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Abstract. In connection with implementing the concept of electric airplanes, it is necessary to 

ensure the high reliability of electromechanical actuators (EMAs) as important components of 

aviation systems. The structural composition of an EMA and the types of its faults are considered. 

Fault diagnosis methods based either on EMA modeling or the analysis of signals received during 

EMA operation, as well as hybrid methods combining both these approaches, are reviewed. The 

advantages, disadvantages, and difficulties in applying these approaches are investigated. Special 

attention is paid to EMA diagnosis methods based on deep learning, which process signals in au-

tomatic mode and implement complex fault diagnosis. The concept of aircraft equipment health 

management (in particular, EMA health management) is presented based on assessing the tech-

nical condition and prognosticating the remaining useful life in order to prevent faults before their 

occurrence. Several hybrid approaches with prognostics are highlighted to solve the aircraft 

health management problem. Finally, Russian R&D results in the field of machine learning-based 

aviation health management are reviewed. 
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INTRODUCTION  

The concept of electric airplanes, among other im-

provements, calls for gradually replacing hydraulic 

actuators with aircraft electromechanical actuators 

(EMAs), which will provide significant advantages 

over hydraulic actuators in flight control [1, 2]. As is 

believed, this replacement will significantly reduce 

weight and life cycle cost, decrease environmental 

impact, and increase reliability for aircraft. The use of 

EMAs is becoming more common, but their wide-

spread application has been slowed by limited experi-

ence from the safety and reliability point of view and 

is currently largely restricted to non-safety-critical sys-

tems. It is crucial to assess the implications of replac-

ing a hydraulic subsystem with its electrical alternative 

in terms of equipment use, implementation, monitor-

ing, reliability, and safety. Problems arise that are less 

important for hydraulic actuators, such as electromag-

netic compatibility, mechanical jamming, and over-

heating due to high currents [3]. To support the use of 

EMAs, reliable prognostic tools are needed to provide 

an accurate assessment of their factual technical condi-

tion and remaining useful life. EMAs and the related 

opportunities and challenges were reviewed in [4, 5]. 

Actuators are safety-critical components of aircraft 

systems, and an undetected actuator fault may have 

serious consequences; therefore, condition-based 

maintenance is necessary to improve EMA perfor-

mance and ensure reliability, safety, and cost reduc-

tion. 

Innovative prognostic and diagnostic methodolo-

gies based on numerical modeling are becoming a 

fundamental tool for the early detection of EMA 

faults. Prognostics and Health Management (PHM) 

systems are a relatively new field of research for diag-

nosing the current technical condition and predicting 

the failure time and remaining useful life of a system 

or component based on its signals [6]. Such systems 

are intended for maintenance scheduling in order to 

ensure failure-free system operation based on a set of 

numerical models. These models must be properly 
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tuned to reproduce the behavior of EMAs in terms of 

static and dynamic response (e.g., currents, voltages, 

velocity, position, etc.) [7, 8]. For this purpose, it is 

necessary to simulate EMA operation under normal 

conditions as well as in the presence of incipient 

faults. The results, trends, and predicted values of the 

model must be thoroughly validated on detailed and 

extensive experimental datasets. The experimental 

validation of models on test rigs is a widespread meth-

od in engineering applications involving the develop-

ment of new models for monitoring and control [9]. 

Signal processing methods and statistical tools 

with different types of sensors, the fast Fourier trans-

form, vibration frequency analysis, and time-

frequency analysis are applied in EMA fault diagnosis 

[10–13]. However, these methods can be time-

consuming, labor-intensive, and unreliable. In recent 

years, a new approach has been developed to automate 

fault diagnosis and prognosticate faults based on deep 

learning methods. These methods classify different 

EMA states using different types of neural networks, 

such as denoising autoencoders, deep trust networks, 

and convolutional neural networks. Unlike traditional 

methods, deep learning ones can extract effective fault 

features directly from monitoring signals and classify 

faults simultaneously [14, 15]. 

The goal of this paper is to study and analyze mod-

ern approaches to diagnose and prognosticate the 

technical condition of an aircraft electromechanical 

actuator, as well as their prospects and the difficulties 

that currently hinder their practical application.  

1. AN ELECTROMECHANICAL ACTUATOR: STRUCTURAL 

COMPOSITION AND FAULT TYPES 

Most EMAs consist of a servomotor, an electric 

power actuator circuit, mechanical components, an 

actuator control unit, and some sensors [16, 17]. The 

electric power actuator receives a signal from the ac-

tuator control unit and outputs an appropriate power 

current to the actuator’s servomotor. The servomotor 

converts electrical energy into mechanical energy and 

brings executing units into operation. Depending on 

motion kinematics, these units are divided into transla-

tional, turn, and rotary motion mechanisms. When im-

plementing feedback control, feedback sensors are 

installed in EMAs; monitoring sensors are installed to 

control the actuator’s technical condition. 

The following types of faults are distinguished in 

EMAs: a motor fault, an electrical power actuator 

fault, and a mechanical component fault [18]. 

Motor faults mainly include a bearing fault, a stator 

winding fault, and a rotor fault. Bearing faults are the 

degradation, spot corrosion, and destruction of the 

bearing cage. Bearing faults may cause friction imbal-

ance and abnormal vibration, reducing motor efficien-

cy and performance. Stator winding faults include a 

winding breakage, an electrical short, etc. A winding 

breakage is usually due to high motor starting cur-

rents; it sharply decreases EMA output torque and in-

creases winding currents. An electrical short is mainly 

caused by prolonged thermal aging; it increases wind-

ing currents and heat generation by the motor. Motor 

rotor faults are rotor shaft eccentricity and rotor de-

magnetization. Shaft eccentricity disturbs the electro-

magnetic balance and causes abnormal vibration dur-

ing operation. Rotor demagnetization is usually due to 

motor overheating; it reduces motor efficiency and 

increases stator current and motor temperature. 

The main faults in the electric power actuator are 

as follows: an electrical short and disconnection of the 

electric bridge, and electric shocks of the power sup-

ply capacitor. 

Common mechanical faults include excessive deg-

radation, pitting (indentation of metal surfaces at high 

voltage contact points), back channel jamming, and 

poor lubrication. Excessive degradation occurs mainly 

on the ball screw and fixed-end bearings. Severe deg-

radation of the ball screw may cause failure of the en-

tire EMA system. Pitting is mainly due to surface fa-

tigue; it increases EMA vibration. Back channel jam-

ming occurs when deforming the return tube or accu-

mulating debris on the return tube; it may deteriorate 

the friction condition of the EMA, generate large 

amounts of heat, and drastically reduce the thermody-

namic performance characteristics. Insufficient and 

contaminated lubrication increases friction and EMA 

degradation. 

2. EMA FAULT DIAGNOSIS METHODS 

2.1. The Types of Diagnostic Methods 

EMA fault diagnosis methods are mainly divided 

into model-based methods, data-driven methods (in 

which the system is treated as a black box), and hybrid 

methods [18–20].  

The principle of model-based fault diagnosis 

methods is to synchronously run EMA models and the 

real EMA system and estimate the difference between 

their state signals, which are measured by various sen-

sors and collected by a data acquisition system. The 

output residuals of the signals of the simulation mod-
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els and real systems are used to diagnose the technical 

condition of EMAs. 

Model-based fault diagnosis has the following ad-

vantages [18]: 

• Creating an accurate model of an existing system 

facilitates comprehending the physical mechanism of 

its internal interactions. Fault modeling allows gener-

ating signals to train automated fault recognition algo-

rithms as well as to test and compare algorithms, diag-

nostic and prognostic procedures, and functions [21]. 

• The results obtained by model-based fault diag-

nosis methods can be clearly explained by a dynamic 

model, and the degeneration degree of the system can 

be determined by comparing the parameter deviations 

or the residuals. 

• Model-based methods do not require much real 

data to train fault diagnosis algorithms. Good training 

and diagnostic results can be achieved using a small 

amount of training data [22]. 

However, model-based fault diagnosis methods for 

EMAs suffer from several drawbacks. 

• For each particular model of the systems being 

diagnosed, appropriate mathematical models have to 

be developed, which is a challenge. Accurate dynamic 

models are often computationally intensive, which 

places high demands on computing performance. 

• During EMA operation, electromagnetic force, 

thermal stress, and mechanical stress have a complex 

interaction mechanism, and an accurate mathematical 

model is difficult to create. As a result, one uses sim-

plified models approximately reflecting the character-

istics of physical systems. In this case, model-based 

fault diagnosis methods can determine whether a fault 

has occurred in EMA but cannot accurately identify 

the faulty component. Detailed dynamic models are 

needed for each component to perform a more accu-

rate diagnosis. 

Data-driven fault diagnosis methods do not require 

complex mathematical models of EMAs; they extract 

features for diagnosing the technical condition of 

EMAs from sensor signals [23]. Signal processing 

techniques play an important role in EMA fault diag-

nosis. The quality of initial data and the correlation 

between signals and faults strongly influence the ef-

fectiveness of diagnostic algorithms. The operating 

conditions of EMAs often change even during normal 

operation, which makes the state signals highly non-

stationary and non-periodic. The influence of different 

operating conditions is eliminated by oversampling, 

i.e., the signals are synchronized with selected key 

signals. For example, several signal processing meth-

ods can be used during feature extraction to identify 

fault frequencies synchronized with the motor position 

in signal data [24]. In this case, feature extraction and 

fusion methods are employed to select the features 

relevant to the failure mode and exclude the irrelevant 

ones. The wavelet transform is widely used in feature 

extraction for EMA fault diagnosis [25, 26].  

With features, the technical condition of EMAs can 

be determined using a classifier for fault diagnosis. If 

fault-irrelevant features are supplied to the classifier, 

learning will have a small rate and a poor effect. Prin-

cipal Component Analysis (PCA) can be applied to 

extract fault-relevant classification features and reduce 

the dimension of the feature vector. PCA characterizes 

the process state by projecting the acquired data into a 

lower-dimension space. This dimension reduction 

method preserves the correlation between measure-

ments by optimally capturing data variability [27]. 

However, data-driven fault diagnosis methods for 

EMAs face some application difficulties as follows. 

• Under different degrees and types of faults, a 

large amount of data is required to train diagnostic 

algorithms. The effectiveness of diagnosis strongly 

depends on the quality of the available data. However, 

in most cases, aircraft cannot fly with faulty EMAs, so 

fault data are difficult to obtain. The absence of avail-

able experimental data considerably complicates stud-

ies. Many algorithms have been validated only theo-

retically or been tested only on mathematical modeling 

data.   

• In the case of severe noises or complex systems, 

advanced signal processing methods and feature ex-

traction algorithms are usually required. As a result, 

data-driven diagnostic methods often place high de-

mands on the computing power of the system. 

• Data-driven methods typically require high sam-

pling rates of the state signals. Thus, the actuator con-

trol unit must have powerful computational and 

memory capabilities. 

Also, hybrid diagnostic methods are used for EMA 

fault diagnosis; they combine the advantages of both 

data-driven and model-based diagnostic methods. For 

example, model-based methods are adopted to gener-

ate necessary data, and then data-driven methods are 

applied to process these data and implement fault di-

agnosis [28]. 

 

2.2. EMA Fault Diagnosis Based on Deep Learning 

Traditional machine learning methods are widely 

used for diagnosing EMA faults. A detailed review of 

such methods can be found in [18]. However, within 

these traditional data-driven approaches, features are 
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extracted manually. The corresponding processes 

heavily rely on prior knowledge, diagnostic experi-

ence, and sophisticated signal transformation methods, 

which are computationally intensive and time-

consuming; the effectiveness of diagnosis largely de-

pends on the fault characteristics selected. With suffi-

cient training data, deep learning models automatically 

process the original signals and implement compre-

hensive intelligent fault diagnosis. However, since 

EMAs are often used in high-reliability and safety-

critical equipment, it is difficult to obtain balanced 

data on failure modes [29].  

A modified Long Short-Term Memory (LSTM) 

model was applied to detect and isolate EMA faults in 

[30]; the effectiveness of this method was confirmed 

by NASA open data. An LSTM neural network is a 

deep learning network intended to study long-term 

dependencies because it can store information for a 

considerable time. Several denoising autoencoders 

were combined to diagnose EMA faults accurately; 

see [31]. However, these methods perform well only 

under sufficient data and balanced samples, which is 

difficult to implement in most EMA fault diagnosis 

scenarios. 

Convolutional neural networks are used for feature 

extraction under unbalanced data. A 2D convolutional 

neural network and an optimized model based on the 

Softmax activation function were proposed for diag-

nosing EMA ball screws using motor current signals 

[32]; as a result, feature extraction and classification 

were improved under different loads and unbalanced 

samples. Unsupervised parallel data were used, and 

EMA fault diagnosis was implemented using different 

sensors based on a convolutional neural network [33]. 

However, these methods do not settle the diagnosis 

problem under small samples. 

A generative adversarial network was proposed for 

fault diagnosis under a small-sized sample based on 

vibration signals [34]. Adversarial autoencoders are 

used to convert autoencoders into generative adversar-

ial networks. A generative adversarial network based 

on a conditionally variational autoencoder was pre-

sented to solve the unbalanced sampling problem un-

der different operating conditions [35]. A complex 

data-driven approach was proposed to implement reli-

able fault diagnosis for EMAs using only vibration 

signals [29]; this approach combines the capabilities of 

a convolutional neural network for feature extraction 

with semi-supervised learning and data generation of 

an adversarial autoencoder under different operating 

conditions and unbalanced sampling. A ball screw 

transmission fault detection method based on a deep 

trust network was proposed in [36]. Frequency spectra 

of a combined dataset collected from multiple sensors 

were used. 

The presence of redundant data increases the load 

on software and hardware. A semi-supervised sparse 

autoencoder was used to process the data observed and 

extract sparse features in order to improve the accura-

cy of fault detection while reducing the data [37]. The 

temporal and spatial relationships were investigated by 

a multi-channel LSTM network to build a time series 

model for fault detection and isolation based on the 

difference between the parameter values measured by 

the sensors and their values calculated by the autoen-

coder. According to the validation results, this method 

can effectively diagnose EMA faults. 

A hybrid spatial unit was combined with a tem-

poral synchronized attention-based recurrent unit with 

seasonal-trend data decomposition procedures [38]; 

this approach demonstrated good results in both fault 

diagnosis and prognostics of EMAs. 

A simulation model of EMAs was described, and 

typical EMA faults were analyzed in [39].  

In particular, EMA simulation was divided into 

three separate parts according to its composition: a 

permanent magnet synchronous motor, a gearbox, and 

a ball screw. 

The permanent magnet synchronous motor was 

modeled by the equations  
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with the following notations: , d qu u  and , d qi i  are the 

equivalent voltage and equivalent current, respective-

ly, in the rotor principal component system with the 

coordinates d and q; aR  is the equivalent resistance of 

coil winding; L is the equivalent inductance; mP  is the 

number of motor pole pairs; m  is the rotor mechani-

cal angular velocity; 
mf

  is the equivalent magnetic 

chain; eT  is the motor output electromagnetic torque; 

J is the equivalent rotational inertia of the motor rotor; 

B is the rotor damping factor; finally, LT  is the com-

bined load resistive torque. 
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When ignoring the transmission gap, friction 

torque, and other influencing factors, the mathematical 

model of the reduction gear set has the form 

/ ,g m iN    

where g  is the output angular displacement of the 

reduction gear set; m  is the output shaft angular dis-

placement of the motor; iN  is the reduction ratio of 

the reduction gear set. 

The screw gap, deformation, friction, and other in-

fluencing factors being neglected, the mathematical 

model of the ball screw is as follows: 

,
2

g
g hx P





 

where gx  denotes the output displacement of the ball 

screw and hP  is the lead of the ball screw drive. 

Based on this model, a method with the SAE-

BiLSTM neural network was applied for fault diagno-

sis; see Fig. 1. In this method, the networks are trained 

offline with known normal and faulty data. The trained 

networks are uploaded into the onboard system for 

online diagnosis and fault detection.  

The method for diagnosing EMA faults includes 

the following steps [39]. 

• The data are collected and pre-normalized to the 

range [0, 1]. 

• Training is carried out: a sparse autoencoder 

(SAE)-based feature extraction network is trained to 

perform adaptive sensor data extraction on an already 

collected dataset containing normal operating states 

and fault states. This approach ensures dimension re-

duction and compression while preserving significant 

features. Next, a BiLSTM network-based regressor is 

trained using the normal state feature data, which are 

applied to build a time series model and find the resid-

uals between the estimated and measured values of 

normal and faulty data. (A BiLSTM network consists 

of LSTM neurons and the bidirectional recurrent neu-

ral network model.) Then a Softmax-based classifier is 

trained to classify the faults using the resulting differ-

ences and the corresponding fault types. 

• The three networks obtained from the training 

process are applied for fault diagnosis. The processed 

monitoring data are first passed through the SAE net-

work for data downscaling and feature extraction. 

Then the residuals between the single-step forward 

estimated and measured data are calculated; if these 

residuals exceed a fault threshold, a fault is reported 

and the fault data are sent to the Softmax network for 

fault classification (isolation). 

 
 

 
 

Fig. 1. The EMA fault diagnosis scheme based on deep learning [39]. 
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2.3. EMA Fault Diagnosis Based on a Multiscale 

Convolutional Neural Network 

A feature fusion method for diagnosing EMA 

faults involving a multiscale convolutional neural 

network was proposed in [14]. This method consists of 

four consecutive steps: multiscale transformation, fea-

ture learning, feature fusion, and fault classification. 

EMAs operate in complex conditions with speed and 

load variations and under high environment noise. 

Multiscale transformation implementation in a convo-

lutional neural network improves the diversity and 

complementarity of fault-related features. 

The multiscale transformation is the sampling of a 

signal with different degrees of detail. For a given 1D 

signal  x  of length N, several consecutive signals 

  k
y  with different degrees of detail are created us-

ing a simple downsampling process. Figure 2 shows a 

signal at three different scales (Scale 1, Scale 2, and 

Scale 3).  

 

 

 
Fig. 2. The multiscale downsampling of a signal. 

 

Several filtered signals with different scales can be 

obtained. The number of such signals is related to the 

details and trends of the feature learning. 

Multiscale downsampling is mathematically de-

scribed as follows: 

 

 1 1

1
,1  ,

jk
k

ij
i j k

N
y x j

k k
  

    

where k denotes the scaling factor.  

To learn the features after obtaining the signals 

   1, 2, 4
k

y k   with different sampling scales, 

these signals are passed in parallel through the pairs of 

convolutional layers       1 , 2 , 3
k k k

C C C  and fusion 

layers       1 , 2 , 3
k k k

P P P  for learning at different 

time scales. In particular, filters (convolutional ker-

nels) of different sizes are used for signals with differ-

ent sampling scales; as a result, each parallel convolu-

tional layer at the same level can obtain the character-

istics of different high- and low-frequency features, 

thus improving the diagnostic performance of the 

model. 

The first convolution layers       1 2 4
1 , 1 , 1C C C  

have a signal length of ,   / 2,   / 4N N N , respectively. 

For each first convolution, the size of the correspond-

ing convolutional kernel decreases with increasing k, 

which facilitates better extraction of useful features.  

For each signal    1, 2, 4
k

y k  , a certain num-

ber of new feature maps are generated after the layers 

 
1  

k
C  and 

 
1

k
P . These feature maps are input data 

for the layer  
;2

k
C  the operations are repeated, and 

new feature maps are generated. Similarly, with K 

convolutional kernels used in the layer  
3

k
C , the 

merge layer 
 

1
k

P  outputs K new feature maps: 

   1 2, , , .
k

Kq p p p   

The final representation of a feature q has three 

different scales: 

     1 2 4
, , .q q q q 

 
 

Consequently, compared to the traditional single-

scale representation, multiscale feature learning has a 

wider feature coverage range, which facilitates the 

extraction of additional features and provides a better 

effect for the next fault classification step. 

The attention mechanism is used as an effective 

feature fusion mechanism. The network can selective-

ly enhance useful functions to detect faults and sup-

press invalid ones.  

A combination of a fully connected hidden layer 

and a Softmax layer is used to perform classification. 

The feature vector q obtained in the previous step is 

supplied to the input of the fully connected layer. The 

hidden layer uses ReLU as the activation function, 

whereas the output layer uses the Softmax function. 
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Let Y be the EMA state category label. Assume 

that there are n categories in total. In other words, giv-

en an input sample x, the probability that this label 

belongs to category c is defined as follows: 

   
 

 

T

T

T

1

exp
| ; softmax ,

exp

c

c n

j
j

x
p Y c x x

x




    



 

where  1 2, , , n       is the parameter to be 

learned in the model; T

1

1/ exp( )
n

j

j

x



  is the normalized 

function, and 

1

1
n

j

j

P



 . 

The multiscale convolutional neural network will 

predict the result for any given input sample. The pre-

dicted value of the model will maximally correspond 

to the true value when minimizing the distance be-

tween them, i.e., the model’s loss function 

   
 

 

T

T1 1

exp1
log ,

exp

m K k

i K
i k

j
j

x
L I y k

m
x 

 
 

 
    

 
 
 




 

where m is the number of samples or the input lot size; 

I   is the index function:  

 
1  if 

 
0  if   . 

i
i

i

y k
I y k

y k


 


 

To minimize the loss function, the neural network 

weights need to be optimized and tuned. For this pur-

pose, the optimizer applies the backpropagation algo-

rithm: 

  * arg min ; , ,L f x y


    

where 
*  is the optimal parameter of the model; ( )L   

is the loss function; ( )f   and y are the output and tar-

get value of the model, respectively. 

The 2D visualization of the classification process 

was also provided in [14]; see Fig. 3. First, the sam-

ples of different categories of the original signal are 

mixed and inseparable (Fig. 3a); as the layers are 

passed, the samples are separated (Figs. 3b–3g); after 

the Softmax layer, they are far apart (Fig. 3h). 

According to the experimental results [14], in sce-

narios with high noise and variable loads, the proposed 

method has better performance than modern fault di-

agnosis methods, such as convolutional neural net-

works with wide first-level kernels [40] and multiscale 

convolutional neural networks [41]. 

3. PROGNOSTICS AND HEALTH MANAGEMENT OF EMAS 

3.1. Predictive Maintenance 

Aircraft maintenance activities account for 10–

20% of the total operating costs. Optimizing aircraft 

maintenance costs by introducing prognostics and 

health management was mentioned in numerous stud-

ies; for example, see [42–47]. 

  
 

 

 

(a) 

 

 
(b) 

 

 

(c) 

 

 

(d) 
 

 

(e) 

 

 

(f) 

 

 
(g) 

 

 

(h) 

 
Fig. 3. The 2D visualization of the classification process of the multiscale convolutional neural network. 
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Maintenance with prognostics and health manage-

ment is performed if necessary based on the technical 

condition of a component to prevent faults before their 

occurrence rather than at certain intervals inde-

pendently of the current condition. Such maintenance 

requires proactive assessment of the technical condi-

tion and prediction of the remaining useful life of 

components and subsystems in real time, based on 

models, based on data, or using hybrid methods [48]. 

The main advantages and drawbacks of different 

methods have been discussed in subsection 2.1. A 

model-based method for early detection and isolation 

of EMA faults was proposed in [49]. This method 

identifies the abnormal behavior of EMA under two 

progressive faults: partial stator phase turn-to-turn 

fault and static rotor eccentricity. The models to assess 

the technical condition and prognosticate the remain-

ing useful life onboard have to be carefully validated 

before use. A test rig for the experimental validation 

of EMA models under nominal conditions and in the 

presence of incipient mechanical faults (friction 

changes and increased backlash in the reduction gear 

set) was described in [9]. 

The application of machine learning methods for 

health prognostics in aviation is associated with sever-

al problems [50]. The operational data generated by an 

aircraft maintenance system are very unbalanced be-

cause aircraft components fail extremely rarely during 

flights and the data are biased towards normal opera-

tion. In this case, special analysis techniques are need-

ed to counteract the data imbalance. Another problem 

is the lack of open datasets, which limits research in 

this area [46]. 

A method for detecting rare failures in aircraft pre-

dictive maintenance using deep hybrid learning based 

on an unbalanced dataset was presented in [51]. The 

corresponding model involves two stages, namely, an 

autoencoder to detect rare failures and a convolutional 

neural network with Bidirectional Gated Recurrent 

Units (BGRUs) to predict the next failure occurrence. 

The method was assessed using real aircraft mainte-

nance system data. According to the assessment re-

sults, this method is effective in predicting component 

failures on a predetermined significant period. 

Currently, the literature mainly deals with predict-

ing the technical condition and remaining useful life of 

aircraft engines [52–55]. Several hybrid approaches 

based on physical models and data analysis have been 

proposed to estimate the remaining useful life. Differ-

ent hybrid architectures have been proposed depend-

ing on the type of information processed and the com-

bination of information fragments. At the moment, 

there is no universal prognostic model, and its choice 

depends on the particular characteristics of the indi-

vidual subsystems under consideration [56]. 

Nowadays, the challenges in EMA prognostics and 

health management cannot be properly addressed due 

to insufficient real in-service failure data: EMAs are 

mostly used in aircraft non-safety-critical systems, and 

failures are very rare. Therefore, model-based methods 

are mainly applied.  

 

3.2. EMA Fault Diagnosis Based on Metaheuristic 

Algorithms 

A model-based EMA fault detection and isolation 

tool with a genetic algorithm was investigated in [57]. 

The approach was tested to detect several common 

faults. As was observed, the proposed strategy can 

accurately assess system performance in the presence 

of multiple failure modes affecting the same signals 

simultaneously. However, the required computation 

time makes the strategy suitable for detecting and iso-

lating EMA faults during routine maintenance only, 

not in real-time operation. 

The use of bio-inspired metaheuristic algorithms 

for detecting hidden faults, incipient failures, and their 

progress during operation in order to prevent the po-

tentially dangerous failures of a typical airborne EMA 

was investigated in [3, 58, 59]. 

EMA failures are rare, and real data are difficult to 

obtain. Therefore, modeling data were used in [3]: the 

high-accuracy reference model (RM) [60] and the low-

accuracy monitoring model (MM) [61] for almost real-

time modeling. The models were experimentally veri-

fied on the experimental test rig [9]. 

In particular, the most critical failures for EMA 

were modeled: dry friction, a backlash, an electrical 

short, rotor eccentricity, and the drift of the propor-

tional gain of the PID controller. The failures were 

modeled using failure parameters ranging from 0 to 1 

to characterize different failure scales, each associated 

with a specific failure. By varying the failure parame-

ters, the cited authors simulated the behavior of the 

executing unit under different conditions. During the 

prognostic procedure, the MM was executed with 

some set of failure parameters. The vector of failure 

parameters for which the difference between the pre-

dicted and actual trends is small enough was deter-

mined to detect a failure, including its type and scale. 

The optimization algorithm finds the vector of failure 

parameters that minimizes the objective function 
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where ,MM iI  and ,RM iI  are the current outputs of the 

MM and RM, respectively, at time instant i. The quad-



 

 
 

 

 
 

10 CONTROL SCIENCES  No. 3 ● 2024 

SURVEYS  

ratic error characterizing the difference between the 

values of the model outputs was estimated, where T  

is the integration step. 

The authors compared different bio-inspired me-

taheuristic algorithms: 

– Differential Evolution (DE), which conceptually 

follows natural evolutionary principles [62, 63]; 

– Particle Swarm Optimization (PSO), which is the 

most common swarm intelligence algorithm based on 

bird flocks or schools of fish [64, 65]. In this algo-

rithm, a swarm can determine optimal solutions by 

exchanging information between particles;  

– Grey Wolf Optimization (GWO), which is an op-

timization algorithm based on a rigid hierarchy among 

population members. Individuals with higher fitness 

estimates have a greater influence on the optimization 

process [66, 67]. 

The comparison results (the average error in per-

cent) of these algorithms for each failure mode are 

shown in Fig. 4. For each failure mode, two different 

levels between 0 and 1 were modeled: high (0.75) and 

low (0.25). 

DE showed a slightly smaller error than other algo-

rithms for low-intensity signals. GWO turned out to be 

more accurate for high-level failures (e.g., an electrical 

short and the drift of the proportional gain). PSO was 

most accurate for the backlash errors in general, high 

static eccentricity, and low proportional gain. Such 

results indicate that metaheuristic algorithms are very 

sensitive to the problem formulation; none of the in-

vestigated algorithms outperforms the others in every 

situation. PSO is the leading algorithm with the best 

results under multiple failures and the most computa-

tionally efficient algorithm. 

4. RUSSIAN R&D RESULTS 

Russian researchers apply neural network and ma-

chine learning-based approaches to the diagnosis and 

prognostics of aircraft engines [68–70] and EMAs 

[71–78]. 

Experts of Perm National Research Polytechnic 

University presented comprehensive analysis results 

on using machine learning methods for diagnosing 

asynchronous electric actuator motors on a laboratory 

test rig [71]. The problem of determining the motor 

serviceability is reduced to binary classification for 

each fault type and the search for high-accuracy classi-

fication algorithms. 

According to the analysis results, the most effec-

tive approach is to construct a classifier ensemble with 

the following methods: 

– random forest, which reduces the overtraining 

problem; 

– a multilayer perceptron, which is a class of artifi-

cial neural networks with the ability to find approxi-

mate solutions of extremely complex problems; 

– gradient boosting, which handles categorical fea-

tures and nonlinearities; 

– an improved form of the gradient boosting algo-

rithm to increase classification accuracy. 

The developed classification system demonstrated 

good prospects for industrial implementation due to its 

low cost and high reliability. 

 
 

 
 

Fig. 4. The average error (in percent) of different algorithms for each failure mode. 
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Abnormal situations due to control actuator fail-

ures and an algorithm for detecting such failures were 

considered at Moscow Aviation Institute [72]. This 

algorithm is based on solving two problems: identify-

ing the aircraft motion model and classifying the fea-

tures of a failure situation using neural network meth-

ods. Three types of control actuator failures were ana-

lyzed: the loss of actuator efficiency, actuator “freez-

ing” when an abnormal situation occurs, and the com-

bination of the two types of failures. When modeling 

the control surface actuator failure, the aerodynamic 

coefficients containing the deflection value of this sur-

face were modified. Two transformation schemes were 

implemented: when the variable containing the control 

surface deviation is present in the aerodynamic coeffi-

cient in explicit and implicit form. An F-16 fighter 

aircraft was the object of the diagnostic model. In 

flight modeling, the autopilots of the angles of attack, 

pitch, and roll were considered in the control system, 

which are responsible for maintaining the specified 

angular position of the aircraft. The motion model was 

described by a system of ordinary differential equa-

tions. For this system, the numerical solution of the 

Cauchy problem was obtained by the Runge–Kutta 

method of the fourth order. The observation data were 

the values of angular velocities and command signals 

from the control system channels. The features of a 

failure situation were recognized based on observa-

tions of the cross-correlation functions of angular ve-

locities. The relationship between the pairs of angular 

velocities can be quantified and represented as a func-

tion. When a control actuator failure occurs, this rela-

tionship is violated. The neural network models of the 

cross- and autocorrelation functions of angular veloci-

ties were used to classify actuator failures. 

Experts of the Central Aerohydrodynamic Institute 

(TsAGI) proposed an approach to testing aircraft exe-

cuting units in order to verify the performance of the 

tested actuator under dynamic external loads corre-

sponding to different flight modes [73]. After proper 

development, this approach is currently being used to 

debug fault diagnosis algorithms for both conventional 

servo-valve hydraulic actuators and EMAs with neural 

networks. The experimental testing of electric actua-

tors is to identify drawbacks in the actuator design or 

in the tuning of its control system. The executing unit 

tests conducted at TsAGI can be qualified as follows: 

– the isolated tests of executing units and their el-

ements, as well as the signal paths of flight control 

systems; 

– verification of aircraft surface actuating systems 

for flight control; 

– testing of the “plant–control system–executing 

unit” control loop. 

The results of these tests can be used as a formal 

basis for issuing the first airworthiness certificate. 

The Trapeznikov Institute of Control Problems, the 

Russian Academy of Sciences (ICS RAS), cooperates 

with TsAGI to develop and master technologies, 

methods, and algorithms for building an early diagno-

sis system for electromechanical systems using ma-

chine learning. The purpose of these R&D works is to 

create and verify machine learning algorithms for 

searching and formalizing relationship patterns be-

tween the controlled parameters (on the one hand) and 

the assessment and prognostics of electromechanical 

systems (on the other hand). 

A full-scale sample of the mathematical model of 

the steering servo actuator for a medium-range UAV 

with a takeoff weight of 400 kg was described in [74], 

including its development and verification based on 

static and dynamic characteristics. The model is in-

tended to create an early diagnosis system for servo 

actuator faults. Servo actuator state assessment was 

formulated as a classification problem based on data 

mining algorithms. A generalized scheme was pro-

posed for data generation and analysis to assess the 

technical condition of the servo actuator. 

This scheme was used to build an early detection 

algorithm for EMA failures due to changes in dissipa-

tive losses in the mechanical gearbox; see [75, 76]. 

The EMA operation data during takeoff––12 parame-

ters––were generated using a mathematical model. 

Based on the proposed informative feature selection 

algorithm, four parameters were taken as neural net-

work inputs, and 50 neural networks were trained. Ac-

cording to the computational experiments, reducing 

the number of input parameters decreased the number 

of neurons, accelerated the training process of neural 

networks, and improved the accuracy of calculations.  

Informative feature search algorithms for EMA 

prognostics were presented in [77]. For this purpose, 

time series analysis methods and genetic algorithms 

were applied. The algorithms were investigated and 

verified on the data obtained using a mathematical 

model of the EMA and resource bench tests of the 

UAV collectorless electric motor. 

The effectiveness of a fault diagnosis algorithm for 

EMAs based on neural networks that formalize data 

patterns was studied in [78]. An informative feature 

selection scheme with convolutional methods for neu-

ral network training was also presented. The experi-

mental studies on determining the technical condition 

of EMAs (serviceable, pre-emergency, and emergen-
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cy) due to changes in backlash and dry friction were 

described.  

CONCLUSIONS 

The foreign and Russian studies devoted to model-

based, data-driven, and hybrid methods of EMA fault 

diagnosis have been reviewed. The main efforts of 

researchers are focused on deep learning methods in 

order to analyze large amounts of data obtained during 

EMA operation. Deep learning methods allow extract-

ing effective fault features directly from monitoring 

signals and simultaneously performing fault classifica-

tion. 

Fault diagnosis and classification are only the first 

steps on the way to prognostics and health manage-

ment of EMAs. An important role in ensuring the safe-

ty and reliability of aircraft systems is played by tech-

nical condition assessment and remaining useful life 

prediction during operation in order to anticipate pos-

sible equipment failures and prevent them.  

The approaches considered above are innovative, 

they are initiated by the rapid development and signif-

icant achievements in the application of neural net-

work technologies and deep learning in some practical 

areas. This survey indicates a great interest of re-

searchers, especially foreign ones, in such approaches 

to diagnose and predict EMA faults. However, they 

are at the stage of development and studies so far. The 

results of simulation modeling and test rig experiments 

show good prospects and the need to develop these 

methods further. Also, the existing challenges on the 

way to their practical application have been described. 

One of the main problems in developing EMA 

health management systems is the difficulty in obtain-

ing necessary data: EMAs are not yet widespread in 

aircraft, and their failures are quite rare. Currently, 

data provided by modeling and test rigs are used for 

studies. In practice, the proposed approaches may turn 

out less effective due to real EMA operating condi-

tions and the environment’s impact. 
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