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Abstract. Following part I of the survey, this paper considers the problems of improving the 

safety and efficiency of air traffic flows. The main challenge in conflict detection and resolution 

by traditional optimization methods is computation time: tens and even hundreds of seconds are 

required. However, this is not so much for response in real situations. Deep reinforcement learn-

ing has recently become widespread due to solving high-dimensional decision problems with 

nonlinearity in an acceptable time. Research works on the use of deep reinforcement learning in 

air traffic management have appeared in the last few years. Part II focuses on the application of 

this promising approach to the following problems: detecting and resolving aircraft conflicts, 

reducing the complexity of air traffic at the national or continental level (a large-scale problem), 

and increasing the efficiency of airport runways through the improved planning of aircraft land-

ings. 
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INTRODUCTION  

Due to the growing air traffic flows and overload 

of major airports, there is an increasing demand for 

automating the work of air traffic controllers through 

developing decision support systems and automated 

air traffic management systems. Part I of the survey 

[1] was devoted to the problem of minimizing the 

number of potential conflicts between aircraft. 

The paper [2] overviewed current trends in the ap-

plication of artificial intelligence (AI) to air traffic 

management based on conference proceedings and 

publications on the subject in high-rank journals. De-

spite significant progress in research on AI for air traf-

fic management, it has not yet become “fully function-

al” for end users. The slow pace of using AI in air traf-

fic management is due to the critical role of this area: 

lives are at stake here, and safety is the top priority. 

Currently, safety in air traffic management is achieved 

through human participation in the control loop. Ac-

cording to the authors cited, safety will evolve by de-

signing human-oriented systems, understandable to the 

end user and adaptable to their psychological state. 

This requires moving toward a more user-oriented, 

eXplainable AI, where the AI system and the end user 

can understand each other and interact with each other. 

Optimization-based approaches are often computa-

tionally expensive, which limits their application. Im-

pressive results were obtained in several research 

works on air traffic management based on deep rein-

forcement learning; for details, see [3]. 

In [4], a reinforcement learning-based model was 

first formulated and an AI agent was presented to mit-

igate conflicts and minimize aircraft delays when 

reaching checkpoints. In [5, 6], different levels of en-

vironment uncertainty and traffic density were consid-

ered and their effect on the performance of the rein-

forcement learning-based model to resolve aircraft 

conflicts was investigated. 

If the solutions offered by automatic conflict reso-

lution do not match the dispatchers’ thinking or pref-

erences, they are unlikely to be accepted. The paper 
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[7] developed an interactive AI agent based on rein-

forcement learning with conflict resolution maneuvers 

used by a human dispatcher. This approach can poten-

tially increase the dispatcher’s level of confidence in 

the solutions proposed by the agent. The hybrid algo-

rithm proposed in [8] uses known geometric methods 

in the deep reinforcement learning stage to resolve 

low-altitude airspace conflicts.  

These approaches are effective under low air traf-

fic densities, but centralized architectures cannot cope 

with intensive air traffic flows when the number of 

conflicting aircraft increases. In most complex sys-

tems, distributed decision-making is believed to have 

higher efficiency than centralized control. A critical 

challenge for distributed decision-making in air traffic 

management is the development of a system that pro-

vides recommendations to the aircraft for ensuring 

safe separation and elimination of uncertainty in real 

time. Several multi-agent approaches were proposed to 

deal with high air traffic densities. As was demonstrat-

ed in [9–11], multiple agents in a decentralized system 

can access the complete information about all aircraft 

in a sector using a scalable and efficient method to 

achieve high throughput under uncertainty. The agents 

were trained by one neural network with centralized 

learning, and a decentralized decision-making scheme 

was adopted. Many of the proposed agents based on 

reinforcement learning must be trained in an environ-

ment with a fixed number of conflicting aircraft. The 

computational complexity of learning grows rapidly 

with increasing the number of conflicting aircraft. In 

[12], image-based deep reinforcement learning was 

suggested for resolving aircraft conflicts. Image-based 

deep learning largely solves the scalability problem. 

The algorithm can process an arbitrary number of air-

craft since their states are replaced by their images. 

The paper [13] presented an autonomous air traffic 

management model with aircraft collision prevention 

in free airspace. A graphical neural network approach 

to resolving conflicts in free airspace was introduced. 

Representing each aircraft as a graph node, this ap-

proach can handle an arbitrary number of aircraft. 

Expectedly, deep reinforcement learning will play 

a significant role in building future air traffic man-

agement systems, but more research is needed here. In 

real-world applications, deep reinforcement learning 

raises two significant problems.  

The first problem is the safety of air traffic man-

agement systems. Modern models use deep neural 

networks as function approximators. Deep neural net-

works were discovered to suffer vulnerability to ad-

versarial examples [14, 15] (carefully designed quasi-

negligible perturbations that mislead the deep neural 

network when added to its input data). Furthermore, 

adversarial examples also appear in the real world 

without any intruder or maliciously chosen noise [16]. 

Consequently, it is necessary to scrutinize the mecha-

nisms of adversarial attacks, ways to detect errors or 

undesirable behavior of AI algorithms, and methods to 

overcome them. 

The second problem consists in explainability. The 

decision-making process of deep reinforcement learn-

ing technology is opaque. Due to its insufficient trans-

parency, pilots and air traffic controllers cannot under-

stand the internal mode of operation. The “black box” 

nature of the model may prevent users from accepting 

the predicted outcomes, especially when the model 

makes key decisions. 

The paper [17] presented safety-aware deep Q 

networks. In this model, two separate neural networks 

jointly investigate security and optimization costs. Ac-

cording to the authors, their work is the first to consid-

er the vulnerability of the model to adversarial attacks; 

moreover, the model is safe and well-explainable. 

The bottleneck in air traffic management systems 

is the capacity of the runways of major airports. Air-

craft maneuvering control operations in the airport 

area, such as arrival control, landing sequence, and 

time planning, are performed by air traffic controllers. 

The paper [18] systematically overviewed past and 

most recent theoretical studies of the aircraft landing 

problem for airports with one or more runways, in-

cluding their comparison. 

The remainder of this paper discusses in detail the 

deep reinforcement learning approach with application 

to the following problems: detecting and resolving 

aircraft conflicts, reducing the complexity of air traffic 

at the national or continental level (a large-scale prob-

lem), and increasing the efficiency of airport runways 

through the improved planning of aircraft landings. 

1. CONFLICT DETECTION AND RESOLUTION BASED ON 

DEEP REINFORCEMENT LEARNING  

1.1. A deep reinforcement learning approach to general 

problems  

Reinforcement learning [19] is a method in which 

an agent interacts with an environment to maximize a 

long-term reward. It can be treated as a Markov deci-

sion process  , , , ,S A T R   with the following nota-

tions: S is the set of environment states; A is the set of 

agent’s actions; T is the probability of transition be-

tween states; R is the reward function; finally,   is the 

discount rate.  
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Being in a state tS S  at a training step t, the 

agent generates an action tA A  following a policy π: 

S × A → R. Then the agent receives the reward Rt and 

passes to the next state 1tS  . The agent’s goal is to 

maximize the total reward by learning the policy 

: S A   that determines the required action in each 

state. 

The states are assessed using a function  V S . The 

state-value function tS  is updated by the formula 

        1 ,t t t t tV S V S R V S V S      

where α is the learning rate. 

The algorithm involves two neural networks: a 

critic network and an actor network. The former net-

work updates the parameters of the value function w, 

whereas the latter network updates the parameters of 

the policy   ; for details, see [20]. 

Due to the infinite state space, the state-value func-

tion is approximated. The approximation is based on 

the deep learning of the neural network [21]: 

   ˆ , nV S w V S , 

where w denotes the weights of neurons. In one-step 

temporal difference learning with the approximate 

function, the update formula is given by 

      1, ,ˆ ,ˆ ˆ
t t t w tw w R V S w V S w V S w      . 

The action is selected using a policy  ,sa  . For 

the space of continuous actions, the gradient policy 

[22] based on the gradient descent method is often 

adopted. The differentiable policy is defined as 

 ,sa   and the parameters   are updated at each 

step as follows: 

   ln | , .t t tA S V S  
 

 

1.2. Conflict detection and resolution (CD&R):       

problem description [23] 

Consider N aircraft in a particular air traffic scenar-

io (Fig. 1). Of these, ( 1)N   ones are in a sector with 

radius L, and another aircraft flies into the sector. Each 

aircraft has an initial position and a target position. 

The goal of each aircraft is to fly from the initial posi-

tion to the target position in the minimum time without 

conflicts with other aircraft. A conflict arises when the 

distance between two aircraft is below the minimum 

safe distance (usually 5 nautical miles (nm)). At step t, 

the position and course angle of the aircraft form the 

vector       ,  ,n n nx t y t t . 

 

 
Fig. 1. Conflict detection and resolution problem. 

 

The action for passing to a new state is the new po-

sition where the aircraft will fly from its current posi-

tion. 

Figure 2 shows the learning process for one epi-

sode. 

 
 

 

 
Fig. 2. Training process for one episode. 

 

At the beginning of each training episode, the state 

0S  is initialized in the environment. At each step t, the 

agent obtains the state tS  and implements the action 

.tA  After that, the environment passes to the state 1tS   

and returns the reward tR . This process is repeated 

until reaching the terminal state 1tS  . The value sets 
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 1, , ,t t t tS A R S   are stored in memory. The agent se-

lects data from memory and learns according to the 

algorithm. 

Possible maneuvers include turns, vertical adjust-

ments, and speed changes. The output state of the en-

vironment includes the position of each aircraft in the 

sector. The control experiment with one aircraft serves 

for checking that the environment can be used to train 

agents. Altitude and speed are fixed in this experi-

ment. 

The states form a vector of the dimension 

n p dN N N N   , where nN  is the total number of 

aircraft (the incoming aircraft plus all aircraft in the 

sector), pN  is the number of aircraft waypoints (in-

cluding all waypoints from еру current position to des-

tination), and dN  is the dimension of aircraft location 

(equals 3). The height dimension is fixed, and the oth-

er two dimensions are variable. At each step, the agent 

perceives the state vector and, after normalization, 

takes it as the input of neural networks. 

The action set is defined as  

    , | 0, , ,A L       ,  

where L is the radius of the sector and ρ and φ are the 

polar radius and angle, respectively. An action is a 

position described by the two-dimensional polar coor-

dinate. At each step t, the agent chooses an action 

tA A . Depending on this action, the incoming air-

craft flies from its current position to tA . 

The agent’s goal is to maximize the long-term re-

ward and update the parameters of the neural networks 

according to the immediate reward. Four rules are 

used to create the reward function: no conflict between 

the aircraft, the minimum control time, the minimum 

course angle change, and the minimum flight distance.  

The reward function is given by 

1 if a conflict occurs,

/ otherwise,t
t

R


 
 

 

with the following notations:  ,t     is the 

change of the course angle at step t. Thus, 1t



, 

meaning that conflict resolution has the highest priori-

ty. Since a change in the course angle will affect the 

distance, the latter characteristic is omitted in the re-

ward function. 

The action is to determine a polar coordinate where 

the sector’s center is the pole and the length shorter 

than the sector radius is the polar radius. The four out-

puts of the agent’s neural network, , , ,    
 
and 

 , are the mean and standard deviation of the polar 

radius and polar angle, respectively. For learning, the 

radius and angle are supposed to have the Gaussian 

distribution:  ~ ,N      and  ~ ,N     . 

They are generated, and the two-dimensional action is 

formed. After the agent’s neural network is well 

trained,  and     are taken as ρ and φ, respectively. 

The neural networks are trained as follows. For the 

critic network, the parameter δ is determined to evalu-

ate the chosen action:  

   1, ,ˆ ˆ
t t t tR V S w V S w     , 

where tR  is the immediate reward and  ˆ ,tV S w  and  

 1
ˆ ,tV S w  are the values of the current and next 

states, respectively. 

The parameters w are updated using the least 

squares method: 
2.ww w    

The policy gradient method is applied for the actor 

network. The policy equation has the form 

     ln , | , ln | , ln | ,t t t t t t tS S S             

with the following notations:  ln , | ,t t tS     is the 

probability of choosing ρ and φ in the state tS  with 

parameters θ;  ln | ,t tS    is the probability of 

choosing ρ in the state tS  with the parameters θ; final-

ly,  ln | ,t tS    is the probability of choosing φ in the 

state tS  with the parameters θ. The parameters θ are 

updated as follows: 

 ln , | ,t t t tS        . 

The effectiveness of the proposed approach was 

demonstrated by numerical simulations. As was de-

clared by the authors, a well-trained agent can gener-

ate a solution within 200 ms, whereas previous meth-

ods require tens or even hundreds of seconds for cal-

culation. In addition, the turning radius of the aircraft 

is properly considered, which corresponds to realistic 

situations. 

2. A HYPER-HEURISTIC APPROACH TO REDUCE AIR 

TRAFFIC COMPLEXITY [24] 

The paper [24] considered the problem of improv-

ing the airspace structure by air traffic complexity mit-

igation; see Section 2.6. 

The hyper-heuristic approach does not simply fol-

low a particular meta-heuristic but also involves flexi-

ble integration and adaptive control of low-level heu-

ristics. Several studies confirmed the effectiveness of 
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Q-learning when selecting an appropriate low-level 

heuristic at the decision point. Q-learning lies in eval-

uating the best state-action pair using memory with Q-

tables. Each entry in such a table expresses the long-

term value of choosing a particular action in a particu-

lar state.  

The traditional hyper-heuristic selection structure 

consists of two levels. The first level contains the 

problem representation, the state-value function, and a 

set of low-level heuristics. The second level performs 

two separate tasks as follows. First, it selects a low-

level heuristic and applies it to the solution. Second, it 

decides to accept or reject the new solution. Selecting 

appropriate heuristics and decision methods is a non-

trivial task when developing a robust hyper-heuristic 

model. A hyper-heuristic operates without any infor-

mation needed about the functionality of the low-level 

heuristics but provides useful feedback on the utiliza-

tion rate of each heuristic and the change of the objec-

tive function. This information is crucial for the learn-

ing process. 

The algorithm uses a Q-learning agent to select a 

heuristic operator or a low-level heuristic (Fig. 3). The 

latter is then applied to generate a candidate solution 

and recalculate its performance in a simulation system. 

A decision is then made regarding the candidate 

solution. If the candidate solution can improve per-

formance, the current solution will be updated. Other-

wise, the candidate solution will also be updated with 

some probability, decreasing with the course of learn-

ing. If the candidate solution is not accepted, all 

changes in the solution space associated with that can-

didate solution will be undone by a return operation. 

The Q-learning agent determines the reward by check-

ing the current state, the chosen operator, and the evo-

lution of  solutions and  then updates  the  Q-values in 

the Q-table. 

The following heuristic operators are proposed 

(Fig. 4). 

 h1, a local search that randomly changes the de-
parture time by no more than 5 min (Fig. 4a); 

 h2, a local search that flips the current way-
points in the horizontal plane XY along the trajectory 
(Fig. 4b); 

 h3, a local search that flips the current way-
points in the horizontal plane XY perpendicular to the 
trajectory (Fig. 4c); 

 h4, a local search that randomly deviates the 
route by changing the position of each waypoint 
(Fig. 4d); 

 
 

 
   

Fig. 3. Framework of Hyper-heuristic based on Q-learning with the high-level strategy and problem domain.



 

 
 

 

 
 

2● 

 

 
  

Fig. 4. Representation of intensification heuristic operators which allow the algorithm to refine the search in the vicinity of the current decision: 

 

 h5, a random selection of a neighbor flight alti-

tude level within the maximum permissible limits 

(Fig. 4e). 

Three generation operators diversify optimization 

as follows: 

 h6, an operator that randomly changes the de-

parture time within the maximum permissible limits;  

 h7, an operator that randomly adds/removes one  

or more waypoints according to the problem con-

straints; 

 h8, an operator that randomly changes the flight 

altitude level within the maximum permissible limits. 

The Q-learning agent follows a   -greedy approach 

to select the heuristic operator based on the Q-table. A 

random action is chosen with probability    and the 

action based on the Q-table with probability (1 ) . At 

first,    is assigned a maximum user-defined value 

max . During the learning process, it decreases until 

reaching a minimum user-defined value 
min

. 

The learning cycle begins by selecting one of the 

diversification operators h6, h7, or h8. Each state is de-

fined based on the operator applied previously. 

Seven states are considered as follows: 

 s0: one of the diversification operators h6, h7, or 

h8 was previously applied;  

 s1: the operator h1 was previously applied; 

 s2: the operator h2 was previously applied;  

 s3: the operator h3 was previously applied; 

 s4: the operator h4 was previously applied; 

 s5: the operator h5 was previously applied; 

 s6: two consecutive operators from the set      

{h1, h2, h3, h4, h5} were previously applied without

changing the current solution. 

The Q-table is initialized with Q-values according 

to Table 1. 

Some Q-values are set to 1 to ensure that a particu-

lar heuristic operator can be selected; others are set to 

0 to ensure the transition from one state to another. 

At each iteration, the system stores the experience 

containing the current states with the selected operator 

h and the payoff g (the difference between the values 

of the new and previous solutions). At the end of the 

cycle, the Q-learning agent determines the rewards for 

updating the Q-values in the Q-table. 

At step t, the Q-values for the found state–action 

pair are updated as follows: 

        1, 1 , max , ,t t t t t t
h H

Q s h Q s h r Q s h


    

where  0, 1  and  0, 1  are the learning and 

discount rates, respectively, tr  is the immediate re-

ward, and  ,  1, ,8iH h i    denotes the set of heu-

ristic operators.  

Transfer  acceptance  determines  whether to accept 

or reject the new solution at each step of the search 

process. Iterations continue until satisfying a termina-

tion criterion. 

In [24], the proposed approach was empirically as-

sessed within a real-data experiment for a full day of 

traffic in the French airspace (8836 trajectories, see 

Fig. 5). 

The initial trajectory plan for the full day of traffic 

was compared with the final trajectory plan calculated 

by the proposed algorithm in terms of complexity. The 

corresponding results are shown in Fig. 6.  
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Table 1  

Q-table initialization  

State 
Operator 

h1 h2 h3 h4 h5 h6 h7 h8 

s0 1 1 1 1 1 – – – 

s1 0 1 1 1 1 – – – 

s2 1 0 1 1 1 – – – 

s3 1 1 0 1 1 – – – 

s4 1 1 1 0 1 – – – 

s5 1 1 1 1 0 – – – 

s6 – – – – – 1 1 1 

 

 
 

 
  

Fig. 5. Complexity map of (a) initial trajectories and (b) final trajectories of a full day of traffic in the French airspace.  

 

 
 

 
  

Fig. 6. Comparison of initial complexity and final complexity over time for a full day of traffic in the French airspace. 
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3. IMPROVING RUNWAY EFFICIENCY USING 

REINFORCEMENT LEARNING 

Airport runways are a major bottleneck in air traf-

fic and a key factor determining airport capacity. 

Building a new runway is not always possible. One 

approach to solving the capacity problem is the mod-

ernization of the airspace structure and airfield infra-

structure. In [25], such an approach was implemented 

by mathematical modeling. This survey considers an-

other approach: optimizing the use of infrastructure 

through the improved planning of aircraft landings. 

The landing optimization problem is solved in 

three steps. First, an initial schedule is created on the 

first-come, first-served basis. Then this schedule is 

modified during the landing approach phase and final-

ly frozen when the aircraft reaches the final stage of 

this phase. The initial schedule includes aircraft within 

the range of the airport landing radar (a time horizon 

of about 40 min before landing). The update process is 

executed each time a new aircraft enters the radar 

range to improve the landing schedule [26]. 

The most common requirements include a safe 

separation between consecutive aircraft, allowed time 

intervals determined by the earliest and latest flight 

times based on fuel consumption, and priority con-

straints. Different objective functions serve for in-

creasing runway capacity, meeting schedules, mini-

mizing fuel consumption, etc. 

As is known, optimal aircraft sequencing and land-

ing are an NP-hard problem [27]. Consequently, the 

solution time by exact methods grows rapidly with 

increasing the number of aircraft. Since the first solu-

tion [28] published in 1976, several new models and 

approaches have appeared in the literature, including 

genetic and heuristic algorithms to obtain a suboptimal 

but sufficiently efficient solution in an acceptable time 

[29, 30]. The survey [31] was devoted to some exact 

approaches to the problem (mainly mixed integer pro-

gramming), whereas the paper [32] overviewed ap-

proximate solution methods, mainly genetic and me-

metic algorithms. A recent promising approach to the 

problem is based on reinforcement learning. 

The authors [33] considered the problem of plan-

ning aircraft takeoffs on a single runway to observe 

the established time intervals. The problem was mod-

eled as a Markov decision process and solved using 

the Q-learning algorithm [34] as follows. Let the 

agents be the aircraft and let their states be the aircraft 

position on the ground depending on its phase (park-

ing, taxiing, and takeoff). The action is to delay the 

aircraft, and the reward is defined to minimize the de-

lay during taxiing with observing the time intervals 

established for the aircraft. The algorithm was tested 

on real data from John F. Kennedy International Air-

port (JFK, New York), which included departures of 

698 flights (two days of operation). Note that 42 train-

ing scenarios were generated from the data. According 

to the results, the algorithm has a performance similar 

to or greater than that of air traffic controllers. 

The paper [35] proposed a framework to model the 

problem of aircraft sequencing and separation in ac-

cordance with the NASA sector-33 application [36]. 

This air traffic management application contains 35 

examples of tasks involving up to 5 aircraft, including 

speed and route control for aircraft.  

The proposed model consists of agents, states, ac-

tions, and rewards. There are two types of agents: par-

ent and child. The parent agent’s state contains a snap-

shot of the game screen. The child agent’s state con-

tains information about the measurement target, speed 

and acceleration of the aircraft, and route identifier in 

addition to information about the N closest agents to 

allow communication between agents. The actions for 

the parent/child agent are to change or maintain the 

route/speed of the aircraft. The reward is designed to 

penalize conflicting agents (separated by less than 3 

nm).  

The problem within the model was solved using a 

hierarchical deep learning algorithm with reinforce-

ment. This algorithm combines the Q-learning algo-

rithm [18] and neural networks [5]. It has a hierar-

chical nature because the actions are executed at two 

levels: the parent level selects the route and then the 

child level selects the speed for the aircraft. According 

to the tests in the NASA application (involving 2–5 

aircraft), the proposed approach is viable.  

 

3.1. The Mathematical Model 

Let us consider in detail the approach [37]. The 

distributed algorithm proposed therein is based on Q-

learning with the parameters optimally tuned by a ge-

netic algorithm. The algorithm was implemented using 

the sliding window mechanism. 

Consider a graph  ,G N L , where N and L are the 

sets of nodes and links, respectively. The node set has 

two subsets: eN N  (the entry points of the Terminal 

Maneuvering Areas (TMA)) and rN N  (runways). 

The final links connecting the runways are also 

grouped into a link subset: rL L .  

Figure 7 shows the network at Paris Charles de 

Gaulle Airport (CDG). Aircraft enter at LORNI or 

OKIPA points; there are two runways, 27R and 26L, 

and two merge points, IF_27R and IF_26L. The two-

point merge system is used (IF_27R–RWY_27R and 

IF_26L–RWY_26L, respectively). 
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Fig. 7. Simplified STAR model at CDG: aircraft enter at LORNI or 

OKIPA. Merge points are located on both IF 27R and IF 26L.  

 

For each aircraft, the procedure is executed at a 

constant speed. This is the landing speed that depends 

on the wake vortex category.  

The point merge system (PMS) structure is pre-

sented in Fig. 8. For each aircraft, the length of the 

PMS arc will be treated as a decision variable for the 

algorithm.  

 
           

 
 

 
Fig. 8. Merge Point Topology: for each aircraft, the length of the flown 

sequencing arc is a decision variable. 

 

A flight f is characterized with the following in-

formation: 

• 0, fV
 
is the initial true airspeed of the aircraft; 

• 
TMA
0, ft  is the initial entry time in the TMA; 

• 0, f rr N  is the runway on which the aircraft is 

planned to land; 

• 
RTA
ft  is the time at which the aircraft is required 

to land (the required time of arrival, RTA); 

• fC  is the wake vortex category.  

For each flight f, the following decision variables 

are considered: 

• fV  is the speed of the aircraft;  

• TMA
ft  is the entry time in the TMA;  

• fr  is the runway assigned for landing;  

• MP
fl  is the length of the merge point arc. 

The speed of the aircraft has to stay in a given 

range of the initial speed: 

0, ,f fV V p V    

where p is the number of increments and V  is the 

speed increment: 

min max,   , .p Z p V V V        

Here, 
maxV  and 

minV  are the maximum speed in-

crease and decrease from 0, fV , respectively, that can 

be assigned to an aircraft. The minimum speed de-

crease depends on the wave vortex category. 

The entry time decision corresponds to a delay that 

can be absorbed in the En-Route airspace before the 

aircraft enters the TMA. In this airspace, the aircraft 

can be slowed down or accelerated in a given range. 

As a result, the entry time in the TMA could also 

change in a given range: 

TMA TMA
0f , ft t p T ,    

where p is the number of increments and T  is the 

time increment: 

min max,   ,p Z p T T T       . 

Here, maxT  and minT  are the maximum and mini-

mum time increments from TMA
0, ft , respectively, that 

can be assigned to an aircraft. 

To keep a balanced flow between runways, it may 

sometimes be more appropriate to change the landing 

runway of an aircraft ( f rr N ). 

As the network contains merge points, one of the 

decision variables, MP
fl , is the length of the arc that an 

aircraft will fly in one of the merge points, i.e., 

MP ,fl p L   

where p is the number of increments and L  is the 

length increment: 

max,   MPp N p L L   , 

where max
MPL  is the maximum arc length that a merge 

point can have. 

Flight level on red arc is lower than that on 

green arc by 1000 ft 

Sequencing arcs 

Merge point 

Merging zone 
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3.2. Description of the Deep Learning Algorithm [37] 

This section describes a deep learning algorithm 

based on the model presented in Section 3.1. It re-

solves potential aircraft conflicts during heavy traffic 

in the airport area in a reasonable time. 

Each flight is a Markov decision process 

   , , ,a aMDP S A P R . All decision variables represent 

the state space S. This means that for every aircraft, a 

state is defined by {speed, entry time in the TMA, 

PMS arc length, runway assignment}. In each state, 

the following actions are considered: A = {increas-

ing/decreasing the speed, increasing/decreasing the 

entry time in the TMA, increasing/decreasing the PMS 

arc length, changing the landing runway, no action}. 

For states that are not direct neighbors to the current 

state, the value of the transition function is 0. For 

neighbor states, the transition function is an equiprob-

abilistic one: 

 
 

0 if    is not a neighbor of   ,

, 1
 otherwise,a

s s

P s s

Card A













 

where  Card A  is the number of elements in A (in 

this case, 8). 

Q-learning is a model-free reinforcement learning 

algorithm. This means that the algorithm does not 

need a model of the environment, it only interacts with 

the environment without knowing it. Every aircraft is 

considered an agent, which makes the algorithm multi-

agent. 

Q-learning is used to learn the optimal policy of a 

Markov decision process. This is done by computing 

the Q-function for each aircraft, i.e., representing the 

expected reward an agent can receive if he takes a giv-

en action in a given state. The Q-learning used is dis-

tributed, meaning that the reward of each agent is 

treated individually at each iteration. 

For each agent, the expected reward  ,Q s a  in a 

given state s for a given action a is updated as follows: 

      , , max ( , ) , .
a

Q s a Q s a R Q s a Q s a


     

where s' is the new state when the action a is taken in 

the state s; R is the reward the agent will receive by 

making the action a in s;   is the learning rate; final-

ly, γ is the discount factor. 

The expected reward  ,Q s a  in a given state s for 

a given action a is updated at each iteration consider-

ing an estimation of the optimal future value 

max ( , ).
a

Q s a


   This is done independently of the poli-

cy being followed. Precisely, this is a one-step algo-

rithm since the estimation is done only by looking one 

iteration ahead. 

For a state s S , an action a A , and a parameter 

T called temperature, the probability  ,s a  to 

choose a in s is given by 

 
 

 

, /

, /
, .

Q s a T

Q s a T

a A

e
s a

е




 


 

The temperature at iteration k is given by a geo-

metric law of the parameter  , i.e., 0
k

kT T  , where 

0T  is the initial temperature. This temperature sets a 

trade-off between exploration and exploitation: a rela-

tively high temperature will promote the exploration 

of the Q-table, whereas a low temperature will be in 

favor of the exploitation of the Q-table. 

In this distributed Q-learning, every aircraft is con-

sidered a learning agent and consequently has a Q-

table. All the Q-tables are initialized at a value 0Q  

chosen relatively low to enforce the state exploration. 

This is done on purpose since the reward (and Q-table) 

of an aircraft depends on agents close to it (which can 

be in conflict). Every agent is seen as an independent 

learner and does not consider the chosen action of oth-

er agents but only their actual states. Therefore, be-

tween the two decisions of an agent, its environment 

may have been changed. An agent can choose the spe-

cific action of doing nothing and then its state will not 

change. 

For each aircraft, a reward function is computed 

and then used by the reinforcement learning algorithm. 

The reward given at each state and action depends on 

the other aircraft’s state and is computed as the 

weighted sum of the rewards described below. 

All rewards are negative (penalties): 

 RTA RTA 5 ( ).runway conflict link nodeR R R R R      

If an aircraft f does not land on 0, fr , its preferred 

runway, the reward added is 5 times the value runwayR  

weighted by RTA  . Note that RTA  and conflict  are 

the algorithm parameters. 

Different components of the reward function are 

described below. 

 Required Time of Arrival. All airlines have a 

schedule for each aircraft and on-time aircraft should 

have a better reward. Then, a reward corresponding to 

the absolute difference between the RTA and the real 

arrival time is added for every aircraft: 

RTA
RTA f arrivalR t t   . 
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 Runway number  

0,landing on the required runway

otherwise.

0,   ,

1,

f

runway

r
R


 


 

 Conflicts. The model considers two kinds of con-

flicts: link conflict, when two aircraft do not respect 

the wake vortex category separation, and node con-

flict, when the aircraft do not respect observe the hori-

zontal separation at merge points [38] (3 nm). For 

each link, at the entrance and the exit, the minimum 

separation between two aircraft f and g must corre-

spond to Table 2.  
Table 2 

Minimum separation for link conflict, nm 

Category Leading aircraft, f 

Heavy Average Light 

Trailing 

aircraft, 

g 

Heavy 4 3 3 

Average 5 3 3 

Light 6 5 3 

 

Assuming that ,f gs  is the minimum separation and 

,f gd  is the actual distance between the leading aircraft 

f and the trailing aircraft g (Fig. 9), the criticality of a 

potential conflict, linkC , is proportional to the distance 

between the aircraft. Overtakings are also calculated; 

if this occurs, then , 0f gd   and the criticality of the 

conflict is set to –1: 

,

, ,

, ,

,

1 if   0,

 if    

0 otherwis

,

e.

f g

f g f g

link f g f g

f g

d

s d
C d s

s

 



  


  

 

 
Fig. 9. Link conflict detection based on the comparison of distance 

between aircraft at the beginning or the end of a link with the 

separation minima. 

 

The function linkC  is piecewise linear and continu-

ous, which is necessary for the learning algorithm to 

know if the conflict is getting better or worse. Since 

linkC  can be close to 0, the learning algorithm can im-

prove RTAR  instead of resolving the conflict. To prior-

itize the conflict resolution objective, the value of the 

reward function for the link is artificially set between   

–0.3 and –1 using the formula 

  0 3 1 0 3link linkR . C . .     

If there is no link conflict between two aircraft f 

and g, conflicts may still occur on nodes. In TMA, 

every aircraft has to be separated by 3 nm from others 

in order to respect the separation distance. As was 

shown in [38], in many airports, due to the network 

geometry, the detection area can be reduced to a circle 

of 2.2-nm radius. As for the links, the criticality of a 

node conflict is given by 

,

,

2 2
 if 2 2,

2 2

0 otherwise

f g

f g
node

. d
   d .

C .

  .


 

 



 

As for the links, the value of the reward function 

for a node conflict is artificially set between –0.3 and 

–1 using the formula 

  0 3 1 0 3node nodeR . C . .     

In this problem, if an aircraft enters the TMA many 

hours before another one, their decisions can be con-

sidered independent. Therefore, the dynamic aircraft 

landing optimization problem is solved on the basis of 

a sliding window. 

During the optimization process, the aircraft inside 

the sliding window are divided into four groups: 

• completed, the latest landing time is before the 

starting time of the sliding window; 

• ongoing, the earliest entry time is before the start-

ing time of the sliding window (decisions to land have 

already been made); 

• active, the earliest and latest entry times are in the 

window; 

• planned, the latest entry time is after the end of 

the sliding window. 

At each iteration of the sliding window, the opti-

mization algorithm is run on active flights.  

Running the algorithm on every active flight in the 

sliding window is not efficient enough; some of the 

active flights may have good rewards, and other air-

craft may have multiple conflicts. To speed up the op-

timization process, decisions are changed with a high-

er priority on aircraft with the worse reward. Those 

aircraft are indicated as critical flights. They are com-

puted using a threshold that is greater than 70% of the 

worst aircraft reward. Since these aircraft are learning, 

their rewards decrease and more and more aircraft be-

come “critical.” 

The algorithm was successfully tested on data from 

Paris Charles de Gaulle airport with the total number 

of aircraft landings artificially increased to 687. A 

conflict-free solution for a full day of traffic was cal-

culated in less than 30 s, which is acceptable for real-

time planning. 
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CONCLUSIONS 

For several decades, extensive research was con-

ducted on decision support automation in ATM sys-

tems. Mathematical models developed for this prob-

lem either minimize the number of potential conflicts 

between 4D aircraft trajectories or redistribute aircraft 

flows to reduce airspace congestion. The number of 

potential aircraft conflicts is often decreased using one 

or several methods as follows: shifting flight departure 

times, regulating airspeeds, changing flight trajecto-

ries, and changing flight altitude.  

As shown, minimizing the number of potential air-

craft conflicts is an NP-hard problem. Consequently, 

various metaheuristic algorithms emerged to solve it. 

A hybrid metaheuristic approach based on the simulat-

ed annealing algorithm, improved by local search 

methods, was developed for the strategic planning of 

air traffic flows considering the uncertainty of aircraft 

positions.  

The complexity and scale of minimizing the num-

ber of potential conflicts in airspace require new ap-

proaches to this problem. Some publications in recent 

years have been devoted to deep reinforcement learn-

ing methods for improving the safety and efficiency of 

air traffic. The effectiveness of the proposed ap-

proaches has been investigated using computational 

experiments, which have shown encouraging results. 

Further extensive research is needed to assess the ap-

plicability of these approaches in real-world condi-

tions. 
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