
S urveys

 ●

 DOI: http://doi.org/10.25728/cs.2023.2.1

METHODS FOR SOLVING SOME PROBLEMS

OF AIR TRAFFIC PLANNING AND REGULATION.

PART II: Application of Deep Reinforcement Learning

E.L. Kulida1 and V.G. Lebedev2

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

1
 elena-kulida@yandex.ru, 2 lebedev-valentin@yandex.ru

Abstract. Following part I of the survey, this paper considers the problems of improving the

safety and efficiency of air traffic flows. The main challenge in conflict detection and resolution

by traditional optimization methods is computation time: tens and even hundreds of seconds are

required. However, this is not so much for response in real situations. Deep reinforcement learn-

ing has recently become widespread due to solving high-dimensional decision problems with

nonlinearity in an acceptable time. Research works on the use of deep reinforcement learning in

air traffic management have appeared in the last few years. Part II focuses on the application of

this promising approach to the following problems: detecting and resolving aircraft conflicts,

reducing the complexity of air traffic at the national or continental level (a large-scale problem),

and increasing the efficiency of airport runways through the improved planning of aircraft land-

ings.

Keywords: air traffic management, strategic planning of 4D trajectories, aircraft conflict detection and

resolution, reinforcement learning.

INTRODUCTION

Due to the growing air traffic flows and overload

of major airports, there is an increasing demand for

automating the work of air traffic controllers through

developing decision support systems and automated

air traffic management systems. Part I of the survey

[1] was devoted to the problem of minimizing the

number of potential conflicts between aircraft.

The paper [2] overviewed current trends in the ap-

plication of artificial intelligence (AI) to air traffic

management based on conference proceedings and

publications on the subject in high-rank journals. De-

spite significant progress in research on AI for air traf-

fic management, it has not yet become “fully function-

al” for end users. The slow pace of using AI in air traf-

fic management is due to the critical role of this area:

lives are at stake here, and safety is the top priority.

Currently, safety in air traffic management is achieved

through human participation in the control loop. Ac-

cording to the authors cited, safety will evolve by de-

signing human-oriented systems, understandable to the

end user and adaptable to their psychological state.

This requires moving toward a more user-oriented,

eXplainable AI, where the AI system and the end user

can understand each other and interact with each other.

Optimization-based approaches are often computa-

tionally expensive, which limits their application. Im-

pressive results were obtained in several research

works on air traffic management based on deep rein-

forcement learning; for details, see [3].

In [4], a reinforcement learning-based model was

first formulated and an AI agent was presented to mit-

igate conflicts and minimize aircraft delays when

reaching checkpoints. In [5, 6], different levels of en-

vironment uncertainty and traffic density were consid-

ered and their effect on the performance of the rein-

forcement learning-based model to resolve aircraft

conflicts was investigated.

If the solutions offered by automatic conflict reso-

lution do not match the dispatchers’ thinking or pref-

erences, they are unlikely to be accepted. The paper

http://doi.org/10.25728/cs.2023.2.1
mailto:elena-kulida@yandex.ru
mailto:lebedev-valentin@yandex.ru

 ●

[7] developed an interactive AI agent based on rein-

forcement learning with conflict resolution maneuvers

used by a human dispatcher. This approach can poten-

tially increase the dispatcher’s level of confidence in

the solutions proposed by the agent. The hybrid algo-

rithm proposed in [8] uses known geometric methods

in the deep reinforcement learning stage to resolve

low-altitude airspace conflicts.

These approaches are effective under low air traf-

fic densities, but centralized architectures cannot cope

with intensive air traffic flows when the number of

conflicting aircraft increases. In most complex sys-

tems, distributed decision-making is believed to have

higher efficiency than centralized control. A critical

challenge for distributed decision-making in air traffic

management is the development of a system that pro-

vides recommendations to the aircraft for ensuring

safe separation and elimination of uncertainty in real

time. Several multi-agent approaches were proposed to

deal with high air traffic densities. As was demonstrat-

ed in [9–11], multiple agents in a decentralized system

can access the complete information about all aircraft

in a sector using a scalable and efficient method to

achieve high throughput under uncertainty. The agents

were trained by one neural network with centralized

learning, and a decentralized decision-making scheme

was adopted. Many of the proposed agents based on

reinforcement learning must be trained in an environ-

ment with a fixed number of conflicting aircraft. The

computational complexity of learning grows rapidly

with increasing the number of conflicting aircraft. In

[12], image-based deep reinforcement learning was

suggested for resolving aircraft conflicts. Image-based

deep learning largely solves the scalability problem.

The algorithm can process an arbitrary number of air-

craft since their states are replaced by their images.

The paper [13] presented an autonomous air traffic

management model with aircraft collision prevention

in free airspace. A graphical neural network approach

to resolving conflicts in free airspace was introduced.

Representing each aircraft as a graph node, this ap-

proach can handle an arbitrary number of aircraft.

Expectedly, deep reinforcement learning will play

a significant role in building future air traffic man-

agement systems, but more research is needed here. In

real-world applications, deep reinforcement learning

raises two significant problems.

The first problem is the safety of air traffic man-

agement systems. Modern models use deep neural

networks as function approximators. Deep neural net-

works were discovered to suffer vulnerability to ad-

versarial examples [14, 15] (carefully designed quasi-

negligible perturbations that mislead the deep neural

network when added to its input data). Furthermore,

adversarial examples also appear in the real world

without any intruder or maliciously chosen noise [16].

Consequently, it is necessary to scrutinize the mecha-

nisms of adversarial attacks, ways to detect errors or

undesirable behavior of AI algorithms, and methods to

overcome them.

The second problem consists in explainability. The

decision-making process of deep reinforcement learn-

ing technology is opaque. Due to its insufficient trans-

parency, pilots and air traffic controllers cannot under-

stand the internal mode of operation. The “black box”

nature of the model may prevent users from accepting

the predicted outcomes, especially when the model

makes key decisions.

The paper [17] presented safety-aware deep Q

networks. In this model, two separate neural networks

jointly investigate security and optimization costs. Ac-

cording to the authors, their work is the first to consid-

er the vulnerability of the model to adversarial attacks;

moreover, the model is safe and well-explainable.

The bottleneck in air traffic management systems

is the capacity of the runways of major airports. Air-

craft maneuvering control operations in the airport

area, such as arrival control, landing sequence, and

time planning, are performed by air traffic controllers.

The paper [18] systematically overviewed past and

most recent theoretical studies of the aircraft landing

problem for airports with one or more runways, in-

cluding their comparison.

The remainder of this paper discusses in detail the

deep reinforcement learning approach with application

to the following problems: detecting and resolving

aircraft conflicts, reducing the complexity of air traffic

at the national or continental level (a large-scale prob-

lem), and increasing the efficiency of airport runways

through the improved planning of aircraft landings.

1. CONFLICT DETECTION AND RESOLUTION BASED ON

DEEP REINFORCEMENT LEARNING

1.1. A deep reinforcement learning approach to general

problems

Reinforcement learning [19] is a method in which

an agent interacts with an environment to maximize a

long-term reward. It can be treated as a Markov deci-

sion process  , , , ,S A T R  with the following nota-

tions: S is the set of environment states; A is the set of

agent’s actions; T is the probability of transition be-

tween states; R is the reward function; finally,  is the

discount rate.

 ●

Being in a state tS S at a training step t, the

agent generates an action tA A following a policy π:

S × A → R. Then the agent receives the reward Rt and

passes to the next state 1tS  . The agent’s goal is to

maximize the total reward by learning the policy

: S A  that determines the required action in each

state.

The states are assessed using a function  V S . The

state-value function tS is updated by the formula

        1 ,t t t t tV S V S R V S V S    

where α is the learning rate.

The algorithm involves two neural networks: a

critic network and an actor network. The former net-

work updates the parameters of the value function w,

whereas the latter network updates the parameters of

the policy  ; for details, see [20].

Due to the infinite state space, the state-value func-

tion is approximated. The approximation is based on

the deep learning of the neural network [21]:

   ˆ , nV S w V S ,

where w denotes the weights of neurons. In one-step

temporal difference learning with the approximate

function, the update formula is given by

      1, ,ˆ ,ˆ ˆ
t t t w tw w R V S w V S w V S w      .

The action is selected using a policy  ,sa  . For

the space of continuous actions, the gradient policy

[22] based on the gradient descent method is often

adopted. The differentiable policy is defined as

 ,sa  and the parameters  are updated at each

step as follows:

   ln | , .t t tA S V S  

1.2. Conflict detection and resolution (CD&R):

problem description [23]

Consider N aircraft in a particular air traffic scenar-

io (Fig. 1). Of these, (1)N  ones are in a sector with

radius L, and another aircraft flies into the sector. Each

aircraft has an initial position and a target position.

The goal of each aircraft is to fly from the initial posi-

tion to the target position in the minimum time without

conflicts with other aircraft. A conflict arises when the

distance between two aircraft is below the minimum

safe distance (usually 5 nautical miles (nm)). At step t,

the position and course angle of the aircraft form the

vector       , ,n n nx t y t t .

Fig. 1. Conflict detection and resolution problem.

The action for passing to a new state is the new po-

sition where the aircraft will fly from its current posi-

tion.

Figure 2 shows the learning process for one epi-

sode.

Fig. 2. Training process for one episode.

At the beginning of each training episode, the state

0S is initialized in the environment. At each step t, the

agent obtains the state tS and implements the action

.tA After that, the environment passes to the state 1tS 

and returns the reward tR . This process is repeated

until reaching the terminal state 1tS  . The value sets

 ●

 1, , ,t t t tS A R S  are stored in memory. The agent se-

lects data from memory and learns according to the

algorithm.

Possible maneuvers include turns, vertical adjust-

ments, and speed changes. The output state of the en-

vironment includes the position of each aircraft in the

sector. The control experiment with one aircraft serves

for checking that the environment can be used to train

agents. Altitude and speed are fixed in this experi-

ment.

The states form a vector of the dimension

n p dN N N N   , where nN is the total number of

aircraft (the incoming aircraft plus all aircraft in the

sector), pN is the number of aircraft waypoints (in-

cluding all waypoints from еру current position to des-

tination), and dN is the dimension of aircraft location

(equals 3). The height dimension is fixed, and the oth-

er two dimensions are variable. At each step, the agent

perceives the state vector and, after normalization,

takes it as the input of neural networks.

The action set is defined as

    , | 0, , ,A L       ,

where L is the radius of the sector and ρ and φ are the

polar radius and angle, respectively. An action is a

position described by the two-dimensional polar coor-

dinate. At each step t, the agent chooses an action

tA A . Depending on this action, the incoming air-

craft flies from its current position to tA .

The agent’s goal is to maximize the long-term re-

ward and update the parameters of the neural networks

according to the immediate reward. Four rules are

used to create the reward function: no conflict between

the aircraft, the minimum control time, the minimum

course angle change, and the minimum flight distance.

The reward function is given by

1 if a conflict occurs,

/ otherwise,t
t

R


 
 

with the following notations:  ,t    is the

change of the course angle at step t. Thus, 1t



,

meaning that conflict resolution has the highest priori-

ty. Since a change in the course angle will affect the

distance, the latter characteristic is omitted in the re-

ward function.

The action is to determine a polar coordinate where

the sector’s center is the pole and the length shorter

than the sector radius is the polar radius. The four out-

puts of the agent’s neural network, , , ,    

and

 , are the mean and standard deviation of the polar

radius and polar angle, respectively. For learning, the

radius and angle are supposed to have the Gaussian

distribution:  ~ ,N     and  ~ ,N     .

They are generated, and the two-dimensional action is

formed. After the agent’s neural network is well

trained, and    are taken as ρ and φ, respectively.

The neural networks are trained as follows. For the

critic network, the parameter δ is determined to evalu-

ate the chosen action:

   1, ,ˆ ˆ
t t t tR V S w V S w     ,

where tR is the immediate reward and  ˆ ,tV S w and

 1
ˆ ,tV S w are the values of the current and next

states, respectively.

The parameters w are updated using the least

squares method:
2.ww w  

The policy gradient method is applied for the actor

network. The policy equation has the form

     ln , | , ln | , ln | ,t t t t t t tS S S           

with the following notations:  ln , | ,t t tS    is the

probability of choosing ρ and φ in the state tS with

parameters θ;  ln | ,t tS   is the probability of

choosing ρ in the state tS with the parameters θ; final-

ly,  ln | ,t tS   is the probability of choosing φ in the

state tS with the parameters θ. The parameters θ are

updated as follows:

 ln , | ,t t t tS        .

The effectiveness of the proposed approach was

demonstrated by numerical simulations. As was de-

clared by the authors, a well-trained agent can gener-

ate a solution within 200 ms, whereas previous meth-

ods require tens or even hundreds of seconds for cal-

culation. In addition, the turning radius of the aircraft

is properly considered, which corresponds to realistic

situations.

2. A HYPER-HEURISTIC APPROACH TO REDUCE AIR

TRAFFIC COMPLEXITY [24]

The paper [24] considered the problem of improv-

ing the airspace structure by air traffic complexity mit-

igation; see Section 2.6.

The hyper-heuristic approach does not simply fol-

low a particular meta-heuristic but also involves flexi-

ble integration and adaptive control of low-level heu-

ristics. Several studies confirmed the effectiveness of

 ●

Q-learning when selecting an appropriate low-level

heuristic at the decision point. Q-learning lies in eval-

uating the best state-action pair using memory with Q-

tables. Each entry in such a table expresses the long-

term value of choosing a particular action in a particu-

lar state.

The traditional hyper-heuristic selection structure

consists of two levels. The first level contains the

problem representation, the state-value function, and a

set of low-level heuristics. The second level performs

two separate tasks as follows. First, it selects a low-

level heuristic and applies it to the solution. Second, it

decides to accept or reject the new solution. Selecting

appropriate heuristics and decision methods is a non-

trivial task when developing a robust hyper-heuristic

model. A hyper-heuristic operates without any infor-

mation needed about the functionality of the low-level

heuristics but provides useful feedback on the utiliza-

tion rate of each heuristic and the change of the objec-

tive function. This information is crucial for the learn-

ing process.

The algorithm uses a Q-learning agent to select a

heuristic operator or a low-level heuristic (Fig. 3). The

latter is then applied to generate a candidate solution

and recalculate its performance in a simulation system.

A decision is then made regarding the candidate

solution. If the candidate solution can improve per-

formance, the current solution will be updated. Other-

wise, the candidate solution will also be updated with

some probability, decreasing with the course of learn-

ing. If the candidate solution is not accepted, all

changes in the solution space associated with that can-

didate solution will be undone by a return operation.

The Q-learning agent determines the reward by check-

ing the current state, the chosen operator, and the evo-

lution of solutions and then updates the Q-values in

the Q-table.

The following heuristic operators are proposed

(Fig. 4).

 h1, a local search that randomly changes the de-
parture time by no more than 5 min (Fig. 4a);

 h2, a local search that flips the current way-
points in the horizontal plane XY along the trajectory
(Fig. 4b);

 h3, a local search that flips the current way-
points in the horizontal plane XY perpendicular to the
trajectory (Fig. 4c);

 h4, a local search that randomly deviates the
route by changing the position of each waypoint
(Fig. 4d);

Fig. 3. Framework of Hyper-heuristic based on Q-learning with the high-level strategy and problem domain.

2●

Fig. 4. Representation of intensification heuristic operators which allow the algorithm to refine the search in the vicinity of the current decision:

 h5, a random selection of a neighbor flight alti-

tude level within the maximum permissible limits

(Fig. 4e).

Three generation operators diversify optimization

as follows:

 h6, an operator that randomly changes the de-

parture time within the maximum permissible limits;

 h7, an operator that randomly adds/removes one

or more waypoints according to the problem con-

straints;

 h8, an operator that randomly changes the flight

altitude level within the maximum permissible limits.

The Q-learning agent follows a -greedy approach

to select the heuristic operator based on the Q-table. A

random action is chosen with probability and the

action based on the Q-table with probability (1) . At

first, is assigned a maximum user-defined value

max . During the learning process, it decreases until

reaching a minimum user-defined value
min

.

The learning cycle begins by selecting one of the

diversification operators h6, h7, or h8. Each state is de-

fined based on the operator applied previously.

Seven states are considered as follows:

 s0: one of the diversification operators h6, h7, or

h8 was previously applied;

 s1: the operator h1 was previously applied;

 s2: the operator h2 was previously applied;

 s3: the operator h3 was previously applied;

 s4: the operator h4 was previously applied;

 s5: the operator h5 was previously applied;

 s6: two consecutive operators from the set

{h1, h2, h3, h4, h5} were previously applied without

changing the current solution.

The Q-table is initialized with Q-values according

to Table 1.

Some Q-values are set to 1 to ensure that a particu-

lar heuristic operator can be selected; others are set to

0 to ensure the transition from one state to another.

At each iteration, the system stores the experience

containing the current states with the selected operator

h and the payoff g (the difference between the values

of the new and previous solutions). At the end of the

cycle, the Q-learning agent determines the rewards for

updating the Q-values in the Q-table.

At step t, the Q-values for the found state–action

pair are updated as follows:

        1, 1 , max , ,t t t t t t
h H

Q s h Q s h r Q s h


    

where  0, 1 and  0, 1 are the learning and

discount rates, respectively, tr is the immediate re-

ward, and  , 1, ,8iH h i   denotes the set of heu-

ristic operators.

Transfer acceptance determines whether to accept

or reject the new solution at each step of the search

process. Iterations continue until satisfying a termina-

tion criterion.

In [24], the proposed approach was empirically as-

sessed within a real-data experiment for a full day of

traffic in the French airspace (8836 trajectories, see

Fig. 5).

The initial trajectory plan for the full day of traffic

was compared with the final trajectory plan calculated

by the proposed algorithm in terms of complexity. The

corresponding results are shown in Fig. 6.

 ●

Table 1

Q-table initialization

State
Operator

h1 h2 h3 h4 h5 h6 h7 h8

s0 1 1 1 1 1 – – –

s1 0 1 1 1 1 – – –

s2 1 0 1 1 1 – – –

s3 1 1 0 1 1 – – –

s4 1 1 1 0 1 – – –

s5 1 1 1 1 0 – – –

s6 – – – – – 1 1 1

Fig. 5. Complexity map of (a) initial trajectories and (b) final trajectories of a full day of traffic in the French airspace.

Fig. 6. Comparison of initial complexity and final complexity over time for a full day of traffic in the French airspace.

2●

3. IMPROVING RUNWAY EFFICIENCY USING

REINFORCEMENT LEARNING

Airport runways are a major bottleneck in air traf-

fic and a key factor determining airport capacity.

Building a new runway is not always possible. One

approach to solving the capacity problem is the mod-

ernization of the airspace structure and airfield infra-

structure. In [25], such an approach was implemented

by mathematical modeling. This survey considers an-

other approach: optimizing the use of infrastructure

through the improved planning of aircraft landings.

The landing optimization problem is solved in

three steps. First, an initial schedule is created on the

first-come, first-served basis. Then this schedule is

modified during the landing approach phase and final-

ly frozen when the aircraft reaches the final stage of

this phase. The initial schedule includes aircraft within

the range of the airport landing radar (a time horizon

of about 40 min before landing). The update process is

executed each time a new aircraft enters the radar

range to improve the landing schedule [26].

The most common requirements include a safe

separation between consecutive aircraft, allowed time

intervals determined by the earliest and latest flight

times based on fuel consumption, and priority con-

straints. Different objective functions serve for in-

creasing runway capacity, meeting schedules, mini-

mizing fuel consumption, etc.

As is known, optimal aircraft sequencing and land-

ing are an NP-hard problem [27]. Consequently, the

solution time by exact methods grows rapidly with

increasing the number of aircraft. Since the first solu-

tion [28] published in 1976, several new models and

approaches have appeared in the literature, including

genetic and heuristic algorithms to obtain a suboptimal

but sufficiently efficient solution in an acceptable time

[29, 30]. The survey [31] was devoted to some exact

approaches to the problem (mainly mixed integer pro-

gramming), whereas the paper [32] overviewed ap-

proximate solution methods, mainly genetic and me-

metic algorithms. A recent promising approach to the

problem is based on reinforcement learning.

The authors [33] considered the problem of plan-

ning aircraft takeoffs on a single runway to observe

the established time intervals. The problem was mod-

eled as a Markov decision process and solved using

the Q-learning algorithm [34] as follows. Let the

agents be the aircraft and let their states be the aircraft

position on the ground depending on its phase (park-

ing, taxiing, and takeoff). The action is to delay the

aircraft, and the reward is defined to minimize the de-

lay during taxiing with observing the time intervals

established for the aircraft. The algorithm was tested

on real data from John F. Kennedy International Air-

port (JFK, New York), which included departures of

698 flights (two days of operation). Note that 42 train-

ing scenarios were generated from the data. According

to the results, the algorithm has a performance similar

to or greater than that of air traffic controllers.

The paper [35] proposed a framework to model the

problem of aircraft sequencing and separation in ac-

cordance with the NASA sector-33 application [36].

This air traffic management application contains 35

examples of tasks involving up to 5 aircraft, including

speed and route control for aircraft.

The proposed model consists of agents, states, ac-

tions, and rewards. There are two types of agents: par-

ent and child. The parent agent’s state contains a snap-

shot of the game screen. The child agent’s state con-

tains information about the measurement target, speed

and acceleration of the aircraft, and route identifier in

addition to information about the N closest agents to

allow communication between agents. The actions for

the parent/child agent are to change or maintain the

route/speed of the aircraft. The reward is designed to

penalize conflicting agents (separated by less than 3

nm).

The problem within the model was solved using a

hierarchical deep learning algorithm with reinforce-

ment. This algorithm combines the Q-learning algo-

rithm [18] and neural networks [5]. It has a hierar-

chical nature because the actions are executed at two

levels: the parent level selects the route and then the

child level selects the speed for the aircraft. According

to the tests in the NASA application (involving 2–5

aircraft), the proposed approach is viable.

3.1. The Mathematical Model

Let us consider in detail the approach [37]. The

distributed algorithm proposed therein is based on Q-

learning with the parameters optimally tuned by a ge-

netic algorithm. The algorithm was implemented using

the sliding window mechanism.

Consider a graph  ,G N L , where N and L are the

sets of nodes and links, respectively. The node set has

two subsets: eN N (the entry points of the Terminal

Maneuvering Areas (TMA)) and rN N (runways).

The final links connecting the runways are also

grouped into a link subset: rL L .

Figure 7 shows the network at Paris Charles de

Gaulle Airport (CDG). Aircraft enter at LORNI or

OKIPA points; there are two runways, 27R and 26L,

and two merge points, IF_27R and IF_26L. The two-

point merge system is used (IF_27R–RWY_27R and

IF_26L–RWY_26L, respectively).

 ●

Fig. 7. Simplified STAR model at CDG: aircraft enter at LORNI or

OKIPA. Merge points are located on both IF 27R and IF 26L.

For each aircraft, the procedure is executed at a

constant speed. This is the landing speed that depends

on the wake vortex category.

The point merge system (PMS) structure is pre-

sented in Fig. 8. For each aircraft, the length of the

PMS arc will be treated as a decision variable for the

algorithm.

Fig. 8. Merge Point Topology: for each aircraft, the length of the flown

sequencing arc is a decision variable.

A flight f is characterized with the following in-

formation:

• 0, fV

is the initial true airspeed of the aircraft;

•
TMA
0, ft is the initial entry time in the TMA;

• 0, f rr N is the runway on which the aircraft is

planned to land;

•
RTA
ft is the time at which the aircraft is required

to land (the required time of arrival, RTA);

• fC is the wake vortex category.

For each flight f, the following decision variables

are considered:

• fV is the speed of the aircraft;

• TMA
ft is the entry time in the TMA;

• fr is the runway assigned for landing;

• MP
fl is the length of the merge point arc.

The speed of the aircraft has to stay in a given

range of the initial speed:

0, ,f fV V p V  

where p is the number of increments and V is the

speed increment:

min max, , .p Z p V V V      

Here,
maxV and

minV are the maximum speed in-

crease and decrease from 0, fV , respectively, that can

be assigned to an aircraft. The minimum speed de-

crease depends on the wave vortex category.

The entry time decision corresponds to a delay that

can be absorbed in the En-Route airspace before the

aircraft enters the TMA. In this airspace, the aircraft

can be slowed down or accelerated in a given range.

As a result, the entry time in the TMA could also

change in a given range:

TMA TMA
0f , ft t p T ,  

where p is the number of increments and T is the

time increment:

min max, ,p Z p T T T       .

Here, maxT and minT are the maximum and mini-

mum time increments from TMA
0, ft , respectively, that

can be assigned to an aircraft.

To keep a balanced flow between runways, it may

sometimes be more appropriate to change the landing

runway of an aircraft (f rr N).

As the network contains merge points, one of the

decision variables, MP
fl , is the length of the arc that an

aircraft will fly in one of the merge points, i.e.,

MP ,fl p L 

where p is the number of increments and L is the

length increment:

max, MPp N p L L   ,

where max
MPL is the maximum arc length that a merge

point can have.

Flight level on red arc is lower than that on

green arc by 1000 ft

Sequencing arcs

Merge point

Merging zone

 ●

3.2. Description of the Deep Learning Algorithm [37]

This section describes a deep learning algorithm

based on the model presented in Section 3.1. It re-

solves potential aircraft conflicts during heavy traffic

in the airport area in a reasonable time.

Each flight is a Markov decision process

  , , ,a aMDP S A P R . All decision variables represent

the state space S. This means that for every aircraft, a

state is defined by {speed, entry time in the TMA,

PMS arc length, runway assignment}. In each state,

the following actions are considered: A = {increas-

ing/decreasing the speed, increasing/decreasing the

entry time in the TMA, increasing/decreasing the PMS

arc length, changing the landing runway, no action}.

For states that are not direct neighbors to the current

state, the value of the transition function is 0. For

neighbor states, the transition function is an equiprob-

abilistic one:

 
 

0 if is not a neighbor of ,

, 1
 otherwise,a

s s

P s s

Card A













where  Card A is the number of elements in A (in

this case, 8).

Q-learning is a model-free reinforcement learning

algorithm. This means that the algorithm does not

need a model of the environment, it only interacts with

the environment without knowing it. Every aircraft is

considered an agent, which makes the algorithm multi-

agent.

Q-learning is used to learn the optimal policy of a

Markov decision process. This is done by computing

the Q-function for each aircraft, i.e., representing the

expected reward an agent can receive if he takes a giv-

en action in a given state. The Q-learning used is dis-

tributed, meaning that the reward of each agent is

treated individually at each iteration.

For each agent, the expected reward  ,Q s a in a

given state s for a given action a is updated as follows:

      , , max (,) , .
a

Q s a Q s a R Q s a Q s a


   

where s' is the new state when the action a is taken in

the state s; R is the reward the agent will receive by

making the action a in s;  is the learning rate; final-

ly, γ is the discount factor.

The expected reward  ,Q s a in a given state s for

a given action a is updated at each iteration consider-

ing an estimation of the optimal future value

max (,).
a

Q s a


  This is done independently of the poli-

cy being followed. Precisely, this is a one-step algo-

rithm since the estimation is done only by looking one

iteration ahead.

For a state s S , an action a A , and a parameter

T called temperature, the probability  ,s a to

choose a in s is given by

 
 

 

, /

, /
, .

Q s a T

Q s a T

a A

e
s a

е




 



The temperature at iteration k is given by a geo-

metric law of the parameter  , i.e., 0
k

kT T  , where

0T is the initial temperature. This temperature sets a

trade-off between exploration and exploitation: a rela-

tively high temperature will promote the exploration

of the Q-table, whereas a low temperature will be in

favor of the exploitation of the Q-table.

In this distributed Q-learning, every aircraft is con-

sidered a learning agent and consequently has a Q-

table. All the Q-tables are initialized at a value 0Q

chosen relatively low to enforce the state exploration.

This is done on purpose since the reward (and Q-table)

of an aircraft depends on agents close to it (which can

be in conflict). Every agent is seen as an independent

learner and does not consider the chosen action of oth-

er agents but only their actual states. Therefore, be-

tween the two decisions of an agent, its environment

may have been changed. An agent can choose the spe-

cific action of doing nothing and then its state will not

change.

For each aircraft, a reward function is computed

and then used by the reinforcement learning algorithm.

The reward given at each state and action depends on

the other aircraft’s state and is computed as the

weighted sum of the rewards described below.

All rewards are negative (penalties):

 RTA RTA 5 ().runway conflict link nodeR R R R R    

If an aircraft f does not land on 0, fr , its preferred

runway, the reward added is 5 times the value runwayR

weighted by RTA  . Note that RTA and conflict are

the algorithm parameters.

Different components of the reward function are

described below.

 Required Time of Arrival. All airlines have a

schedule for each aircraft and on-time aircraft should

have a better reward. Then, a reward corresponding to

the absolute difference between the RTA and the real

arrival time is added for every aircraft:

RTA
RTA f arrivalR t t   .

 ●

 Runway number

0,landing on the required runway

otherwise.

0, ,

1,

f

runway

r
R


 



 Conflicts. The model considers two kinds of con-

flicts: link conflict, when two aircraft do not respect

the wake vortex category separation, and node con-

flict, when the aircraft do not respect observe the hori-

zontal separation at merge points [38] (3 nm). For

each link, at the entrance and the exit, the minimum

separation between two aircraft f and g must corre-

spond to Table 2.
Table 2

Minimum separation for link conflict, nm

Category Leading aircraft, f

Heavy Average Light

Trailing

aircraft,

g

Heavy 4 3 3

Average 5 3 3

Light 6 5 3

Assuming that ,f gs is the minimum separation and

,f gd is the actual distance between the leading aircraft

f and the trailing aircraft g (Fig. 9), the criticality of a

potential conflict, linkC , is proportional to the distance

between the aircraft. Overtakings are also calculated;

if this occurs, then , 0f gd  and the criticality of the

conflict is set to –1:

,

, ,

, ,

,

1 if 0,

 if

0 otherwis

,

e.

f g

f g f g

link f g f g

f g

d

s d
C d s

s

 



  




Fig. 9. Link conflict detection based on the comparison of distance

between aircraft at the beginning or the end of a link with the

separation minima.

The function linkC is piecewise linear and continu-

ous, which is necessary for the learning algorithm to

know if the conflict is getting better or worse. Since

linkC can be close to 0, the learning algorithm can im-

prove RTAR instead of resolving the conflict. To prior-

itize the conflict resolution objective, the value of the

reward function for the link is artificially set between

–0.3 and –1 using the formula

  0 3 1 0 3link linkR . C . .   

If there is no link conflict between two aircraft f

and g, conflicts may still occur on nodes. In TMA,

every aircraft has to be separated by 3 nm from others

in order to respect the separation distance. As was

shown in [38], in many airports, due to the network

geometry, the detection area can be reduced to a circle

of 2.2-nm radius. As for the links, the criticality of a

node conflict is given by

,

,

2 2
 if 2 2,

2 2

0 otherwise

f g

f g
node

. d
 d .

C .

 .


 

 



As for the links, the value of the reward function

for a node conflict is artificially set between –0.3 and

–1 using the formula

  0 3 1 0 3node nodeR . C . .   

In this problem, if an aircraft enters the TMA many

hours before another one, their decisions can be con-

sidered independent. Therefore, the dynamic aircraft

landing optimization problem is solved on the basis of

a sliding window.

During the optimization process, the aircraft inside

the sliding window are divided into four groups:

• completed, the latest landing time is before the

starting time of the sliding window;

• ongoing, the earliest entry time is before the start-

ing time of the sliding window (decisions to land have

already been made);

• active, the earliest and latest entry times are in the

window;

• planned, the latest entry time is after the end of

the sliding window.

At each iteration of the sliding window, the opti-

mization algorithm is run on active flights.

Running the algorithm on every active flight in the

sliding window is not efficient enough; some of the

active flights may have good rewards, and other air-

craft may have multiple conflicts. To speed up the op-

timization process, decisions are changed with a high-

er priority on aircraft with the worse reward. Those

aircraft are indicated as critical flights. They are com-

puted using a threshold that is greater than 70% of the

worst aircraft reward. Since these aircraft are learning,

their rewards decrease and more and more aircraft be-

come “critical.”

The algorithm was successfully tested on data from

Paris Charles de Gaulle airport with the total number

of aircraft landings artificially increased to 687. A

conflict-free solution for a full day of traffic was cal-

culated in less than 30 s, which is acceptable for real-

time planning.

 ●

CONCLUSIONS

For several decades, extensive research was con-

ducted on decision support automation in ATM sys-

tems. Mathematical models developed for this prob-

lem either minimize the number of potential conflicts

between 4D aircraft trajectories or redistribute aircraft

flows to reduce airspace congestion. The number of

potential aircraft conflicts is often decreased using one

or several methods as follows: shifting flight departure

times, regulating airspeeds, changing flight trajecto-

ries, and changing flight altitude.

As shown, minimizing the number of potential air-

craft conflicts is an NP-hard problem. Consequently,

various metaheuristic algorithms emerged to solve it.

A hybrid metaheuristic approach based on the simulat-

ed annealing algorithm, improved by local search

methods, was developed for the strategic planning of

air traffic flows considering the uncertainty of aircraft

positions.

The complexity and scale of minimizing the num-

ber of potential conflicts in airspace require new ap-

proaches to this problem. Some publications in recent

years have been devoted to deep reinforcement learn-

ing methods for improving the safety and efficiency of

air traffic. The effectiveness of the proposed ap-

proaches has been investigated using computational

experiments, which have shown encouraging results.

Further extensive research is needed to assess the ap-

plicability of these approaches in real-world condi-

tions.

REFERENCES

1. Kulida, E.L. and Lebedev, V.G., Methods for Solving Some

Problems of Air Traffic Planning and Regulation. Part I: Strate-

gic Planning of 4D Trajectories, Control Sciences, 2023, no. 1,

pp. 1–12.

2. Degas, A., Islam, M.R., Hurter, C., et al., A Survey on Artifi-

cial Intelligence (AI) and eXplainable AI in Air Traffic Man-

agement: Current Trends and Development with Future Re-

search Trajectory, Applied Sciences, 2022, vol. 12, no. 3, art.

no. 1295. DOI: 10.3390/app12031295.

3. Wang, Z., Pan, W., Li, H., et al., Review of Deep Reinforce-

ment Learning Approaches for Conflict Resolution in Air Traf-

fic Control, Aerospace, 2022, vol. 9, no. 6, art. no. 294. DOI:

10.3390/aerospace9060294.

4. Brittain, M. and Wei, P., Autonomous Aircraft Sequencing and

Separation with Hierarchical Deep Reinforcement Learning,

Proceedings of the 8th International Conference on Research

in Air Transportation, Barcelona, 2018. URL:

https://www.reseachgate.net/publication/327287314.

5. Pham, D.T., Tran, N.P., Alam, S., et al., A Machine Learning

Approach for Conflict Resolution in Dense Traffic Scenarios

with Uncertainties, Proceedings of the 13th USA/Europe Air

Traffic Management Research and Development Seminar

(ATM 2019), Vienne, 2019.

6. Pham, D.T., Tran, N.P., Alam, S., et. al., Deep Reinforcement

Learning based Path Stretch Vector Resolution in Dense Traf-

fic with Uncertainties, Transportation Research. Part C.

Emerging Technologies, 2021, vol. 135, art. no. 103463. DOI:

10.1016/j.trc.2021.103463.

7. Tran, P.N., Pham, D.T., Goh, S.K., et al., An Interactive Con-

flict Solver for Learning Air Traffic Conflict Resolutions,

Journal of Aerospace Information Systems, 2020, vol. 17, no.

6, pp. 271–277.

8. Ribeiro, M., Ellerbroek, J., and Hoekstra, J., Improvement of

Conflict Detection and Resolution at High Densities through

Reinforcement Learning, Proceedings of the International

Conference on Research in Air Transportation, Tampa, 2020.

9. Brittain, M. and Wei, P., Autonomous Separation Assurance in

a High-Density en Route Sector: A Deep Multi-Agent Rein-

forcement Learning Approach, Proceedings of the IEEE Intel-

ligent Transportation Systems Conference (ITSC), Aukland,

2019, pp. 3256–3262.

10. Brittain, M., Yang, X., and Wei, P., A Deep Multi-Agent Rein-

forcement Learning Approach to Autonomous Separation As-

surance, Arxiv:2003.08353v2, 2020. DOI:

https://doi.org/10.48550/arXiv.2003.08353.

11. Brittain, M. and Wei, P., One to Any: Distributed Conflict

Resolution with Deep Multi-Agent Reinforcement Learning

and Long Short-Term Memory, Proceedings of the AIAA

SciTech 2021 Forum, Nashville, 2021, p. 1952.

12. Zhao, P. and Liu, Y., Physics Informed Deep Reinforcement

Learning for Aircraft Conflict Resolution, IEEE Transactions

on Intelligent Transportation Systems, 2021, vol. 23, iss. 7, pp.

8288–8301. DOI: 10.1109/TITS.2021.3077572.

13. Mollinga, J., and Hoof, H., An Autonomous Free Airspace En-

route Controller Using Deep Reinforcement Learning Tech-

niques, Arxiv:2007.01599, 2020. DOI:

https://doi.org/10.48550/arXiv.2007.01599.

14. Khan, N.A., Brohi, S.N., and Jhanjhi, N., UAV’s Applications,

Architecture, Security Issues and Attack Scenarios: A Survey,

Intelligent Computing and Innovation on Data Science, 2020,

vol. 183, pp. 753–760. DOI: 10.1007/978-981-15-3284-9_86.

15. Szegedy, C., Zaremba, W., Sutskever, I., et al., Intriguing Prop-

erties of Neural Networks, Arxiv:1312.6199v3, 2013. DOI:

https://doi.org/10.48550/arXiv.1312.6199.

16. Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K., Synthesiz-

ing Robust Adversarial Examples, Proceedings of the Interna-

tional Conference on Machine Learning, Stockholm, 2018, pp.

284–293.

17. Wang, L., Yang, H., Lin, Y., et al., Explainable and Safe Rein-

forcement Learning for Autonomous Air Mobility,

arXiv:2211.13474v1, 2022. DOI:

https://doi.org/10.48550/arXiv.2211.13474.

18. Messaoud, M., A Thorough Review of Aircraft Landing Oper-

ation from Practical and Theoretical Standpoints at an Airport

Which May Include a Single or Multiple Runways, Applied

Soft Computing, 2020, vol. 98, no. 12, art. no. 106853. DOI:

10.1016/j.asoc.2020.106853.

19. Sutton, R.S. and Barto, A.G., Reinforcement Learning: An

Introduction, London: MIT Press, 2017.

20. Degris, T., Pilarski, P.M., and Sutton, R.S., Model-Free Rein-

forcement Learning with Continuous Action in Practice, Pro-

ceedings of the American Control Conference, Montréal, 2012,

pp. 2177–2182.

21. LeCun, Y., Bengio, Y., and Hinton, G., Deep Learning, Na-

ture, 2015, vol. 521, pp. 436–444.

https://doi.org/10.3390/aerospace9060294
https://doi.org/10.3390/aerospace9060294
https://www.reseachgate.net/publication/327287314
https://doi.org/10.48550/arXiv.2003.08353
https://doi.org/10.48550/arXiv.2007.01599
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.2211.13474
https://www.researchgate.net/journal/Applied-Soft-Computing-1568-4946
https://www.researchgate.net/journal/Applied-Soft-Computing-1568-4946
http://dx.doi.org/10.1016/j.asoc.2020.106853

 ●

22. Sutton, R.S., McAllester, D.A., Singh, S.P., et al., Policy Gra-

dient Methods for Reinforcement Learning with Function Ap-

proximation, Proceedings of the 12th Conference on Advances

in Neural Information Processing Systems (NIPS 1999), Den-

ver: MIT Press, 1999, pp. 1057–1063.

23. Wang, Z., Li, H., Wang, J., and Shen, F., Deep Reinforcement

Learning Based Conflict Detection and Resolution in Air Traf-

fic Control, IET Intell. Trans. Syst., 2019, vol. 13, pp. 1041–

1047.

24. Juntama, P., Delahaye, D., Chaimatanan, S., and Alam, S.,

Hyperheuristic Approach Based on Reinforcement Learning

for Air Traffic Complexity Mitigation, Journal of Aerospace

Information Systems, 2022, vol. 19, no. 9. DOI:

10.2514/1.i011048.

25. Vishnyakova, L.V. and Popov, A.S., Selection of Airspace

Structure and Aerodrome Infrastructure During Their Moderni-

zation by Methods of Mathematical Modeling, J. Comput. Syst.

Sci. Int., 2021, vol. 60, no. 6, pp. 918–955.

https://doi.org/10.1134/S1064230721060174.

26. Bennell, J.A., Mesgarpour, M., and Potts, C.N., Airport Run-

way Scheduling, Semantic Scholar, 2011, vol. 4OR, pp. 115–

138. DOI: 10.1007/s10288-011-0172-x.

27. Prakash, R., Piplani, R., and Desai, J., An Optimal Data-

Splitting Algorithm for Aircraft Scheduling on a Single Run-

way to Maximize Throughput, Transportation Research, Part

C: Emerging Technologies, 2018, vol. 95, pp. 570– 581.

28. Dear, R.G., The Dynamic Scheduling of Aircraft in the Near

Terminal Area, Technical Report no. R76-9, Flight Transporta-

tion Laboratory, Cambridge, MIT, 1976.

29. Kulida, E.L., Genetic Algorithm for Solving the Problem of

Optimizing Aircraft Landing Sequence and Times, Automation

and Remote Control, 2022, vol. 83, no. 3, pp. 426–436.

30. Kulida, E., Egorov, N., and Lebedev, V., Comparison of Two

Algorithms for Solving the Problem Aircraft Arrival Sequenc-

ing and Scheduling, Proceedings of the 14th International

Conference “Management of Large-Scale System Develop-

ment” (MLSD), September 27–29, 2021. URL:

https://ieeexplore.ieee.org/document/9600243.

31. Veresnikov, G.S., Egorov, N.A. Kulida, E.L., and Lebe-

dev, V.G., Methods for Solving of the Aircraft Landing Prob-

lem. I. Exact Solution Methods, Automation and Remote Con-

trol, 2019, vol. 80, pp. 1317–1334.

32. Veresnikov, G.S., Egorov, N.A. Kulida, E.L., and Lebe-

dev,V.G., Methods for Solving of the Aircraft Landing Prob-

lem. II. Approximate Solution Methods, Automation and Re-

mote Control, 2019, vol. 80, pp. 1502–1518.

33. Soares, I.B., De Hauwere, Y.M., Januarius, K., et al., Depar-

ture Management with a Reinforcement Learning Approach:

Respecting CFMU Slots, Proceedings of the IEEE 18th Inter-

national Conference on Intelligent Transportation Systems,

Las Palmas de Gran Canaria, 2015.

34. Watkins, C.J. and Dayan, P., Q-learning, Machine Learning,

1992, vol. 8, pp. 279–292.

35. Brittain, M. and Wei, P., Autonomous Aircraft Sequencing and

Separation with Hierarchical Deep Reinforcement Learning,

Proceedings of the International Conference for Research in

Air Transportation, Barcelona, 2018.

36. Colen, J., NASA sector 33 application, 2013. URL:

https://www.nasa.gov/centers/ames/Sector33/iOS/index.html.

37. Henry, A., Delahaye, D., and Valenzuela, A., Conflict Resolu-

tion with Time Constraints in the Terminal Maneuvering Area

Using a Distributed Q-learning Algorithm, Proceedings of the

International Conference on Research in Air Transportation

(ICRAT 2022), 2022, Tampa, Hal-03701660.

38. Ma, J., Delahaye, D., Sbihi, M., and Mongeau, M., Integrated

Optimization of Terminal Manoeuvring Area and Airport, 6th

SESAR Innovation Days, Delft, Netherlands, 2016.

This paper was recommended for publication

by A.A. Lazarev, a member of the Editorial Board.

Received November 10, 2022,

and revised December 19, 2022.

Accepted December 20, 2022.

Author information

Kulida, Elena L’vovna. Cand. Sci. (Eng.), Trapeznikov Institute

of Control Sciences, Russian Academy of Sciences, Moscow,

Russia

 elena-kulida@yandex.ru

Lebedev, Valentin Grigor’evich. Dr. Sci. (Eng.), Trapeznikov

Institute of Control Sciences, Russian Academy of Sciences, Mos-

cow, Russia

 lebedev-valentin@yandex.ru

Cite this paper

Kulida, E.L. and Lebedev, V.G., Methods for Solving Some Prob-

lems of Air Traffic Planning and Regulation. Part II: Application

of Deep Reinforcement Learning. Control Sciences 2, 2–14

(2023). http://doi.org/10.25728/cs.2023.2.1

Original Russian Text © Kulida, E.L., Lebedev, V.G., 2023, pub-

lished in Problemy Upravleniya, 2023, no. 2, pp. 3–18.

Translated into English by Alexander Yu. Mazurov,

Cand. Sci. (Phys.–Math.),

Trapeznikov Institute of Control Sciences,

Russian Academy of Sciences, Moscow, Russia

 alexander.mazurov08@gmail.com

https://doi.org/10.1134/S1064230721060174
https://ieeexplore.ieee.org/document/9600243
https://www.nasa.gov/centers/ames/Sector33/iOS/index.html
mailto:elena-kulida@yandex.ru
http://doi.org/10.25728/cs.2023.2.1
mailto:alexander.mazurov08@gmail.com

