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Abstract. This paper presents a local path planning algorithm in the coordinate system of the 

roadbed. The algorithm is based on varying initial trajectory points using the potential field meth-

od and ensuring the smooth resulting path in a new coordinate system. This algorithm is executed 

by minimizing an objective functional. The problem is solved with application to path planning 

for an unmanned transport platform: it is necessary to change the vehicle’s global smooth trajec-

tory points in real time while maintaining smoothness and avoiding emerging obstacles. Com-

pared to the Cartesian coordinate system, the new coordinate system is advantageous in terms of 

the execution time of the algorithm. The algorithm is implemented in Python. With a planning 

horizon being specified, this approach can be combined with various path-following algorithms 

having no obstacle avoidance methods. Computer simulation results are provided to demonstrate 

the effectiveness of the proposed algorithm. 
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INTRODUCTION 

With recent advances in lidar technology, high-

performance GPUs, and machine learning, autono-

mous technologies are undergoing revolutionary 

changes resulting in new capabilities. Much attention 

is paid to the development of unmanned transport plat-

forms, which leads to various fundamental and applied 

problems. Path planning is one problem of this class. 

Here, it is required to build, using environment data 

from various sensors, a locally optimal path to avoid 

obstacles in real time while staying within the roadbed 

boundaries on the original route.  

In robotics, only global path planning approaches 

are actively adopted: the robot’s target route is built in 

advance. In such cases, onboard control laws are re-

sponsible for obstacle avoidance [1]. These approach-

es become inapplicable due to their computational 

complexity when dealing with large vehicles (e.g., 

cars) and new conditions (lane width restrictions, dy-

namic obstacles, and high speeds). A modern approach 

to overcoming the drawbacks described above is to 

decompose the problem into local path planning and 

motion control along a given path. Local planning 

considers environment data received from sensors to 

build a locally optimal obstacle avoidance path with 

all required constraints. Then the control problem is 

solved to ensure local path following with minimum 

displacements.  

Local path planning in the Cartesian coordinate 

system is not very convenient due to difficulties in 

describing the mutual arrangement of the vehicle, 

roadbed, and emerging obstacles. The Frenet coordi-

nate system (also called the Frenet frame) was concep-

tualized in [2]. In this system, the vehicle’s position is 

defined as the path traveled along a predetermined 

smooth (reference) curve and the transverse displace-

ment relative to it, which better and more clearly de-

scribes the vehicle’s maneuvering capabilities within 

the roadbed boundaries. The transverse displacement 

is varied with a discrete step, which is excellent for 

solving motion control problems on motor roads with 

pre-designated lanes. In the cases of no lanes (motion 

is possible anywhere on the roadbed), the local plan-

ning problem becomes computationally intensive as 

the displacement step is small and many admissible 

trajectories are generated for each step. Other ap-

proaches devoid of this drawback, such as those rely-
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ing on control with predictive models [3], require re-

producing a numerical model of the controlled vehicle 

as accurately as possible. This is not always easy in 

practice, especially if different vehicles are used. In 

addition, the cumbersome recalculation process is 

permanently restarted to ensure accurate path follow-

ing, even if no new objects appear on the path.  

In this paper, we propose an approach to local path 

planning in the Frenet frame without the disadvantages 

mentioned above. Solving the related optimization 

problem using a penalty function allows avoiding ob-

stacles while maintaining the smooth resulting path 

and reducing the discretization step of the transverse 

displacement to the accuracy required for the real-time 

application of the algorithm. 

1. TRANSITIONS BETWEEN COORDINATE SYSTEMS 

1.1. The Frenet Frame 

The Frenet frame specifies the position of an object 

in the 2D space relative to a reference curve using two 

coordinates (s, d), where s is the arc length from the 

origin of the reference curve (the longitudinal dis-

placement) and d is the transverse displacement rela-

tive to the same curve (Fig. 1). In other words, we pass 

to a coordinate system associated with the roadbed, 

where s is the roadbed length from the starting point to 

the current point and d is the displacement relative to 

its center. In the figure, the car’s position in the Frenet 

frame is given by the coordinates (2, 1). When moving 

along the path a1, the coordinate d will remain invari-

able: d = 1.  

 
 

 

 
Fig. 1. The object’s position on the roadbed in the Frenet frame: s––the 
reference curve forming one of the axes; d––the axis of transverse 

displacement relative to the reference curve; b––roadbed boundaries; a1 and 

a2––paths with constant coordinates d = 1 and d = -1, respectively.  

 

For the transition to the Frenet frame, it is neces-

sary to define a reference curve determining this coor-

dinate system. Consider a smooth and thrice continu-

ously differentiable curve in the Cartesian coordinate 

system with a natural parameterization ( )p p s . 

There exists a mapping f that defines a transformation 

of the radius vector of the curve points in the Cartesian 

coordinate system to the parameter s. 

 

1.2. The Transition from the Cartesian Coordinate System 

to the Frenet Frame 

In the Cartesian coordinate system, the position of 

any point of the original curve is given by the radius 

vector 
pR  (Fig. 2). The position of the curve point is 

reconstructed by the parameter s. 

An arbitrary point P with a radius vector r  is ob-

tained by the composition of vectors pR  and pd , 

where pd  is perpendicular to the tangent to the refer-

ence curve at the point ps   nearest to P. 

 
 

 

 
Fig. 2. The roadbed (Fig. 1) represented in the Frenet frame: s––the 
reference curve defining a new coordinate axis; d––the normal to the 

reference curve (the second axis); b––roadbed boundaries; a1 and a2––the 

paths with the constant coordinates d = 1 and d = - 1, respectively.    

 

We introduce the following angles:  θs pR  as the 

inclination of the tangent to the reference curve in the 

Cartesian coordinate system at the point pS  (Fig. 3) 

and θd  as the inclination of the vector pd . Then the 

transition to the Frenet frame is performed by 

 ,p ps f R

 
 = sign .p s dd d   



 

 
 

 

 
 

58 CONTROL SCIENCES  No. 3 ● 2024  

CONTROL OF MOVING OBJECTS AND NAVIGATION 

 

 

 
Fig. 3. Transition between the Cartesian coordinate system and the 

Frenet frame: P––an arbitrary point in the space; 1––the reference curve; 

Sp––the point nearest to P on the reference curve.   

 

1.3. Transition from the Frenet Frame to the Cartesian 

Coordinate System 

Since the resulting path must be represented in the 

Cartesian coordinate system, we consider the inverse 

transition as well. This transition is performed by de-

termining the coordinates of the reference curve point 

in the Cartesian coordinate system from the parameter-

ized curve equation and adding the transverse dis-

placement d : 

sin
.

cos

p s d

p

p s d

x x
d

y y

      
      

      

 

2. HORIZON CONSTRUCTION IN THE FRENET FRAME 

A horizon is an ordered fixed-size set of coordi-

nates representing some segment of a global path for 

which local planning is performed at the current time. 

The horizon length is determined by the range of ex-

ternal sensors transmitting data about external objects 

and by the computing power of the computer. The 

Frenet frame turns out to be convenient for horizon 

calculation. In this coordinate system, all objects are 

defined by their position on the roadbed: it is much 

easier to determine whether an obstacle lies on the 

current trajectory, including its curved segments. In 

the new orthogonal coordinate system, the horizon is 

approximated by cubic B-splines.  

It is required to construct a horizon ensuring the 

avoidance of static obstacles. Obstacle avoidance and 

B-spline curve smoothing by varying the points in an 

arbitrary direction in the original Cartesian space were 

considered in [4]. Utilizing these results, we vary the 

spline points in the resulting new coordinate system. 

Moreover, to reduce the number of variables, it suffic-

es to restrict the variation to the axis d only. The ith 

point in the Frenet frame has the position 

   0, ,i i i i i iq s d d s d   , where id  is the variation 

of the transverse displacement of the ith coordinate 

relative to the reference curve.  

According to [4, 5], the curvature of the curve in 

the new coordinate system is decreased by minimizing 

the sum of the squared norms of the vectors 

1)( i id d   and 1 12 )( i i id d d   , which define the 

first and second derivatives of the curve function, re-

spectively. This sum can be written as 

  T
1 2( ) ,h h hS d d H H d                    (1) 

where 

T T
1 1 1 1 2 2 2 2, , , ,n n n nH C C H R H C C H R      

1 2, ,..., ,h nd d d d  

( 1)
1 1

1 1 0 0 ...

0 1 1 0 ... , ,

... ... ... ... ...

n nC C R  

 
 

  
 
  

 

( 2)
2 2

1 2 1 0 0 ...

0 1 2 1 0 ... , .

... ... ... ... ... ...

n nC C R  

 
 

  
 
  

 

To control the mobility of individual points, we in-

troduce the following penalty functional for point var-

iations: 

T( ) , ,n n
h h hP d d Dd D R                     (2) 

where 1 2, ,...,h nd d d d  is the transverse variation of 

the horizon points and D is a diagonal matrix with el-

ements proportional to the variation penalty of the cor-

responding point. 

3. REPULSIVE POTENTIAL 

This paper considers point obstacles only. They are 

avoided by creating a potential field around the object 

in the Frenet frame. Each object jO  in this coordinate 

system is defined by the two coordinates 
    ,

j j
s d . 

Each point of the planned horizon h is also defined by 

the two coordinates  ,i is d
 1 2 .( , ,.. , ).h ns s s s  Then 

the potential over all objects from all points of the 

horizon is given by 
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U s d
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   (3) 

where 0  
and objn  is the number of obstacles de-

tected. 

Thus, the farther the horizon points are from the 

detected obstacles, the smaller the magnitude of the 

potential field will be. 

4. THE OBJECTIVE FUNCTIONAL 

The penalty functions for increasing the curvature 

and length of the path and approaching an obstacle 

have been introduced above. In most applications-

relevant problems, it is also necessary to consider the 

roadbed boundaries by limiting the admissible varia-

tion range of the parameter d. Moreover, individual 

boundaries can be specified for each point, which is 

especially important under different roadbed widths. 

In the case of unknown roadbed boundaries, a penalty 

is introduced for displacements from the reference 

curve to ensure the motion near the original global 

path: 

 
T
.h h hM d d d                          (4) 

In view of the expressions (1)–(4), the objective 

functional takes the form 

     

   

0
hor

0 0
hor

1 1
,

2 2

, ,

h h h h h

h h h h h

s d S d d P d

U s d d M d d

   
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        (5) 

where 0   
and 

0 0 0 0
1 2, ,...,h nd d d d  are the initial 

displacements of the selected horizon relative to the 

reference curve. If the horizon points coincide with 

those of the reference curve, then 0 0jd 
 

1,...,j n  . 

The horizon is found by solving the optimization 

problem 

   

 
1

*
hor,...,

0 *

argmin , ,

, ,

n
h h hd d

l r n
i i i i h

d s d

D d d D d R

 

   
            (6) 

where 
r n

iD R  and 
l n

iD R  are the distance matri-

ces from each point of the reference curve to the near-

est point on the right- and left-hand boundary of the 

roadbed, respectively. 

Solving this minimization problem may require 

knowledge of the gradient of the objective functional 

(5). Since only the transverse displacements are var-

ied, the corresponding gradients have the form   

   
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5. THE HORIZON CALCULATION ALGORITHM 

The main idea of this algorithm is to use the hori-

zon obtained at the previous iteration as an initial ap-

proximation, transfer the initial coordinates to the cur-

rent position, and extend the path to the desired length 

(Fig. 4). By a horizon H we understand an ordered set 

of vectors  , :i i ih s d  

T

2
T T T 2
1 ... .N

nH h h h R   
 

 

Initialization. Input a given array of N points form-

ing a smooth reference curve with an equal distance 

s  between neighbor points [4]. For the ith point of 

this array, the displacement along the reference curve 

is given by s i s  .  

Step 1. Obtain the vehicle’s position in the Carte-

sian coordinate system. 

Step 2. Examine all points of the reference curve to 

find the number p of the point nearest to the vehicle’s 

position and the distance pd  to this point: 

   , ,p p ps d p s d  .  

Step 3. Initialize the horizon 

 
T

2
... 1

...
,

p p p n

p p p

s s s s n s
H R

d d d


     

  
 

 

which characterizes the motion along the reference 

curve while maintaining the initial transverse dis-

placement. 

Step 4. Repeat Steps 1 and 2.  

Step 5. Consider two possible situations: 

 The displacement along the reference curve lies 

outside the current horizon, i.e., the current displace-

ment ps  is not contained in the matrix H. Then repeat 

Step 3. 

 The vehicle’s position lies inside the current 

horizon, i.e., the current displacement ps  is contained 

in the matrix H. 
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Let m be the number of the horizon coordinate s 

corresponding to the displacement sp. Remove the first 

rows of the horizon up to the (m – 1)th row inclusive, 

thereby transferring the array’s beginning to the row 

corresponding to the coordinate sp. Complement the 

horizon to the required length by adding the necessary 

coordinates s to the end, continuing the remaining row 

with the given step s  and pairing the last known 

transverse displacement. 

 

 

 
Fig. 4. The initial approximation process for the horizon: circles––
reference trajectory; triangles––the horizon obtained at the previous step of 

the algorithm; rhombuses––the points transferred to the beginning of the 
horizon; asterisks––the points complementing the horizon to the required 

length. 

 

Step 6. Solve the minimization problem (6) using 

the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-

rithm. 

Step 7. Transform the obtained coordinates of the 

horizon H back to the Cartesian coordinate system. 

Supply them to the input of the path-following algo-

rithm. 

Step 8. Repeat Steps 4–7 of the algorithm until 

reaching the end of the reference curve. To save com-

puting resources, a new iteration of the algorithm is 

executed when facing a new obstacle or approaching 

the end of the current horizon, 0.1n points before the 

end. 

6. A NUMERICAL EXAMPLE 

For the generated horizon, the path planning algorithm 

was tested using the path-following algorithm described in 

[6]. The reference curve was specified by points from a 

sparse set of GNSS receiver coordinates recorded during the 

vehicle’s motion, which were transformed to the UTM sys-

tem and smoothed by the method presented in [4]. Here, 
n nD R   is a diagonal matrix with values {25, 25, 0, 0} on 

the principal diagonal. 

Figure 5 shows the resulting path built for the parameter 

values 0.5, 2    and the penalty for displacements from 

the reference curve [3]. Note that the roadbed width con-

straints were neglected. Obviously, the trajectory [1] tends 

to return to the reference curve at all time instants.  

The case in Fig. 6 corresponds to a smaller value of the 

reference curve approach coefficient and the road width 

constraints γ = 0.001, η = 2; here, D ∊ R
n×n

 is a diagonal 

matrix with values {25, 25, 0, 0} on the principal diagonal. 

In this case, the vehicle realigned to avoid the obstacles and 

continued its motion at some distance from the reference 

curve. 

 
 

 

 
Fig. 5. The vehicle’s path [1] along the initial points of the reference 

curve [3] with bypass of point obstacles [2] and planned horizon [4] in 

the UTM coordinates. 

 
 

 

 
Fig. 6. The vehicle’s path [1] along the initial points of the reference 

curve [3] with bypass of point obstacles [2] and planned horizon [4] in 

the UTM coordinates. 

 
CONCLUSIONS 

This paper has considered local path planning for 

unmanned vehicles in the Frenet frame with point ob-

stacles. The existing local path planning approaches, 

such as potential field-based and predictive control 

model (PCM) methods, either have insufficient flexi-

bility in maneuvers or require significant computing 

resources for accurate path prediction. Moreover, the 

existing local planning methods neglect the smooth-

ness of the curve being built. 

We have proposed a local horizon planning algo-

rithm in the Frenet frame with the effective avoidance 

of point obstacles. Unlike traditional methods in the 

Cartesian coordinate system, this algorithm varies the 

transverse displacement along the reference curve in 

the Frenet frame, which improves computing efficien-

cy and simplifies maneuver processing. 
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According to the numerical examples above, the 

algorithm builds a smooth path in the presence of mul-

tiple obstacles in real time, demonstrating accuracy 

and computational simplicity. The algorithm can be 

integrated with various path-following algorithms hav-

ing no obstacle avoidance methods. 
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