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Abstract. The relationship between computability and continuity is studied. Computability over 

an arbitrary initial basis of data types and functions (a base) is considered using McCarthy recur-

sive schemata and strongly typed operators of finite types. In this case, computable operators are 

proved to be strongly continuous in the Baire sense: for parameter functions with any value of the 

other arguments, it is possible to find a finite collection of their values that uniquely determines 

the result. Based on relative computability, an approach to constructive topology is developed 

within which the pointwise approach (an element is a fundamental sequence of neighborhoods) 

and the approximation approach of abstract topology (a function over topological spaces is a 

neighborhood relation) are equivalent. The concept of B-spaces is formulated, allowing one to 

constructivize separable spaces with a countable base of neighborhoods. The continuity of 

pointwise constructive functions of B-spaces and their transformability into neighborhood rela-

tions are proved. The equivalence of the concepts of computability relative to a certain base and 

continuity is established. The concept of a relatively constructive function is formulated: such a 

function transforms each element into an element constructible relative to its argument and a 

fixed base. Its equivalence to the concept of a countably continuous function formed by the union 

of a countable family of functions continuous on subspaces is established. Since any separable 

space with a countable base can be described as a B-space, this result contains no constructive 

restrictions. The connection between the proposed approach and other approaches to constructive 

topology is discussed. 

 
Keywords: relative computability, separability, countable base, pointwise spaces, abstract topology, approx-

imation approach, Baire continuity, continuity on subspaces. 
 

 

 

INTRODUCTION  

In research devoted to computability in topological 

spaces, its connection with continuity is necessarily 

present; see the discussion in Section 3. Computability 

is considered on the basis of a uniform standard 

model, i.e., Turing machines. The question arises 

about the relationship between the abstract general 

concept of computability and continuity. It will be 

addressed below. 

1. ALGORITHMIC FORMALISM 

1.1. Recursive Schemata 

Programming practice has shown that functional 

programs for discrete and continuous tasks are written 

in different styles. The standard definition of 

computability in computer science using Turing 

machines or  -calculus [1] is pragmatically correct 

primarily for discrete tasks. Although almost all 

variants of computability considered in theory are 

formally equivalent, their areas of practical 

applicability may differ. Since computability here will 

be analyzed for continuous tasks, we should be careful 

in choosing an appropriate definition of computability 

for the programming style used. In this paper, the main 

concept of computability is the relative computability 

of McCarthy recursive schemata [2] over a base: the 

basis of initial functions and predicates. It is 

generalized to the strongly typed calculus of operators 

of finite types. Formally, this is a restriction of the 

definition of λ-operators of finite types with a fixed-

point combinator, direct products, and conditional 

operators, which was studied in detail in computer 

science [1, 3, 4]. 
Definition 1 (a tower of data types ).  

1. A finite collection of data types 0  that 

necessarily includes the bool type.  
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2. All types from 0  belong to .  

3. A type 1( , , )n   is called a record. If 

1, , n    and are not records, then 

1( , , )n .    If all members of a record are types 

from 0 , then this record belongs to the subclass 1 .  

4. If 1, , n   , then 1( , , )n     . Such 

types are called functional.  
5. Each type is assigned an infinite collection of 

variables of that type.  
Definition 2 (a base).  

1. Each data type from 0  is assigned with a non-

empty data set that necessarily contains the “soft 

error” element  . The bool type is assigned the set 

{ , , }T F  .  

2. For any types of the form 1( , , )n  , there are 

functions  

1 1: ( , , ( , , )),n njoin       

1: (( , , ) ),i n ipr      

satisfying the condition  

1( ( , , )) = for 1 .i n ipr join a a a i n       (1) 

3. A finite collection of initial typed functions with 

arguments and values from 1  and constants with 

types from 0 . (The logical constants true  and false  

are present in any case.) All functions are stable 

relative to  : 

If 1 1( , , , , , , ) =n kf x x y y z  and z  , 

then 1 1( , , , , , , ) =n kf x x x y y z  for all x . 

(Such functions are called generic in computer 

science.) Constants from the base are called initial. 

Tuples whose elements are all constants are also 

considered constants.  
Functions with a logical result value are called 

predicates. ♦ 

Hereinafter, a sequence of expressions 1, , na a  

will often be denoted by a . Accordingly,   is a 

sequence of  . Condition (1) means that the type of a 

record is isomorphic to the direct product of the value 

sets of the types that compose it. But the situation is 

somewhat more subtle: the value sets of functional 

types are not defined and, accordingly, there are no 

constants of these types until explicit definitions 

appear, with the exception of the initial functions. 

Therefore, condition (1) means that if some values of 

the corresponding types exist, then there is also a 

value corresponding to their n-tuple. 
Furthermore, there are no restrictions on the 

appearance of   as elements of a record. Obviously, 

the functions join  and ipr  are stable relative to  . 

Hence, Clarke’s warning can be avoided by 

considering only functions with one argument or with 

one subject argument and one functional argument. 
Hereinafter, the join function will be omitted 

whenever no ambiguities occur.  
Definition 3 (terms).  
1. The constants and variables of type   are terms 

of type  .  

2. If f  is a term of type 1( , , )n     and 

1, , nt t  are terms of types 1, , n  , respectively, 

then 1( , , )nf t t  is a term of type .  (Such a term 

sequence t  is called suitable for f.)  
3. If b  is a term of the bool type and r  and u  are 

terms of type τ, then  

b r uif then else fi  

is a term of type  . Such terms are called  

conditional. ♦ 

The designation 1 1{ , , , , , },n kt f f x x  

abbreviated as { , },t f x  means that only the listed 

constants and variables, except for the initial ones, are 

used in the term. Note that some of the variables may 

be of functional type. The parameters of a term 

1( , , )nf t t  are all it  that do not have the form 

1( , , )kr r , and all ir  for such records. Due to type 

restrictions, this definition is not recursive. The meta-

designation 1< , , >nf t t  means that 1, , nt t  is a list 

of all parameters of the term, rearranged in a 

convenient order. The order in the expressions 

1< , , >nf r r  does not change in the same sentence.  

Definition 4 (a recursive schema). Let 1, , nf f  

be new constants of functional types called recursive 

functions. Then a collection of definitions of the form  

1 1 1( , , ) [ , , , , , ],i k n kf x x t f f x x  

where x  is a sequence of variables suitable for if , is 

called a recursive schema. ♦ 
The order of definitions within a recursive schema 

makes no sense.  
Definition 5. A computational environment 

defined by a recursive schema consists of a base and 

functions defined by this schema (recursive functions). 

 

1.2. Abstract Computability 

Consider programs operating based on recursive 

schemata; let us rigorously define their execution and 

computational capabilities. 
A term is called closed if it does not contain 

variables. 
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We will define a computational process in the 

spirit of term rewriting rules to make a computational 

system a subsystem of recursive operators of finite 

types from [1]; and the results established there will be 

utilized accordingly. 
For fundamental reasons (operators must work not 

only with the arguments defined by them), 

computations may involve constants for all elements 

of types from 0 .  

Definition 6. A normal form is a term to which no 

transformation rule can be applied. The process of 

computing a closed term is defined as a sequence of 

subterm replacements until obtaining a normal form (if 

this ever happens). If a computation process does not 

terminate, then the value is  . A term is computed by 

applying one of the rewriting rules to it. A term 

disappears in the cases specified in the rewriting rules, 

or when it is a subterm of a disappearing term.  
1. If a term has normal form, then the process is 

complete, and this normal form is its value.  

2. If a term has the form ( )f t , where f  is a basic 

function and all parameters are constants, then it is 

replaced by the result of computing f .  

3. If a term has the form < , >f c t , where f  is a 

basic function, c  are constants, and < , >f c    , 

then it is replaced by the result of computing 

< , >f c   , and all elements of t  disappear.  

4. A term 1( ( , , ))i npr join t t  is replaced by it , and 

all other jt  disappear.  

5. r uif true then else fi  is replaced by r , and u  

disappears.  
6. u rif false then else fi  is replaced by r , and u  

disappears.  

7. ir uif then else f  is replaced by  , and r  

and u  disappear.  

8. If a term has the form ( )f t , where f  is a 

recursive function, then it is replaced by the definition 

of ,f  with the variables therein replaced by the terms 

from t .  
The result of transformations is intermediate if 

only rule 8 can be applied to it.  

Remark 1. The genericness condition essentially 

means that the given argument   is not used in 

computations. Rule 3 expresses that this condition is 

valid for all initial functions.  
Consider the structure of intermediate results. 
Let us define a computation discipline that 

guarantees a result if it is possible. 
Definition 7. A computation is regular if it 

satisfies the following constraints.  

1. Rule 8 applies only in an intermediate term.  

2. In the term 1( , , )nf t t r uif then else fi , the 

terms r  and u  and their subterms are not computed.  
3. In an intermediate term in the subterm 

1( , , )nf t t , where f  is not the initial function, it  

are not computed.  

4. Any subterm 1( , , )nf t t  appearing in an 

intermediate term either disappears in further 

computation or is computed. ♦ 
Definition 8. A recursive function is total if any of 

its regular computation terminates. A function is 

general
1
 if it is total and any of its computation with 

arguments not equal to   does not yield  . A 

recursive operator is total (general) if, under any 

substitution of total (general) functions into this 

operator instead of its functional parameters, the 

resulting function is total (general). 

A function f  of the type  , where all 

1,i  , is computable if there exists a recursive 

function with ( )f c  as its result computed for each 

value c  of the arguments of f . An operator 

< , >f x , where x  and the result have types from 

1  and f  are of the types  , where all 

1, ,i   is computable if there exists a recursive 

operator   such that when extending the base by any 

f  of suitable types and substituting c  for x , the 

result of computing ( , )f c  is equal to ( , )f c . ♦ 

Remark 2. In total functions, an error appears as a 

calculated value and can be processed. If a function 

loops, being calculated infinitely, then such a situation 

is generally impossible to process. 
Definitions for operators are not limited to 

functions defined in the base. They must work on any 

functions. Also, note that any external function is total. 
We do not attempt to define computability for 

operators of higher types, since the set of functions of 

such types remains uncertain.  
 

1.3. Computability Properties 

Theorem 1 (on correct computations).  
1. All terminating computations yield the same 

result.  
2. If a computation terminates, then all regular 

computations terminate as well.  
P r o o f. Item 1 (the first statement of this theorem) is a 

consequence of the theorem on correct rewriting rules for 

typed  -calculus with recursion; see [1, Ch. 5].  

                                                      
1 This term is given by analogy with the general recursive func-

tion.  
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Item 2 is a consequence of the theorem on head 

recursion [1, Sect. 3.7].  

Lemma 1. No computable operator can produce a 

new function as a component of the result.  
P r o o f. According to syntactic restrictions, all normal 

forms are constants.  

Since it is impossible to compute a new function, we 

define the concept of function transformation using a 

computable operator.  

Definition 9. An operator < , >f x  transforms a 

function f  into g  if, after adding the function f  to 

the base, < , > = ( )f c g c  for all c . ♦ 

This definition is naturally generalized to the 

transformation of a tuple of functions into a tuple of 

functions.  
Lemma 2. Any computable operator   

transforms computable functions into computable 

ones.  
P r o o f. Let us add the definitions of the argument 

functions f  to the definition of the operator  . Without 

extending the base, we obtain the definition of the result 

function: 

( ) ( , ).x f x   

Definition 10. A finite collection X of values of the 

arguments ( ) =i i if b d  of an operator < , >f x  

guarantees a value y  on c  if, when substituting any 

functions satisfying ( ) = ,i if b d  the value is 

< , > =f c y . If any of its subsets does not 

guarantee the value, it guarantees it exactly. We will 

define the collection X  as a set of pairs ( , )i ic d  

(called a function fragment). A function has a 

fragment X  if it takes the values id  on all ic . ♦ 

A practical criterion for checking that a fragment 

exactly guarantees a value is to test the operator with 

the following functions: F  equal to   everywhere 

except for a given set, that yields id  on ic , and its 

modifications that additionally yield an error on one of 

ic . But this is not a universal solution: if a recursive 

schema loops, we will not receive a response. This can 

also happen during an “illegal” call to a function 

parameter, as a result of which the calculation 

proceeded a different path. 
The restrictions imposed (the absence of initial 

operators) allow us to establish Baire’s continuity of 

computable functions, which is violated in a more 

general case.  
Theorem 2 (the first continuity theorem). For 

any closed term t  whose recursive schema contains 

only functional variables 1, , nf f  and whose regular 

computation is finite, there exist fragments iX  such 

that when substituting other functions with the same 

fragments into it, the term’s value does not change.  
P r o o f. The computation contains only a finite 

number of calls to parameter functions. If other functions 

have the same values on the given parameters, the 

computation will be repeated with the same result.  

Example 1. This example illustrates the significance of 

type complexity restrictions for the base. The continuity 

theorem is violated if we add the original operator of the 

second type, : (( ) )FZ  nat nat bool , with the 

definition 

if there exists no  such that ( ) =
( )

otherwise.

T i f i
FZ f


 


♦ 

Thus, the above concept of computability is 

adapted to relativization to many initial spaces and any 

initial functions, giving the strong continuity of 

computable operators of the second type. 
Example 2. The minimal base generating standard 

computable functions of natural numbers is the type system 

{ }nat, bool , where nat is interpreted as the type of natural 

numbers, constant 0nat , a predicate ( )Z nat bool , 

and functions ,S Pd  of the type ( )nat nat , interpreted 

as  
( ) ( = 0), ( ) = 1,

if = 0
( ) =

1 if > 0

Z x x S x x

x
Pd x

x x .

 






 

Recall that truth and falsehood are always added. 

Summation and multiplication are defined by the 

recursive schema  

( , ) ( ) ( ( ), ( ))

( , ) ( ) 0 ( ( , ( )), ) .

A x y Z y x A S x Pd y

M x y Z y A M x Pd y x






if then else fi

if then else fi
 

The second-order function I  iterates the application of 

the argument f , x  times, Err  formally always gives an 

error; in fact, its execution never ends, and the yield is 

nothing:  

( , , ) ( )

( ( ), ( ), )

( ) ( )

I x y f Z x y

I Pd x f y f

Err x Err x .




 

if then

else fi  

Lisp logic connectives [5] are defined by schemata, so 

we will use them freely below:  

.

A B A B F

A B A T B

A A F T

 


 
 

if then else fi

if then else fi

if then else fi

 

If natural numbers are present or simulated in the 

environment, we use standard designations for operations 

and identify natural numbers with their code.  

 

1.4. Properties of a Generalized Graph 

As noted above, we can consider operators with 

two arguments––the initial type and the functional 

type––without loss of generality. The following 
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convention allows using the results of standard 

algorithm theory. 
Convention on enumerability and lists. For each 

initial type, an equality predicate and an enumeration 

function, denoted by en , are added so that the 

sequence 0( )nen a  enumerates without repetition all 

elements of this type, where 0a  is a constant. At least 

one of the initial types is infinite. 
Then this infinite type can be used as an 

isomorphism of natural numbers. Let the ith element 

be simply denoted by i . Of course, if there are natural 

numbers among the initial types, they can be used 

directly. As in standard computability theory, we 

define primitively recursive encodings of n-tuples, 

lists, and finite sets by numbers, the union and 

intersection operations of encoded sets, and the 

predicate of belonging of a given number to a set. For 

convenience, we specify the encoding of a set as a list 

without duplicate elements. 
Definition 11. A generalized graph is an 

enumerable set of triples ( , , )X c d , where the value 

c  does not contain
2
 the constant  , and for any triples 

( , , )i iX c d  with the same c  none of iX  is nested in 

another jX . A generalized graph is a graph of an 

operator ( , )F f x  if in all triples X  is a fragment 

ensuring d  on c . A graph is complete if for any , c  

for which the computation of ( , )F c  terminates, the-

re exists ( , , )X c d  in which X  is a fragment of . ♦  

We define, in the form of a specification 

implemented by standard programming methods, an 

operator for computing an operator ( , )F f x  on a 

complete graph G :  

If the enumeration of   has a triple ( , , ),

         where is a fragment of , then ;

otherwise, one operates infinitely.

G X x d

X f d







 

Thus, a complete generalized graph is a strong and 

adequate definition of an operator. It would be great if 

a recursive schema for it could be constructed using 

syntactic transformations of the operator schema. 

Consider the difficulties arising in this case. 
Lemma 3 (call tracing). Let a recursive schema 

define an operator   with functional parameters if  

and a subject parameter x  (i.e., from 1 ). Then:  

1. When computing other functions of this schema,

if  can be applied only if the given function is also an 

operator and if  is substituted as one of its functional 

parameters.  
                                                      
2 Recall that the element   does not turn an entire record into an 

error. 

2. All places of potential application of if  in a 

term t  can be found statically by analyzing the 

recursive schema, and they have the form ( )( )jpr F t , 

where F  is a functional parameter of some function.  
3. The application of if  will occur if and only if 

the place of potential application of if  is found on the 

path of computing the parameter ( )jpr F  with the 

value of if .  

Proof. Let us outline the proof. Since if  is neither an 

initial function nor a function defined in the schema, it can 

only be the value of some parameter. This proves item 1 

(the first statement) of Lemma 3.  

Next, we construct a list of functional parameters of the 

schema for Φ whose components can be replaced by f. This 

list includes fi itself. If, inside the definition of a certain 

function, a function from Φ is substituted for the parameter 

g, then g is added to Φ. Applications of parameters from   

are potential applications of fi. Item 2 of this lemma is 

established. Finally, item 3 follows from item 2. ♦ 

The traceability lemma also works in the case 

when a schema contains operators computing 

functions, since they cannot compute new functions. 

Subsequent constructs can, in principle, be carried out 

for the case when such operators are allowed. But this 

is not essential for the main objective of the paper  

(operators on functions of a topological space are not 

considered here). Therefore, the analysis will be 

restricted to second-order schemata that do not define 

functions yielding functions. 
Task 1. Modify the definition of an operator so 

that when terminating the work on given parameters, it 

would yield a fragment of the parameter function that 

exactly guarantees the result. 
Task 2. Modify the definition of a term with one 

functional variable so that it would take a fragment as 

a parameter instead of a function and, if possible, yield 

not only the result but also a diagnosis of whether the 

fragment is sufficient for correct computation. 
Let f and [ ]T f  denote a function parameter and a 

term computed, respectively. Note that the schema 

transformations are performed for this particular term 

since preliminary tracing is necessary. Based on 

tracing, in Task 1, we can label the subterms in the 

original recursive schema; in Task 2, we can label the 

subterms of the transformed term and those of the 

definitions in the original recursive schema as well. 
Definition 12. A subterm is red if it contains a call 

to f . A subterm is yellow if it does not contain such a 

call but is a direct component of a red term (an 

argument of a red function, a component of a red 

record, or an alternative of a conditional expression 

with a red condition). A subterm is white in all other 

cases. If [ ]T f  is white, we label it as yellow. ♦ 



 

 
 

 

 
 

25 CONTROL SCIENCES  No. 6 ● 2025 

SYSTEMS ANALYSIS 

Using the traceability lemma, one can color the 

subterms of any term. 
It is more convenient to process the error indicator 

first, so it is always equipped with the true flag. 

Hereinafter,   indicates an empty set;   stands for 

an n-tuple of empty sets; finally, { }x  means a 

singleton. Without limiting generality, assume that all 

functions defined in a schema yield a record with n  

components. If S  is a record, then ( , )x S  is the result 

of adding a component x  to it. This does not lead to 

ambiguities: in a type tower, records cannot be 

components of records. Note that the standard folding 

of an n-tuple into a list code is not always correct due 

to Clarke’s warning: a list code containing an error as 

one of its elements is always an error. To avoid 

unnecessary effort while dealing with particular 

numbers, we define the function 

1 2(( , , )) = ( , , )n ntail x x x x  for each type of n-tuples 

encountered in a schema. 
Let us construct the following auxiliary functions 

using standard methods:  
1. the function ( , )Ev X a , which yields ( , )bfalse  

if ( , )a b X  for some b , and ( , )Atrue  otherwise;  

2. the function  , which constructs the union of 

two sets.  
We denote by A  a constant that will replace the 

value unnecessary below. 

Modification 1. [ , ]pt X t , computation with 

guaranteed success. It is obtained by adding a subject 

parameter X  to all operators defined in a schema that 

contain potential applications of f, and by recursively 

replacing all calls ( )f r  to the function parameter, 

traced using Lemma 5, with ( ( , ))ptail Ev X r . This 

modification provides the simplest partial solution to 

Task 2 without diagnosing errors associated with a 

parameter missing in a fragment. Note that even this 

partial solution is individual for [ ]T f  since the 

coloring depends on T . 
Modification 2. Tracing and collecting the 

applications of a parameter functions: processing T  

into vT . 
For each function with a red entry, we define its 

red variant with an additional parameter 1X  of the 

fragment type.  

1. The red variant of f :  

1 2

1 1 2

2

( ) ( ) ( , ( ), )

( ( ( , ( ( ))), { ( )},

( ( , ( ( )))) .

vf x pr x pr x A

pr Ev X tail tail x X pr x

pr Ev X tail tail x





if then true

else

fi

   (2) 

2. The red variant of the remaining initial 

functions:  

1 1 2( , ) ( ) ( , ( ), )v X x pr x pr x A  if then true  

2( , ( ), ( ( ( )))) .pr x tail tail xelse false fi  

3. The red variant of the function, defined as

( , ) ,x t    has the form  

1( , , ) ,v vX x t    

where 
vt  is computed recursively according to the 

rules specified below.  
We recursively make the following substitutions.  
1. All white subterms remain unchanged. We 

replace all yellow t  with  

= ( , , )vt ttrue . 

2. The record 
1 1( , , ) ( , , )v v

n nt t t t :  

1 1 2 1 2( ( ) ( , ( ) ( ), )v v v

npr t pr t pr t A if then true elif

1 2 1 2( ) ( , ( ) ( ), )v v v

n npr t pr t pr t A elif then true  

2 1 2

1

( , ( ) ( ),

( ( )), , ( ( ))) .

v v

n

v v

n

pr t pr t

tail tail t tail tail t

 else false

fi
 

3. The conditional term  vb r uif then else fi :  

1 2( ) ( , ( ), )v vpr b pr b Aif then true , 

2 1

2 2

( ) ( ( ),

( ) ( ), ( ( ))),

v v

v v v

pr b pr r

pr b pr r tail tail r

elif then
 

1 2 2( ( ), ( ) ( ), ( ( )))v v v vpr r pr b pr u tail tail uelse fi . 

4. The red function ( )s :  

1 2

1 2 2

( ) ( , ( ), )

( ( ), ( ) ( ), ( ( ))) .

v v

v v v v

pr s pr s A

pr r pr b pr u tail tail u

if then true

else fi
 

This complex program restructuring corresponds to 

the concept of a continuation in functional programs 

[1, 6]. Unlike the works cited, we do not add a third-

level operator here, managing to restructure the 

function with level reduction. 
Theorem 3 (generalized graph). Based on the 

schema of a general operator  , one can construct a 

definition of a function that enumerates its generalized 

graph.  
P r o o f. Let us make an additional modification to the 

schema 
vT  for the term 0 0= ( , )T f x , where 0 0( , )f x  

are constants.
3
 We introduce a new variable for a fragment 

X  and add it as a parameter to all definitions and 

applications of functions , without using it anywhere inside 

the definitions (except for the mandatory parameter when 

calling any function). The only exception is (2), where it is 

                                                      
3 Here, 0f  can be either a new initial function or one defined in the 

same schema; this affects the process of constructing vT  but not 

new modifications. 
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used in Ev . In this regard, we redefine the original operator 

  as  

( , ) [ , ]g vX x X x .   

With standard methods, we construct a certain 

enumeration ( )Enum i  of pairs ( , )X x  (a fragment and a 

subject parameter) starting from zero.  

Let us define a function for constructing the initial 

segment of the generalized graph. For brevity and clarity, 

we write the frequently occurring expression 

1 2( ( ( )), ( ( )))g pr Enum i pr Enum i  simply as [ ]g :  

( , , ) = 1Gr i G n i n G if then  

1([ ]) ( 1, , )gpr Gr i G n elif then
 

2( 1, {( ([ ]),gGr i G pr  else  

3 2([ ]), ( ( )))}, ) .gpr pr Enum i n fi  

It adds, step by step, the found fragments that verifiably 

guarantee 2 ( ( ))pr Enum i  on 1( ( ))pr Enum i . In the limit, we 

obtain the complete graph of the operator.  

Remark 3. This algorithm produces an 

enumeration with repetitions. This can be eliminated 

using standard methods. 
A complete study of the relationships between 

operators and generalized graphs requires separate 

consideration. Here, we merely mention that the 

syntactic transformation of an arbitrary operator into a 

graph is generally impossible: its existence would 

mean, in particular, the solvability of the looping 

problem. Therefore, special cases are important.  

2. APPLICATION TO TOPOLOGY 

2.1. B-spaces 

Yu.L. Ershov defined the constructivization of 

topological spaces with a countable basis of 

neighborhoods (A-spaces) [7, 8]. Let us give a 

generalized definition for the case of subspaces of 

arbitrary separable spaces with a countable basis of 

neighborhoods, using the ideas of P. Martin-Löf [9] 

and A. Lacombe [10]. In doing so, we will eliminate 

the initial binding to natural numbers, which is 

adopted by the above authors and is standard for all 

works on constructive topology listed in the 

fundamental monograph [11]. When dealing with 

natural numbers, we will explicitly note this fact. 

Definition 13. A B0-space is a separable complete 

space in which a countable basis of neighborhoods is 

selected. This basis, with the empty set added, will be 

denoted by A . Let us define a base on A .  
1. The constants   and U  (an empty set and the 

entire space).  

2. A general countability function : ( )e A A  

such that the sequence . ( )nn e   runs through the 

entire space A  without repetition.
4
  

3. The general intersection operation of 

neighborhoods, A B .  
4. The general predicate A B  (A is thinner than 

B), meaning that either the closure of A  is nested in 

B , or =A B  and B  is an open-closed singleton.  
5. The general predicate A# B  ( A  is separated 

from B ), meaning that the closures of their 

neighborhoods do not intersect.  
6. (Optional) Some additional functions and 

predicates on A . ♦ 

Item 2 defines a bimorphism A in nat, which is 

not an isomorphism: the base does not contain the 

function Pd  and the equality predicate (even =a  ). 

It is necessary to guarantee constructivization of the 

countability of A . According to Definition 2, n-tuples 

of neighborhoods are also constructive objects.  
Proposition 1. If the equality predicate of 

neighborhoods =a b  is computable in a space B0, 

then the neighborhoods form a model of natural 

numbers and all partially recursive functions on them 

are computable.  
P r o o f. To establish this result, it suffices to construct 

the function ( )Pd a  since ( ) =Z a a  .  

( , )

( ) ( ( ), )

( ) ( , ).

if then

elif then else fi

Pda x a a

e x a x Pda e x a

Pd a Pda a

  



  

 

If there is an equality, then known functions of natural 

numbers are freely used, in particular, tuples and operations 

over them. In this case, tuples are also tuples of 

neighborhoods. ♦ 

Definition 14 (a metric B0-space). A B0-space is 

metric if there exists a computable general measure 

function   that assigns to each neighborhood a 

rational number ( ) 0a  and:  

1. ( ) = 0A  if and only if A  contains at most one 

point.  

2. If A B  and A B , then ( ) < ( )A B  .  

3. If #A B , A C , and B C , then 

( ) ( ) < ( )A B C   .  

4. Every point 0xB  has a base neighborhood of 

arbitrarily small measure.  
Example 3. If the basic neighborhoods in a certain 

space have a tree of nesting, then A B  means that when 

B  is not a leaf, A  lies on a path from B . But a leaf is the 

end point of a path, and then = .A B  

                                                      
4 In this case,   is a commonly accepted quantifier of functionali-

ty and belongs to the metalanguage. 
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Consider Hausdorff B0-spaces. It is natural to consider 

the equivalence class of computable convergent sequences 

of nested neighborhoods as a computable element of a B0-

space. According to N.A. Shanin [12], this is not sufficient: 

it is also necessary to have an explicitly given computable 

convergence regulator for such a sequence. Since no 

measure or uniform structure of neighborhoods is assumed, 

one must be careful.  

Definition 15 (a computable element). A Shanin 

point is a pair of everywhere defined functions ,f r , 

where ( ( ( ))) ( ))x f e x f x  , and the function ( , )r x y  

(regulator) is such that, for any pair of neighborhoods 

x y , either ( ( , ))f r x y y  or ( ( , ))f r x y # x . If ,f r  

are computable, then an element of a B0-space is 

constructive relative to the given base. 

Shanin points ( , )f r  and 1 1( , )f r  are equivalent 

1 1( , ) ( , )f r f r  if, for any n , 1 1( ( ( ( )), ( )))f r f e n f n  

( )f n  and 1 1( ( ( ( )), ( )))f r f e n f n  1( ).f n  

Remark 4. The essential meaning is that a 

regulator allows getting either into a smaller 

neighborhood or into the gap between the smaller and 

larger ones. Hence, it is possible to avoid the case, 

unpleasant from a constructive standpoint, when the 

boundary of the tested neighborhood falls exactly on 

the limit f (as a result, it cannot be separated from the 

members ( )f n , whereas ( )f n  cannot get inside).  

Definition 16. A B-space is a non-empty subset of 

a B0-space X   (the parent space), X X , with a 

base of generalized neighborhoods, each representing 

the intersection of a basis neighborhood from A  with 

the set X . ♦ 
Thus, all of the above functions and predicates are 

inherited by a B-space from its parent B0-space.  
Lemma 4 (properties of Shanin points).  
1. If a pair of functions is a Shanin point, then the 

intersection of all ( )f a  contains at most one element.  

2. In a complete space, this intersection is non-

empty.  

3. In a metric space, a Shanin sequence f  has a 

measure of members tending to zero.  
P r o o f. Consider two different points ,x y . Then, by 

separability, there are basic neighborhoods x A , y B , 

#A B . Let us take 1A A , 1x A . Since 1 1( ( , ))f r A A A , 

we have 1( ( , ))#f r A A B , and thus y  does not belong to the 

intersection of all ( )f n . Item 1 is established. Item 2 is 

valid by the definition of completeness. Item 3 is satisfied 

because, for any neighborhood where ( )
a
f a A , we 

have ( ( ))f r A A . ♦ 

In the case of metric spaces (see Martin-Löf’s and 

other works listed in [13]), regulators are not needed, 

as it suffices to require rapid convergence of a 

sequence (e.g., that the measure of each ( )f n  does not 

exceed 2 n ). In the general case, in the absence of 

regulators, the counterexamples from the fundamental 

work [12] are valid, destroying the constructiveness of 

considerations. 

Proposition 2. Any separable space   with a 

countable base of neighborhoods can be represented 

as a B-space.  

P r o o f. A B0-space 0  is the complement of  . It 

also has a countable base of neighborhoods. We define a 

base on it and obtain a B-space. The neighborhoods will be 

the intersections of the neighborhoods from the base 0  

with  .  

Note that the base for   is not specified. All operators 

work over 0  and the belonging to   is specified 

externally and is not used in any computations. 
Definition 17. A computable function over the 

elements of B-spaces, :f  , is a computable 

operator  

: ((( , ) ( , )), , ( , ))  nat natA A A A A A  

that transforms any Shanin point ( , ); ( )
a

f r f a   

into a function , . (( , ), , )s r mn nm   that is a Shanin 

point ( , ); ( )
a

g q g a  , where  

1 1 1 1( , ) ( , ) (( , )) (( , )).s r s r s r s r        (3) 

Here, ( , )s r  is understood in the sense of the 

transformation of functions defined above.  

Remark 5. Thus, Definition 17 can be translated 

into a more familiar language: for a Shanin pair ( , )s r  

representing x ,   yields a Shanin point ( , )g q  

representing ( )f x  as follows:  

( , , , ) = ( ( ), ( , )).s r i j g i q i j  

The arguments of the functions run through the 

entire space 0 ; only the results and the correctness 

requirement are restricted. Totality and generalness are 

also considered on the entire space 0 .   

Example 4. This example illustrates the important role 

of continuity regulators. Let us take the common space of 

real numbers with a basis of neighborhoods defined by the 

intervals of rational points 
1 1

,
2 2n n

a a
 

  
 

. Consider an 

operator that processes each neighborhood 

1 1
,

2 2n n
a a
 

  
 

 into 
1 1

1 , 1
2 2n n

 
  

 
 if its lower bound is 

greater than zero, into 
1 1

1 , 1
2 2n n

 
    
 

 if the upper 

bound is less than zero, and into 
1 1

,
2 2n n

 
  
 

 if 0  is 
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inside the interval. It processes every computable 

convergent sequence into a computable convergent 

sequence, but a regulator cannot be obtained because it must 

yield neighborhoods of zero for sequences whose members 

all include zero. But then it must yield 
1 1

,
2 2

 
 
 

 for a finite 

number of its members, and by replacing it with a sequence 

that separates from zero at the next step, we obtain an 

incorrect result (the deception method).  

Remark 6. Functions are not assumed to be 

defined everywhere as operators on elements of a 

space. Moreover, there arises another case when a 

function is not defined, i.e., if the correctness 

condition (3) fails for Shanin pairs representing a 

given element. Correct operation must be ensured only 

on elements of the set  . The equivalence of result 

regulators for different Shanin representations of the 

argument is not required.  

 
2.2. The Main Theorem 

Theorem 4. A function is continuous on a B-space 

if and only if it is computable relative to some base.  
The proof of this theorem requires several 

additional constructs. 
Lemma 5. A computable function transforms 

constructive points of   into constructive points of .  
Corollary of Lemma 2. Note that the arguments 

of a computable function are not assumed to be 

computable. It must work correctly on any arguments. 

This is a fundamental difference from standard 

concepts of constructiveness [11], even if they are 

relativized. 
Lemma 6. All computable functions are 

continuous on their definitional domain.  
P r o o f.  

Corollary of Theorem 1 (on continuity). Let Y  be a 

neighborhood of the result ,g q . Then its regulator gives 

( )q Y  such that ( ( ))g q Y Y . According to the continuity 

theorem, only a finite number of values 

[ ( ), , ( ( ))]nf f e   of the argument function f  are used 

to find ( ( ))g q Y . Now let us take an arbitrary Shanin point 

1 1,f g  from ( ( ))nf e  . By replacing 1 1[ ( ), , ( ( ))]nf f e   

with [ ( ), , ( ( ))]nf f e   and all values 1( )g a  such that 

1( ( )) ( ( ))nf e g g a   with ( )ne  , we obtain an equivalent 

Shanin point. It belongs to ( ( ))g q Y  and, hence, to Y . 

Thus, for any neighborhood of the result, we can find a 

neighborhood of the argument that maps into it.  

The main theorem is proven in one direction. For each 

continuous function on a B-space, it remains to find a base 

relative to which this function will be constructive. ♦ 

Functions in this context are not full-fledged 

values. There is no collection of computable functions. 

They form a set that is external to the computational 

model. This is especially true for operators. However, 

there is a well-known topological transformation, i.e., 

one can move from a continuous function to a relation 

between the neighborhoods of the result and the 

argument. Its constructive form was proposed by 

Martin-Löf [9]: here, it will be generalized to non-

metric spaces.  

Definition 18 (type demotion). An approximation 

is a function  enumerating neighborhoods such that, 

for any a  and b , there exists c : ( ) ( ) = ( )a b c . 

An approximation is maximal if for any a b  there 

exists c  such that ( )a# c  or ( )c b .  

An open set is a function  whose values are 

neighborhoods and, for any a , if ( )b a , then there 

exists c  such that ( ) =c b . 

A neighborhood relation is a function R  from A  

into pairs of neighborhoods ( , )X Y  of points 

,x y   such that < >R X  is an approximation 

in   and 1 < >R Y  is an open set in  . ♦  

To ensure constructiveness, we design enumerating 

functions of an approximation and open sets via R . 
Lemma 7 (a function as a relation). For any 

continuous function :f   of B-spaces, one can 

find a neighborhood relation R  such that for any 

neighborhood a  of the argument x , < >R a  contains 

( )f x , for a neighborhood b  of the result ( )f x , the 

union of neighborhoods 
1 < >R b

 contains
5
 

1( ( ))f f x , and for any ( )z# f x , there exists a 

neighborhood a  such that some neighborhood from 

< >R a  is separated from z .  
P r o o f. Let us take an arbitrary continuous function 

:f  . Since f  is continuous, for any neighborhood 

Y  of the result ( )f x  there exist neighborhoods X  of the 

argument x  such that ( )f x Y  for any x X . They form 

the desired relation R . ♦ 

At the same time, < >R X  is maximal for x X . 

Let us construct a search function sf(a,b) that is 

computable relative to the parent space and R :  

0( , , )

( , )

#

0( , , 1)

( , ) 0( , , 0).

sf a b x a b

R a x

x a x x a x

sf a b x

sf a b sf a b

 









if then

if then

if then elif then fi

else fi

else fi

(4) 

                                                      
5

 
1f   is treated as a relation, not as a function: 

1 = {( , ) ( , ) }R x y | y x R  . 
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This function finds, in approximation, a 

neighborhood that is either nested in or separated from 

the smaller of any pair of nested neighborhoods from 

the approximation.
6
  

Lemma 8 (type promotion). If a neighborhood 

relation R  represents a function f ,  then f  is 

computable relative to the parent B0-spaces, the 

predicate = , and R .  

P r o o f. Since there is the equality predicate, 

neighborhoods can be identified with natural numbers, and 

standard recursive functions can be used accordingly.  

Let us construct the result sequence . ( )n g n  using a 

function f  from a Shanin point. The invariant of the 

function created is:  

For any n , ( ), ( )f n g n R  and ( 1) ( )g n g n  .  

We define the auxiliary function ( , ):sr a b  

1 2

2

0( , , ) ( ( )) = ( ( ))

( ( )) 0( , , ( ))

( , ) 0( , , 0).

sr a b n pr R n a pr R n b

pr R n sr a b S n

sr a b sr a b

  






if

then else fi  

Provided that the computation of sr  for given ,a b  is 

finite, it satisfies the following invariant:  

( , ( , )) ( , ) .a sr a b R sr a b b    

The function g  is defined by the schema  

2 1( ) ( ) (0) ( ( ), ( ( )) .g n Z n f sr f n g Pd n if then else fi  

The finite computation of g  is guaranteed if f  belongs 

to the definitional domain of the function serving as the 

base for constructing R . 

The regulator for the neighborhood relation has already 

been constructed above (see formula (4)); we only need to 

replace the found neighborhood with its number in the 

result of the desired function.  

Thus, the main theorem is proved. ♦ 

It has the following corollary.  
Lemma 9. The result f(x) of a continuous function 

is constructive relative to R  and x .  

P r o o f. The function sf  gives the result, and sr  

gives its regulator.  

 

2.3. Computability of the Neighborhood Relation 

The question arises about the computability of the 

neighborhood relation relative to the base for which a 

given continuous function is computable. Here, one 

has to use multistage nontrivial transformations of the 

function definition and a nontrivial programming 

                                                      
6 From a constructive standpoint, proving the correctness of this 

function needs application of Brouwer’s bar induction [16], which 

once again demonstrates that the countability of the basis of 
neighborhoods is an important requirement. 

technique. Since this technique is secondary to the 

logical results of the paper, here we will describe only 

the ideas for such transformations and formulate the 

results; the study of the resulting concept of 

computability, which has some nontrivial properties 

and, at the same time, sufficient power, is the subject 

of other research works. 
To compute the neighborhood relation, we would 

like to run the function at least for all constructive 

numbers. This is impossible due to the lack of means 

to change the values of functional variables. However, 

this difficulty can be circumvented for general 

functions by using the main theorem. Therefore, the 

proof of the theorem requires several auxiliary 

constructs. Being of independent interest, they are 

carried out for the general case, but involve quite 

cumbersome technicalities. The idea behind them is 

simple and transparent. 
Theorem 5 (computation of the relation). By the 

definition of an operator   that computes a general 

function f ,  it is possible to construct a definition of 

the neighborhood relation for this function in the same 

base supplemented by the predicate of equality.  
P r o o f. After an analysis of the function’s definition, 

we construct an enumeration of the generalized graph of the 

operator (the main technical part of the work) and replace in 

it all pairs (( , ), )F y z  with 
1( , ( ))x pr z , where x  is the 

smallest neighborhood in 
1( )pr F . The first element of the 

Shanin pair decreases monotonically; hence, if there are 

enough other elements surrounding it, the function’s result 

will fall within a neighborhood from 
1( )pr z  in the 

neighborhood of x , and the constructs of the regulator do 

not affect the function’s value and are omitted.  

 

2.4. Relative Constructiveness 

The question arises: is relative constructiveness a 

characteristic of some class of functions? 
Definition 19 (relative constructiveness). A 

function   on a B-space is constructive relative to 

: ( )f   if, for every number x , there exists a 

constructive function   over the base , , ,S Pd Z f  

such that ( ) = ( )x x .   ♦ 

First of all, the following answer is trivial: this 

class is broader than computable (continuous) 

functions. The result of the Dirichlet function is 0   or 

1  and is constructive. But this function itself is not 

constructive relative to any basis. 
Definition 20. A function is countably continuous 

if the B-space can be divided into a countable set of B-

spaces on each of which it is continuous.  
Theorem 6 (the equivalence of concepts). A 

function is relatively constructive if and only if it is 

countably continuous.  
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P r o o f.  

The necessity part. Let a function be relatively 

constructive. Since each of its results is generated by an 

operator defined over the base , , ,S Pd Z F  and is a 

constructive function, we can assign to all numbers the 

operators that compute them. Since the collection of 

computable operators is countable and each constructive 

function is continuous, we arrive at the required 

decomposition. 

The sufficiency part. Let a function be countably 

continuous. We take the neighborhood operators 
i  

defining each of the continuous fragments and combine 

them into the function ( , ) = ( )ii n n  . Then each ( )f x  is 

computable relative to  . ♦ 

This design is fundamentally nonconstructive. It is 

impossible to combine constructive fragments into a 

uniform constructive function on the space. Thus, the 

question of which function applies to a given element 

is unsolvable relative to any base. Note that the above 

constructs do not involve the predicate of belonging of 

an element to the B-space support or the properties 

distinguishing the B-space from the parent space. 
Example 5. Finally, we construct a function of a real 

variable that is not countably continuous. Let us take the 

first ordinal of the cardinality of the continuum and order 

the real numbers according to this ordinal as follows. To 

each ordinal, we assign a real number that cannot be 

constructively represented via the previously ordered 

numbers. Such a number can be found since the cardinality 

of each ordinal number smaller than the first continuum one 

is less than the continuum, and only a countable collection 

of numbers can be constructively defined via each number. 

Then the function assigning to each x  its follower 1x  is 

not relatively constructive for any number and, therefore, is 

not countably continuous.  

3. DISCUSSION AND APPLICATION OF RESULTS 

3.1. The Relationship with Other Concepts of 

Constructiveness in Topology 

First of all, we note that in the works used and 

described in [11], the continuity of constructive 

operators, in one form or another, was assumed in 

advance. 

The continuity of functions of a real variable was 

proven completely independently only in soviet 

constructivism [14], albeit for “hackerish” operators. 

First, such operators have to process only constructive 

functions; second, the source code of the algorithm of 

any function is considered known, and anything can be 

done with it. As shown in [15], the first feature is 

harmless when discarding the second: the space of 

functions in intuitionism can consist only of 

algorithmically computable ones, but there should be 

no access to their programs. 

A slight modification of the definition of higher-

type operators (the absence of initial, externally given 

higher-order operators) led to strong Baire continuity 

and, simultaneously, to the possibility of processing 

any functions. This continuity can be justified 

intuitionistically by accepting Brower’s bar induction 

principle [16]. Thus, another step was taken. One can 

assume the existence of function algorithms when 

allowing to use them as in modern computer science: 

by calling closed modules. 

In topology, we adhere to the lines of Ershov [7, 8] 

and Martin-Löf [9]. For instance, Martin-Löf used 

algorithms and introduced topology as point-free, 

based on approximations, and functions on topological 

spaces as neighborhood relations. Martin-Löf’s 

followers limited their consideration to compactness 

and, as a consequence, traditional spaces of real 

numbers as well as Cantor and Baire spaces; they were 

more inclined towards formal topology. The research 

works of Martin-Löf’s line were reviewed in [17]. 

E. Bishop developed a concept of constructiveness, 

which was aptly characterized in a conversation by A. 

G. Dragalin: use only algorithms, but never confirm or 

deny this [18]. Bishop’s concept was developed [19–

21] by introducing the notion of continuity indirectly, 

through the Heine–Borel theorem, which is equivalent 

to Brouwer’s bar induction. This line of research, 

based on Bishop’s concept, was reviewed in [13]. The 

notion of a subspace in both schools is subject to 

strong restrictions. 

The notion used here is more abstract and 

independent of a particular basis of computability. 

With this notion, we can consider arbitrary subspaces 

selected in a nonconstructive way, as well as avoid the 

use of a distinguishing predicate in constructive 

design. In addition, the derivative concept of a base on 

a B-space does not satisfy the conventional 

requirements for a base of open sets. In particular, 

objects intersecting as basic neighborhoods may have 

empty intersection as sets, and basic neighborhoods as 

sets may be empty. However, they are inherited from 

the parent B0-space, allowing one to handle them 

correctly. 

We have succeeded in combining the advantages 

of the approximation approach (from the author’s 

standpoint, equivalent to the formal topology 

approach) and the pointwise approach. Also, we have 

succeeded in defining functions purely functionally 

(through elements) and obtaining both continuity and 

the capability to process elements not specified by 

algorithms. A partial similarity with soviet 

constructivism is the requirement that operators are 

specified by a program; but this program is used 

correctly as a callable module only to conduct 

experiments, being applied to various arguments 



 

 
 

 

 
 

31 CONTROL SCIENCES  No. 6 ● 2025 

SYSTEMS ANALYSIS 

(including those specified externally), and the 

collection of programs is not used as a whole. 

The only significant limitation remaining is the 

countable basis of open sets. Additional studies are 

needed to find out the transferability of the results to 

inseparable spaces and spaces with an uncountable 

base. 

 

3.2. Connection with Applications and Metrology 

Hereinafter, computational problems are 

understood as those related to real numbers or other 

Hausdorff spaces, as opposed to discrete problems. 

When defining a regulator, the subtlety 

corresponds to the absence of the dichotomy 

, ( )x y x y y x     in constructive analysis and its 

replacement with the inaccurate comparison  

( > 0 , ( > < )).x y y x y x      

In computational practice with the representations 

of real numbers with overlap, this makes the equality 

operation difficult to compute, and real numbers are 

rejected on this base. From a physical viewpoint, 

however, there are no exact real numbers. In 

algorithms, comparing numbers for equality leads to a 

multitude of difficult-to-detect errors and instabilities. 

In each case, it would be necessary to consider the 

degree of precision required to compare data, but this 

is hindered by a pedagogical issue: almost 

everywhere, rational numbers are treated as a subset of 

real numbers, which ignores their fundamentally 

different nature. 

Accordingly, we arrive at another practically 

important conclusion: the frequently encountered 

objection to represent real numbers by overlapping 

systems (see an example of such systems in [22])—the 

complexity of computing the equality—is 

unreasonable from applied and scientific standpoints. 

The equivalence between constructiveness and the 

purely topological concept established in this paper is 

new. A distant analogy is the following theorem: the 

cardinality of a collection of continuous functions on a 

space with a countable base of neighborhoods is the 

continuum. Previously, constructiveness was only a 

special case of topology, but now it turns out to be 

topology itself. This is a consequence of an important 

methodological principle: any binding to particular 

representations and data structures limits our view. 

(Recall I. Kant, who said that we can only think of 

things in space and time; this is unfair to modern logic, 

mathematics, and physics.) And real numbers most 

often turn out to be such structures. Therefore, the 

transition to the most abstract representations has 

repeatedly demonstrated its power in mathematics and 

logic. However, one should keep in mind that in this 

case, the transition from ideal objects to real ones is 

more difficult and may involve multiple stages. 

The initial “undeveloped” concepts of Martin-Löf 

and Shanin have proven to be the best for 

generalization and modification. This confirms 

another methodological principle: optimization 

reduces flexibility, i.e., the capability to generalize and 

change. In evolution, this means the extinction of 

well-adapted species when the environment changes. 

Martin-Löf was the first to show, using examples, 

that the same function spaces in constructive 

mathematics can have different spaces of constructive 

operators. But he did not explicitly emphasize the 

difference between his operators and those of soviet 

constructivism. Later, it became clear that 

discrepancies could also arise at higher levels. The 

concept of computability proposed in this paper is one 

example. It differs from Martin-Löf’s concept at the 

third level. 

From a practical viewpoint, we can draw the 

following conclusion: if a program is written in a 

functional style without using incorrect operations 

over real numbers from a constructive standpoint 

(equality, , sign( )x , etc.), then it defines a 

continuous function, and no other proofs are needed. 

In addition, the restrictions accepted on higher-order 

computability show why the style of functional 

programming in numerical problems is different from 

that in discrete counterparts: for example, categorical 

constructs are not used. Categorical operators are of a 

higher order than those allowed in the base, and they 

destroy computability on topological spaces (see 

Example 1). But their use as macros deteriorates 

nothing. 

A theoretical and practical question arises: what 

program transformations are allowable as macros in 

computational problems? It seems that this is 

supercompilation [23]. But it has been studied 

primarily for discrete problems so far. 

 

CONCLUSIONS 

This study raises a series of theoretical questions 

concerning the concept of computability used. It is 

formally weaker than the common concept of 

computable operators of finite type. While eliminating 

the need to explicitly construct models of sets of 

operators of finite types, it serves to solve fairly strong 

problems. Further research is required here, 

particularly into possible extensions preserving 

topological properties and allowing the computation of 

operators with external program restructuring 

required. 
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The results of subsection 2.4 were partially 

presented at the Thirteenth National Supercomputing 

Forum (NSCF-2024) and published in its online 

proceedings. The results of this work were announced 

at the Smirnov Readings. The full text of the paper 

was reported at Ailamazyan Program Systems 

Institute, the Russian Academy of Sciences, on April 

10, 2025. 
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