out to be such structures. Therefore, the
transition to the most abstract representations has
repeatedly demonstrated its power in mathematics and

logic. However, one should keep in mind that in this
case, the transition from ideal objects to real ones is
more difficult and may involve multiple stages.

The initial “undeveloped” concepts of Martin-Lof
and Shanin have proven to be the best for
generalization and modification. This confirms
another  methodological principle:  optimization
reduces flexibility, i.e., the capability to generalize and
change. In evolution, this means the extinction of
well-adapted species when the environment changes.

Martin-Lof was the first to show, using examples,
that the same function spaces in constructive
mathematics can have different spaces of constructive
operators. But he did not explicitly emphasize the
difference between his operators and those of soviet
constructivism.  Later, it became clear that
discrepancies could also arise at higher levels. The
concept of computability proposed in this paper is one
example. It differs from Martin-Lof’s concept at the
third level.

From a practical viewpoint, we can draw the
following conclusion: if a program is written in a
functional style without using incorrect operations
over real numbers from a constructive standpoint
(equality, >,sign(x), etc.), then it defines a
continuous function, and no other proofs are needed.
In addition, the restrictions accepted on higher-order
computability show why the style of functional
programming in numerical problems is different from
that in discrete counterparts: for example, categorical
constructs are not used. Categorical operators are of a
higher order than those allowed in the base, and they
destroy computability on topological spaces (see
Example 1). But their use as macros deteriorates
nothing.

A theoretical and practical question arises: what
program transformations are allowable as macros in
computational problems? It seems that this is
supercompilation [23]. But it has been studied
primarily for discrete problems so far.

CONCLUSIONS

This study raises a series of theoretical questions
concerning the concept of computability used. It is
formally weaker than the common concept of
computable operators of finite type. While eliminating
the need to explicitly construct models of sets of
operators of finite types, it serves to solve fairly strong
problems. Further research is required here,
particularly into possible extensions preserving
topological properties and allowing the computation of
operators with external program restructuring
required.

CONTROL SCIENCES No. 6 e 2025

31




@ SYSTEMS ANALYSIS

The results of subsection 2.4 were partially
presented at the Thirteenth National Supercomputing
Forum (NSCF-2024) and published in its online
proceedings. The results of this work were announced
at the Smirnov Readings. The full text of the paper
was reported at Ailamazyan Program Systems
Institute, the Russian Academy of Sciences, on April
10, 2025.
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