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Abstract. A new approach to defining mean values based on the ideas of multicriteria optimiza-

tion was proposed and developed previously; see the papers [4] and [5]. The distances between 

the current point and the sample points were treated as components of a vector estimate. The con-

ventional approach to defining mean values involves the scalarization of vector estimates: they 

are replaced, e.g., by the sums of their squared components. On the contrary, we proceeded from 

comparing vector estimates by preference. Several types of mean values corresponding to differ-

ent amounts of information about preferences were considered. The properties of such mean val-

ues were investigated, and computational methods for constructing them were given. However, in 

the case of equally important criteria, the method turns out to be approximate and rather computa-

tionally intensive. In this paper, we present an exact and efficient numerical method for construct-

ing a set of mean values of the specified type. The method is illustrated by a computational ex-

ample. 
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INTRODUCTION  

Mean values are widely used in management, eco-

nomics, engineering, and other fields of science and 

practice (for example, see the books [1, 2]). However, 

according to the preface of [3], there is no possibility 

of finding some universal formula that would exhaust 

the concept of a mean value and possess constructive 

advantages. Therefore, it is topical to suggest a general 

conceptualization of a mean value with an appropriate 

concretization for different situations. 

This paper is a direct continuation of the previous 

publications [4, 5], where a new approach to defining 

mean values as points non-dominated with respect to 

special preference relations was proposed and devel-

oped. Also, methods were presented to construct the 

sets of such mean values for preference relations cor-

responding to different types of information about cri-

teria. In particular, a method was proposed for the case 

of equally important criteria (the information E). Un-

fortunately, this method is approximate and requires 

much machine time even for moderate sample sizes. In 

this paper, we introduce an exact and efficient method 

for constructing the set of mean values G
E
(X). 

1.  NECESSARY BACKGROUND 

For the reader’s convenience, we briefly describe 

the preliminaries from the paper [4] that will be used 

below. 

Consider a set X consisting of n  2 real numbers, 

hereafter called data (or points), that are the results of 

measuring the intensity of some feature: 

X = {x1, x2, …, xn}.                        (1) 

These data are homogeneous in the sense that the 

measurements were made on the same scale, no less 

perfect than the interval scale [6, 7]. The sets rear-

ranged in non-decreasing and nonincreasing order 

have the form 

X = <x(1), x(2), …, x(n)> 

and                 (2) 

X = <x[1], x[2], …, x[n]>, 

respectively, where x(1)  x(2)  … x(n) and x[1]  x[2] 

… x[n] are obtained from the set (1) using appropri-

ate permutations. 

Let x be an arbitrary fixed number, i.e., a point on 

the real line Re. Its remoteness from a point xi of the 
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set X can be estimated by the distance yi = x  xi. 

Then the remoteness of x from the set of all points of 

the set X is characterized by the vector y = (y1, y2, …, 

yn) composed of such distances. It can be interpreted 

as the value of a vector criterion f(x) = (f1(x), f2(x), …, 

fn(x)), where fi(x) = x  xi. The value set Z of this 

vector criterion is the positive orthant Re [0, )n n
   , 

i.e., the set of all n-dimensional vectors with nonnega-

tive components. The value f(x) = (f1(x), f2(x), …, 

fn(x)) of the vector criterion f is called the vector esti-

mate of the point x. For brevity, we also denote y = (y1, 

y2, …, yn), where yi = fi(x), i  N = {1, 2, …, n}. 

Let a preference relation (a strict partial order) P

, 

where  means information about the preferences of a 

decision-maker (DM), be defined on the set Z as fol-

lows: if yP

y, then the point y = f(x) is closer to the 

value set of the vector criterion Y ={yZ y = f(x), 

xX} than the point y = f(x). The relation P

 induces 

a relation P on the real line with a similar meaning: 

xPx  yP

y, where y = f(x) and y = f(x). Only 

the points non-dominated with respect to P can be 

candidates for those that are closest to X and represent 

the entire set X. (A point x is non-dominated with re-

spect to P if there exists no point x such that xPx.) 

If the set G

(X) of such points is externally stable (for 

every dominated point x, there exists a non-dominated 

point x such that xPx), then all of them are called 

mean values with respect to P. 

A natural assumption is that the preferences de-

crease with increasing values of the criteria fi. (In other 

words, the criteria have to be minimized.) In the ab-

sence of other information about the preferences, they 

are described on the set Z by the Pareto relation P


 

defined as follows: yP


z  (yi  zi, i = 1, 2, …, n, 

with at least one of the inequalities being strict). The 

relation P


 induces the Pareto relation P on Re: 

xPx  yP


y. As it turns out, the mean values with 

respect to P are all points of the segment with the 

endpoints x(1) = miniNxi and x(n) = maxiNxi, i.e., 

G


(X) = X  = [x(1), x(n)]. 

Let all criteria have equal importance (the infor-

mation  = E). Let  be the set of all permutations 

 = <(1), (2), ...,(n)> of the set {1, 2, ..., n}. The 

criteria f1, f2, ..., fn are said to be equally important if 

any vector estimate y is identical by preference (indif-

ferent) to its permutation (y) = (y(1), y(2), …, y(n)), 

where   . The non-strict preference relation R
E
 on 

Z is defined as follows:  

           yR
E
z  [There exist ,    such that    

      y(1)  z(1), y(2)  z(2), …, y(n)  z(n)]. 
(3) 

The remoteness of a point x from the set X is esti-

mated using the relation RE on Re. It is induced by the 

relation R
E
 on Re

n
, which is defined by each of the two 

equivalent decision rules: 

        yP
E
z  [y(1)  z(1), y(2)  z(2), …, y(n)  z(n), 

  with at least one of the inequalities being strict], 
(4) 

        yP
E
z  [y[1]  z[1], y[2]  z[2], …, y[n]  z[n], 

  with at least one of the inequalities being strict]. 
(5) 

Here, the mean values with respect to PE, forming 

the set G
E
(X), are the points of the real line that are 

non-dominated with respect to PE. The set of such 

points is externally stable. Since P  PE, we have 

G
E
(X)  G


(X). 

2. A METHOD FOR CONSTRUCTING THE SET GE(X) 

This method is based on the two propositions be-

low that characterize the important properties of mean 

values with respect to PE. 

Proposition 1. Let all initial points of a set be lo-

cated in the nodes of a uniform grid. Then the belong-

ing of any grid node to the mean values with respect to 

RE can be checked by comparing its vector estimate 

with those of the other grid nodes.  

Proposition 2. Let the points of the set X be locat-

ed in the nodes of a uniform grid with a step of h = 2. 

Then either the entire interval (k, k +), where k is 

an integer, belongs to the set of mean values G
E
(X) or 

no point of this interval belongs to G
E
(X). 

Proposition 1 was established in [4]. The proof of 

Proposition 2 is provided in the Appendix. 

First of all, we emphasize that a uniform grid satis-

fying the conditions of Propositions 1 and 2 can al-

ways be constructed if all points in the set X are ra-

tional numbers. In applications, a typical case is when 

these numbers are integers or finite decimal fractions. 

Since the set G


(X) is externally stable and P  PE, it 

suffices to consider the grid only on the segment X  = 

[x(1), x(n)]. Indeed, let uPEx for the point x X  under 

consideration and some point u Re\ X . Due to 

G


(X) = X  and the external stability of this set, there 

exists a point x* X  such that x*Pu. Then we have 

x*PEu and, by transitivity, x*PEx. 

According to Proposition 2, the set G
E
(X) is the un-

ion of the intervals between the grid nodes consisting 

of all non-dominated points with respect to PE and the 

non-dominated nodes of this grid (the limits of these 

intervals). 

The method is as follows. On the segment X , a 

grid is constructed with a step of ½ = ¼h: 

                 {x(1), (x(1) + ¼ h), (x(1) + ½ h), …, 

                             (x(n)  ¼ h), x(n)}.      
(6) 

Its non-dominated nodes––some points of the grid 

(6)––are selected by their pairwise comparisons with 
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respect to PE using any of the decision rules (4) or (5). 

According to Proposition 1, they belong to the set 

G
E
(X). 

Next, the intervals of length  = ½h with limits lo-

cated in grid nodes are considered: 

(x(1), x(1) + ½ h), (x(1) + ½ h, x(1) + h), …, 

(x(n)  ½ h, x(n)); 

their midpoints are grid nodes of the form 

x(1) + ¼ h, x(1) + ¾ h, x(1) + h, …, x(n)  ¼ h, x(n). 

Among the intervals described above, those are select-

ed whose midpoints are non-dominated with respect to 

PE. 

Finally, the selected intervals are united, and their 

non-dominated limits (the grid nodes with a step of 

½ h) are also added. 

The proposed algorithmic method for constructing 

the set G
E
(X) is exact and efficiently implementable. 

The next section provides a computational example to 

illustrate this method. 

3.  AN EXAMPLE OF CONSTRUCTING THE SET GE(X) 

Let X = {1, 2, 5, 9, 11}. Since all numbers in the set X 

are natural, we use a grid with a step of 0.25 covering the 

segment X  = [1, 11]. 

According to the pairwise comparisons with respect to 

PE, the following points located in the nodes of this grid are 

non-dominated with respect to PE: 

1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5,  

3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75,          (7) 

6, 6.25, 6.5, 6.75, 7, 7.25, 8.75, 9, and 9.25. 

Due to Proposition 1, these points belong to the set 

G
E
(X). The other grid nodes are dominated points. For ex-

ample, point 4.5 dominates points 7.5 and 8.5, and point 2.5 

dominates point 9.5. 

Since point 1.25 is dominated, the interval (1, 1.5) does 

not intersect with the set G
E
(X) by Proposition 2. Point 1.75 

is non-dominated, so (1.5, 2)  G
E
(X). By analogy, we es-

tablish that the intervals 

(2, 2.5), (2.5, 3), (3, 3.5), (3.5, 4), 

(4, 4.5), (4.5, 5), (5, 5.5), (5.5, 6), (6, 6.5),          (8) 

(6.5, 7), (7, 7.5), (8.5, 9), and (9, 9,5) 

are included in the set G
E
(X), and the intervals 

(7.5, 8), (8, 8.5), (9.5, 10), (10, 10.5), and (10.5, 11) 

do not intersect with the set G
E
(X). 

Considering the results (7) and (8) and the inclusion 

(1.5, 2)  G
E
(X), we arrive at G

E
(X) = [1.5, 7.5)  (8.5, 

9.5).  

CONCLUSIONS 

In this paper, we have proposed an algorithmic 

method for constructing a set of mean values with 

equally important criteria. The method is exact and 

can be easily implemented on a PC. Also, a computa-

tional example has been provided. 

Thus, for all types of mean values introduced and 

studied in [4, 5], exact computational methods are now 

available. They can be effectively used in practical 

data analysis. 

APPENDIX 

Proof of Proposition 2. We begin with proving the fol-

lowing result: if an arbitrary point (k + ), where k is an 

integer and 0 <  < , from the interval (k, k +) is domi-

nated with respect to PE on Re, then any other point 

(k + ), 0 <  < , from this interval is dominated as well. 

There are two possibilities: the point (k + ) is dominated 

by a point m lying on the grid with a step of  or by a point 

(m + ) outside the grid, where m is an integer and 

0 <  < . 

Let (m) PE (k + ). Then, according to (3), we have the 

inequalities 

fπ(i)(m)  fρ(i)(k + ), i = 1, 2, ..., n,            (A1) 

with at least one inequality being strict. Here, π = {π(1), 

π(2), ..., π(n)} and ρ = {ρ(1), ρ(2), ..., ρ(n)} are permutations 

of the component numbers i = 1, 2, ..., n in the vectors 

f↑(m) and f↑(k + ), respectively. Since fπ(i)(m) are the 

distances between grid points, they are multiples of , 

whereas fρ(i)(k + ) are not. Therefore, all inequalities (A1) 

are strict, and for each i = 1, 2, ..., n, 

fπ(i)(m)  fρ(i)(k) = fρ(i)(k + ) –   

if xρ(i)  k < k + , 

fπ(i)(m)  fρ(i)(k + ) = fρ(i)(k + ) – ( – )  

if k +  < k +   xρ(i). 

However, for xρ(i)  k, we obtain xρ(i) < k +  and 

fρ(i)(k + ) = fρ(i)(k) +  > fπ(i)(m); for k +   xρ(i), we 

have k +  < xρ(i) and fρ(i)(k + ) = fρ(i)(k + ) + ( – ) > 

fπ(i)(m). Hence, 

fπ(i)(m) < fρ(i)(k + ),   i = 1, ..., n, 

i.e., the point (k +) turns out to be dominated by the same 

point m. 

Now, let (m + )PE (k + ). According to the relation 

(3), we arrive at the inequalities 

fπ(i)(m + )  fρ(i)(k + ),   i = 1, 2, ..., n,       (A2) 

with at least one inequality being strict. Here, π = {π(1), 

π(2), ..., π(n)} is a permutation of the component numbers 

i = 1, 2, ..., n in the vector f↑(m + ). 

The same interval (m, m + ) contains a point (m + 

), 0 <  < , dominating the point (k +). To demonstrate 

this fact, we recall that the points of the set X are located in 

nodes of a coarse grid with a step of h = 2. For definite-

ness, let these nodes correspond to the nodes of a fine grid 
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with a step of  and even numbers. If k is even, the left limit 

of the interval (k, k + ) will adjoin to the node k of the 

coarse grid; if k is odd, the right limit will adjoin to the node 

(k + ) of the coarse grid. There are four combinations of 

parity for the numbers k and m. 

1. Let k and m be even. Consider the ith inequality in 

(A2). There are four possible arrangements of the points xπ(i) 

and xρ(i) with respect to the intervals. 

1.1.  xπ(i)  m, xρ(i)  k. Then 

fπ(i)(m + ) = fπ(i)(m) + ,  fπ(i)(m + ) = fπ(i)(m) + , 

fρ(i)(k + ) = fρ(i)(k) + ,  fρ(i)(k + ) = fρ(i)(k) + . 

From (A2) it follows that (fπ(i)(m) < fρ(i)(k))  (fπ(i)(m) 

= fρ(i)(k)    ). 

If fπ(i)(m) < fρ(i)(k), we have fπ(i)(m + ) < fρ(i)(k + ) 

(0, ). 

If fπ(i)(m) = fρ(i)(k), we have fπ(i)(m + )  fρ(i)(k + ) 

(0, ]. 

Moreover, if the ith inequality in (A2) holds as equality, 

then  =  and  can also be chosen equal to . 

1.2. xπ(i)  m, xρ(i) > k. Then  

fπ(i)(m + ) = fπ(i)(m) + ,  fπ(i)(m + ) = fπ(i)(m) + , 

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – , 

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – . 

From (A2) it follows that fπ(i)(m) < fρ(i)(k + 2). As a 

result, we obtain fπ(i)(m + ) < fρ(i)(k + ) (0, ). 

1.3. xπ(i) > m, xρ(i)  k. Then  

fπ(i)(m + ) = fπ(i)(m + 2) + 2 – ,   

fπ(i)(m + ) = fπ(i)(m + 2) + 2 – , 

fρ(i)(k + ) = fρ(i)(k) + ,  fρ(i)(k + ) = fρ(i)(k) + . 

From (A2) it follows that fπ(i)(m + 2) < fρ(i)(k). As a 

result, we obtain fπ(i)(m + ) < fρ(i)(k + ) (0, ). 

1.4. xπ(i) > m, xρ(i) > k. Then  

fπ(i)(m + ) = fπ(i)(m + 2) + 2 – ,   

fπ(i)(m + ) = fπ(i)(m + 2) + 2 – , 

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – ,  

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – . 

From (A2) it follows that (fπ(i)(m + 2) < fρ(i)(k + 2)) 

 (fπ(i)(m + 2) = fρ(i)(k + 2)    ). 

If fπ(i)(m + 2) < fρ(i)(k + 2), we have fπ(i)(m + )      

< fρ(i)(k + ) (0, ). 

If fπ(i)(m + 2) = fρ(i)(k + 2), we have fπ(i)(m + )       

 fρ(i)(k + ) [, ). 

Moreover, if the ith inequality in (A2) holds as equality, 

then  =  and  can also be chosen equal to . 

If cases 1.1 and 1.4 occur in different inequalities of 

(A2), simultaneously implying    and   , then obvi-

ously  = and  = . As a result, we obtain 

fπ(i)(m + )  fρ(i)(k + ),   i = 1, 2, ..., n;        (A3) 

if (A2) has a strict inequality, the corresponding inequality 

in (A3) will be strict as well. Thus, given even numbers k 

and m, there exists  such that (m + )PE (k + ). 

2. Let k be even and m be odd. Consider the ith inequali-

ty in (A2). There are four possible arrangements of the 

points xπ(i) and xρ(i) with respect to the intervals. 

2.1. xπ(i)  m, xρ(i)  k. Then  

fπ(i)(m + ) = fπ(i)(m – ) +  + , 

fπ(i)(m + ) = fπ(i)(m – ) +   + , 

fρ(i)(k + ) = fρ(i)(k) + ,  fρ(i)(k + ) = fρ(i)(k) + . 

From (A2) it follows that fπ(i)(m – ) < fρ(i)(k). As a re-

sult, we obtain fπ(i)(m + ) < fρ(i)(k + ) (0, ). 

2.2. xπ(i)  m, xρ(i) > k. Then 

fπ(i)(m + ) = fπ(i)(m – ) +   + ,  

fπ(i)(m + ) = fπ(i)(m – ) +   + , 

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – ,   

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – . 

From (A2) it follows that (fπ(i)(m – ) < fρ(i)(k + 2))   

 (fπ(i)(m – ) = fρ(i)(k + 2)    ( – )). 

If fπ(i)(m – ) < fρ(i)(k + 2), we have fπ(i)(m + )        

< fρ(i)(k + ) (0, ). 

If fπ(i)(m – ) = fρ(i)(k + 2), we have fπ(i)(m + )         

 fρ(i)(k + ) (0, ( – )]. 

Moreover, if the ith inequality in (A2) holds as equality, 

then  = ( – ) and  can also be chosen equal to ( – ). 

2.3. xπ(i) > m, xρ(i)  k. Then 

fπ(i)(m + ) = fπ(i)(m + ) +  – ,  

fπ(i)(m + ) = fπ(i)(m + ) +  – , 

fρ(i)(k + ) = fρ(i)(k) + ,  fρ(i)(k + ) = fρ(i)(k) + . 

From (A2) it follows that (fπ(i)(m + ) < fρ(i)(k))           

 (fπ(i)(m + ) = fρ(i)(k)    ( – )). 

If fπ(i)(m + ) < fρ(i)(k), we have fπ(i)(m + ) < fρ(i)(k   

+ ) (0, ). 

If fπ(i)(m + ) = fρ(i)(k), we have fπ(i)(m + )  fρ(i)(k  

+ ) [( – ), ]. 

Moreover, if the ith inequality in (A2) holds as equality, 

then  = ( – ) and  can also be chosen equal to ( – ). 

2.4. xπ(i) > m, xρ(i) > k. Then 

fπ(i)(m + ) = fπ(i)(m + ) +  – ,  

fπ(i)(m + ) = fπ(i)(m + ) +  – , 

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – ,  

fρ(i)(k + ) = fρ(i)(k + 2) + 2 – . 

From (A2) it follows that fπ(i)(m + ) < fρ(i)(k + 2). As 

a result, we obtain fπ(i)(m + ) < fρ(i)(k + ) (0, ). 

If cases 2.2 and 2.3 occur in different inequalities of 

(A2), simultaneously implying   ( – ) and   ( – ), 

then obviously  = ( – ) and  = ( – ). As a result, we 

obtain inequalities (A3); if (A2) has a strict inequality, the 

corresponding inequality in (A3) will be strict as well. Thus, 
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given an even number k and an odd number m, there exists 

 such that (m + )PE (k + ). 

For the other combinations (odd k and odd m; odd k and 

even m), the considerations are similar. Well, we have es-

tablished the first part of Proposition 2: if an arbitrary point 

from the interval (k, k + ) is dominated with respect to 

PE on Re, then the same property holds for any other point 

from this interval. 

Finally, we show that if an arbitrary point (k + ), 

where k is an integer and 0 <  < , from the interval (k, 

k + ) is non-dominated with respect to PE on Re, then the 

same property holds for any other point (k + ), 0 <  < , 

from this interval. Assume on the contrary that a point 

(k + ) is dominated with respect to PE on Re. In this case, 

due to the arguments above, the point (k + ) is dominated 

with respect to PE. This contradiction completes the proof of 

the second part of Proposition 2. 

 

Acknowledgments. This work was supported in part by 

the International Center of Decision Choice and Analysis. 

REFERENCES 

1. Bullen, P.S., Handbook of Means and Their Inequality, Dor-

drecht: Springer, 2003. 

2. Lawrence, M.L., Mathematical Statistics, London: Ascended 

Idea, 2020. 

3. Gini, C., Le Medie, Torino: Ulet, 1957. (In Italian.) 

4. Podinovski, V.V. and Nelyubin, A.P., Mean Quantities: A Mul-

ticriteria Approach, Control Sciences, 2020, no. 5, pp. 3–16. (In 

Russian.) 

5. Podinovski, V.V. and Nelyubin, A.P., Means: A Multicriteria 

Approach. Part II, Control Sciences, 2021, no. 2, pp. 33–41. (In 

Russian.) 

6. Pfanzagl, J., Theory of Measurement, Berlin: Springer, 1971. 

7. Roberts, F.S., Measurement Theory: With Applications to Deci-

sionmaking, Utility, and Social Sciences, Cambridge: Cam-

bridge University Press, 1984. 

This paper was recommended for publication  

by F.T. Aleskerov, a member of the Editorial Board. 

 
 Received August 29, 2023,  

and revised September 25, 2023. 

Accepted October 25, 2023. 

 
Author information 

Nelyubin, Andrei Pavlovich. Cand. Sci. (Phys.–Math.), Mechani-

cal Engineering Research Institute, Russian Academy of Sciences, 

Moscow, Russia  

 nelubin@gmail.com  

ORCID iD: https://orcid.org/0000-0002-7064-3103  

 

Podinovski, Vladislav Vladimirovich. Dr. Sci. (Eng.), National 

Research University Higher School of Economics, Moscow, Rus-

sia  

 podinovski@mail.ru   

ORCID iD: https://orcid.org/0000-0002-4859-5942 

Cite this paper 

Nelyubin, A.P. and Podinovski, V.V., Mean Values: A Multicrite-

ria Approach. Part III. Control Sciences 1, 13–17 (2024). 
http://doi.org/10.25728/cs.2024.1.2  

Original Russian Text © Nelyubin, A.P. and Podinovski, V.V., 

2024, published in Problemy Upravleniya, 2024, no. 1, pp. 17–22. 

 

 

This paper is available under the Creative Commons Attribution 

4.0 Worldwide License. 

 
Translated into English by Alexander Yu. Mazurov,  

Cand. Sci. (Phys.–Math.), 

Trapeznikov Institute of Control Sciences,  

Russian Academy of Sciences, Moscow, Russia 

 alexander.mazurov08@gmail.com  
 

mailto:nelubin@gmail.com
https://orcid.org/0000-0002-7064-3103
mailto:podinovski@mail.ru
https://orcid.org/0000-0002-4859-5942
http://doi.org/10.25728/cs.2024.1.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:%20alexander.mazurov08@gmail.com
http://creativecommons.org/licenses/by/4.0/

