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Abstract. This paper proposes a conceptual approach to constructing combined feedback in a 

human–machine interaction system through introducing an artificial sensory feedback component 

controlled by a technical subsystem. The approach is intended to systematize the role of com-

bined feedback in the control of multi-agent systems with additional elements, humans, and artifi-

cial agents. This approach is studied for human vertical posture control and in synthetic experi-

ments (within the CartPole model) considered using reinforcement learning as an example. The 

efficiency of the control problem solution is investigated by varying the characteristics of infor-

mation transmission channels and the properties of the artificial sensory feedback component. 

According to the results, natural experiment observations are conceptually similar to those of the 

artificial numerical experiment in terms of additional feedback channel operation: there are a sim-

ilar overshoot effect and prospects for improving control performance by tuning the artificial sen-

sory component. 
 

Keywords: human–machine interaction, optimal control, feedback, reinforcement learning, multi-agent 

systems.   
 

 

 

INTRODUCTION 

Human–robot interactions, including multimodal 

ones [1], are a rapidly growing topical interdiscipli-
nary field [2, 3]. It directly relates to the development 

of artificial intelligence and machine learning for vari-
ous industries, particularly medicine; for example, see 

[4, 5]. In this field, the assessment of human states in a 

human–machine system can be treated as one im-
portant application. The sensory support of a human’s 

target activity, potentially including here artificial 
components, is a crucial aspect that can significantly 

influence the efficiency of a human–machine system.  

The idea of this paper is based on previous biolog-

ical feedback studies (e.g., see [6]), which demonstrat-

ed that the influence of an artificial sensory compo-

nent can both increase and decrease the human’s per-

formance in an instruction-driven task. Here, we en-

deavor to describe and extend the concept of the na-

ture of such an artificial sensory component by pre-

senting a general approach to the interaction between 

natural and artificial intelligent agents jointly solving a 

control task, by supporting a human (a natural intelli-

gence agent) directly performing control. The main 

contribution of this paper is the idea of formalizing a 

feedback system that includes the main (natural) and 

additional (artificial) channels within the control task. 

The control agent model can be of any nature, which 

allows conducting research within artificial intelli-

gence (AI) approaches and assessing the efficiency of 

solving the control task under different parameters of 

the feedback components. In addition, the explicit 

consideration of feedback in various human–machine 

systems should allow us to generalize this idea to a 

wide class of such systems and, moreover, analyze the 

role of such interaction in generalized multi-agent sys-

tems that include living agents (humans) and technical 

components. 

This paper is organized as follows. After a brief 

review of fundamental works in the interdisciplinary 

field considered, bringing physiology and engineering 

closer together, we describe the approach proposed as 

well as the basic and conducted numerical experi-

ments. Finally, the results are briefly analyzed, and the 

findings are summarized. 
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1. THE INTERDISCIPLINARY NATURE OF CONTROL IN 

HUMAN–MACHINE SYSTEMS 

The field of human–machine interaction research is 

developing mainly in terms of information interaction 

and the design of information systems [7]. However, 
in some scenarios, the issue of interaction requires 

considering the physiological features of a human (as 
a “living” control system) and the technical features of 

a machine. Such problems may arise in robotics, the 
development of bionic systems (including prostheses), 

motor rehabilitation, etc. Thus, the interdisciplinary 
research area linking biology and engineering within a 

single interacting field becomes particularly relevant. 
This section provides a brief review of publications on 

the topic under consideration. 
 

1.1. Subject Area Formation 

Attempts to explain thinking, human actions, and 

organism functions based on experience in the creation 
of technical means have been known since ancient 

times. For example, Descartes metaphorically com-
pared the organization of human activity with the 

work of mechanical clocks [8]. The comprehension of 
the theory of automatic control and, later, cybernetics, 

which developed rapidly in the 20th century, led to the 
consideration of a human operator as a kind of feed-

back “controller” [9]. In the pre- and post-war USSR, 
system ideas in life sciences were originally devel-

oped, e.g., as Anokhin’s theory of functional systems 
[10]. Here, the key role is given to goal-setting, the 

anticipation, prediction, and planning of the result, the 
original Russian contribution [11] illustrating the uni-

fied direction of two “branches” of the general scien-

tific ideology of feedback, which stem from life sci-
ences and engineering [12]. As noted by Bernstein in 

the early 1960s, the whole period from the publication 
of Wiener’s first work to our days is permeated with 

the search and use of analogies between living and 
artificial systems, the analogies that helped physiolo-

gists to comprehend the systemic relationships of the 
organism and gave engineers new and valuable ideas 

for building automata [13].  
 

1.2. Boundaries of Physiology and Engineering 

The current upsurge of global interest in AI and the 

development of robotics again demand the mutual ap-
proach of physiology and technology, which is mani-

fested in attempts to generalize the available experi-
ence and develop a theoretical basis [4, 14, 15]. This 

also concerns part of the answers to the “watershed” 
question, once formulated by Bernstein: Whether this 

“honeymoon” of identifying and practically using 

analogies and similarities has been over or not, ques-

tions of the opposite direction are beginning to appear 
more and more often in the literature of the most re-

cent time: after all, is there an essential, fundamental 
difference between living and nonliving systems?  If it 

exists, where is the watershed forming the boundary 
between the two? [13]. This question can be slightly 

modified: find conditions under which the interaction 
between living and artificial would be provided by 

something that can be compared, very conditionally, 
with “biological convergence” (a kind of approach or 

even overlapping of control systems). That is, for ex-
ample, when the human activity specified by an in-

struction is “included” in the loop of the control sys-
tem common with the machine, and the result of the 

technical system of machine control is close to the 

final useful effect of the common system [6]. In this 
case, it is possible to obtain measurable parameters of 

such a “common” system, which would more accu-
rately describe the living system and its action (com-

pared to a single-value characteristic, e.g., body tem-
perature), approaching the digital twin concept in 

technology. The corresponding approaches can be 
based on the ideas of anticipation and prediction capa-

bilities, inherent in living systems and, apparently, in 
developed AI [16]. 

 

1.3. Biological Feedback and Sensory Redistributions 

Besides the usually perceived signaling from sen-
sory organs, biological feedback implies additional 

information for a tested human about some of his/her 
physiological parameters (recorded by a device); thus, 

a machine indirectly participates in organizing the 
control process for some organism’s function. This 

can be an image displayed to the tested human on the 
screen, connected with signals of electroencephalo-

gram, electrocardiogram, pneumogram, etc., or, as in 
the example provided in [6], biomechanical parame-

ters displaying the positions of the common center of 
pressure (aerodynamic center) of a standing human on 

a support. As is believed today, a human conditionally 
has no “center-of-gravity sensor” in the form of a sep-

arate organ. Natural vertical (upright) posture control 
is based on the analysis of complex information from 

vision, vestibulars, and proprioceptors. Two different 

levels can be distinguished in the posture control sys-
tem [17]: one level concerns the distribution of tonic 

muscle activity (posture) whereas the second the com-
pensation of internal or external perturbations (bal-

ance). Thus, when considering, e.g., Anokhin’s 
scheme of a functional system [10] (a biological con-

cept close to cybernetic ideas [12]), in the context of 
human upright posture regulation, we can discuss two 

separate “functional systems” referring to upright pos-
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ture deflections. In both cases (posture and balance), 
the natural sensory component of regulation is repre-

sented by the same sensitive organs, the activity of 
which differs between modes. For example, in the case 

of upright standing, vestibulars “turn on” when the 
head is tilted. With varying conditions, the “sensory 

weight” of signals coming to the brain through differ-
ent channels changes, including the modeling of re-

duced gravity by placing the human body on a special 
bench parallel to the real “surface of the planet” (and 

at an angle to the conditional one). In this case, a new 
representation of verticality is formed independent of 

the otoliths of the vestibular apparatus; as is believed, 
this representation is based on support afference ac-

cording to the generalization of Kozlovskaya’s works 
[18]. When a human is on an inclined surface under 

“normal” conditions, sensory reweighting for balance 

control is thought to be based on the rate of deflection 
[19]. The occurrence of posture oscillations in healthy 

humans during quiet standing may be due to “vestibu-
lar noise” when the vestibular contribution to balance 

is higher [20]. 
As is also known, some sensory channels can exert 

a more powerful influence on the regulation of the 
function in humans; in this regard, researchers empha-

size the role of vision in upright posture regulation [6, 
21]. The phenomena of sensory reweighting and the 

peculiarities of sensitive organs functions demonstrate 
the adaptability of the living control system, sensitivi-

ty and receptivity to new conditions, and the multi-
channel nature. 

2. RESEARCH METHODS 

2.1. Artificial Sensory Component Formation  

In connection with the above range of problems, 
the idea of an artificial sensory feedback component 

includes the possibility of organizing intentional sen-

sory reweighting in the standardized (instruction-
defined) activity of a tested human using biological 

feedback technologies. In this paper, it is realized by 
adding the objectively measured information function, 

significant for regulation, into the selected natural sen-
sory channel. One way to realize the idea is creating 

an intentional dominance of vision in upright posture 
control (Fig. 1). Here, the addition of artificial sensory 

components can provide the purposeful, different from 
natural (conventional), sensory provision of the func-

tion, with the possibility of constructing and accurate-
ly quantifying the parameters of the artificial part. Ex-

ternal sensors––the force sensors of the stability plate 
where a human stands––register data on the position 

of the aerodynamic center on the support, and the test-
ed human receives visual program-generated infor-

mation on holding a given posture or deflections on 
the screen.  

In addition to the “functional system,” Bernstein’s 
ring [13] can be considered the conceptual precursor 

of an artificial sensory feedback component. This ring 
concept can be also supplemented by a conditional 

artificial sensory feedback component in an instruc-
tion-driven task. When an instruction is explicitly pre-

sented and executed, the goal of regulating the stabil-
ity and controllability of upright posture converges 

with the goal of executing the instruction. In this case, 
a human–machine system includes an artificial recep-

tor precisely linked to the properties of the useful ef-
fect (upright posture regulation) associated with in-

struction execution. When describing such a human–
machine control system in more general terms, we can 

distinguish classical basic stages: receiving infor-

mation about the control task, receiving information 
about the control result, analyzing the information re-

ceived, and executing the solution. 

 

2.2. The Real Dataset for Modeling 

Real data from an observation carried out in com-

pliance with modern ethical standards were used as 
benchmark data. The observation was supervised by 

Kubryak and described in detail in [6]. The dataset 
contained 25 young, almost healthy volunteers, name-

ly, 10 women and 15 men, with an average age of 23 
years. The original research procedure included the 

use of a visual biological feedback channel based on 
the support response to regulate the tested human’s 
upright posture (similar to the scheme in Fig. 1) in 

different modes (with the different sensitivity of the 
corresponding feedback, i.e., “depth,” “scale”) as well 

as control stages. The procedure was carried out in the 
following sequence. 

Step 1 (the “R1o” phase): upright standing, feet on 
the force plate marking, gazing in front of oneself at 

the black screen, and arms free along the body, for 1 
min. 

Step 2 (the “R1c” phase): upright standing, feet on 
the force plate markings, eyes closed, and arms free 

along the body, for 1 min. 
Step 3 (the “K = 15” phase): upright standing, feet 

on the force plate marking, gazing in front of oneself 
at the screen with the common aerodynamic center 

marker, and arms free along the body, in the biological 
feedback mode based on the support reaction, with the 

feedback depth characterized by a 15% increase of the 

normal conversion coefficient, for 1 min. 
Steps 4-7. Similar to Step 3, but with the conver-

sion coefficients sequentially increased by 15%, i.e., 
the phases encoded by “K = 30,” “K = 45,” “K = 60,” 

and “K = 75.” 
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Fig. 1. An example of analogy: Anokhin's fundamental diagram of a functional system (left) and a diagram with an artificial sensory feedback component included in an instruction-driven behavior 

(right). 
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Steps 8 and 9. Repetition of Phases 1 and 2, encod-

ed by “R2o” and “R2c.”  

In addition, the following conditions were met: 

 During the controlled phases, the circle marker 

was kept in the target zone (the center of the circular 

target).  

 A one-minute rest break was ensured between all 

phases.  

The procedure was implemented using certified 

equipment, namely, an ST-150 stabilometric system 

with STPL software (Russia; Registration Certificate 

of the Federal Service for Surveillance in Healthcare 

(Roszdravnadzor) no. FSR 2010/07900 dated March 

01, 2016; Pattern Approval Certificate of Measuring 

Instruments RU.C.39.004.A no. 41201). The result of 

the tested humans was estimated automatically in the 

STPL program in special units, which reflect the num-

ber of registered (discrete) holds of the common aero-

dynamic center marker in the target zone for one peri-

od relative to the maximum possible result. The da-

taset under analysis [6] included the numerical values 

of the result achieved by the tested humans in control-

ling their upright posture in the instruction-driven task 

of holding the common aerodynamic center marker, 

visible on the screen, in the target zone for each pos-

ture control mode. 
 

2.3. The Multi-Agent Control System and Model Selection 

for Numerical Experimentation 

When considering AI-based engineering solutions 

for interaction with humans (robots, bionic systems, 

medical devices, etc.), it is important to formulate the 

principles of interaction of an artificial intelligence 

agent (AIA) as a technical system complementing the 

capabilities of a natural intelligence agent (NIA, i.e., a 

human). In such situations, concepts like, e.g., hybrid 

augmented intelligence are often considered [22]. In 

technical systems, this issue concerns information pro-

cesses and, moreover, the specifics of physical and 

biological feedback (see subsection 1.3). In these con-

ditions, we should emphasize the intervention of intel-

ligent agents in the operation of human’s own control 

systems. Figure 2 illustrates the idea of a hybrid con-

trol system with several AIA influence vectors. The 

system state measurement by the NIA (the measuring 

unit M1) is the main control loop, which determines 

the internal feedback channel (FB1). In this case, AIA 

operates “outside” this loop but, nevertheless, has sev-

eral possibilities to control the system using its own 

observation channel (the measuring unit M2). First, in 

several scenarios, AIA can perform joint control of the 

system (the channel C1). Examples of such solutions 

are automated control systems for technical objects 

(autopilots, control correction systems, etc.). Second, 

AIA can influence the human feedback channel (FB1), 

supplementing or modifying it (the channel C2). A 

typical example is augmented reality systems that 

modify visual information available to a human. Final-

ly, AIA can form its own channel (C3) of the feedback 

loop (FB2), providing fundamentally different addi-

tional information.  

 
 

 

 
Fig. 2. Feedback channels in a hybrid two-agent system. 

 

An example when the channel C3 becomes espe-

cially important is a system with limited access to the 

channels C1 and C2. This situation may arise due to 

no access, in principle, to the channels (e.g., when 

analyzing a control system with physiological feed-

back, i.e., regulation based on the vestibular apparatus, 

various parameters of well-being, etc.) or an external 

restriction (e.g., direct intervention ban for the reasons 

of ethics, safety, individual preferences). In this paper, 

operation with the channel C3 is a key opportunity to 

intervene in NIA control processes. 

Note that, in general, the man–machine system can 

include many agents of each category (NIA and AIA). 

The artificial nature of AIA allows implementing addi-

tional mechanisms of controlled feedback via the 

feedback channels under consideration. The feedback 

structure and parameters can be optimized based on 

the collective efficiency of such multi-agent systems 

and their emergent properties [23]. In this case, the 

iterative change of systems enables adapting the AIA 

microparameters to improve efficiency at the system 

level (macro level) rather than within the local interac-

tion of a pair of agents. 

In the scenario of the basic observation [6], the 

task of the tested human is to hold a stable upright 

posture with an augmented (artificial) feedback com-

ponent. In this case, FB1 is realized using sensory in-

formation from proprioceptors and vestibulars, and 

FB2 is realized through visual information. A funda-

mental question arises: how should one determine the 

optimal FB2 structure under a considerable error in the 
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measurements of both M1 and M2? Accordingly, we 

attempted to assess the efficiency of this feedback 

channel by analyzing experimental observations and 

setting up a similar experiment in a reinforcement 

learning framework. By assumption, the measure-

ments are the agent’s observations 
1 1    and 

2 2    of the system state  via the FB1 and 

FB2 channels with some errors 
1  and 

2 , respective-

ly. The agent can choose actions based either on FB1 

alone (
1   ) or on the combination of observa-

tions (
1 2  ). Here,  denotes the agent’s 

action space. 

To develop a synthetic example of reinforcement 

learning, we used the classical CartPole model [24]: 

control a moving cart balancing a vertically mounted 

pole. This model was chosen for two reasons. First, it 

represents a benchmark example of reinforcement 

learning and optimal control problems, widely studied 

both in terms of system modeling and building physi-

cal systems (robots). Second, this balance holding 

model seems to be quite close to the human balance 

holding task [6], studied here as an example of a target 

feedback control problem. The system state  is de-

scribed by a quadruple  ,  ,  , xs x v v   with the fol-

lowing notation: x  is the horizontal coordinate of the 

cart; xv  is the horizontal velocity of the cart; θ  is the 

deflection angle of the pole from the vertical position; 

finally, v  is the angular velocity of the pole relative 

to the vertical position. The action space consists of 

two actions,  0, 1  , defining the application of 

force (pushing) to the cart to the left and right, respec-

tively. In the example under consideration, the FB1 

channel observation was constructed as a noisy meas-

urement of the system state:  1 10, σo s  . For 

the artificial FB2 component, the pole deflection angle 

θ  was specified by   2 2θ 0,σo a  , with the 

possibility to use the gain a . Here, the Gaussian nois-

es  with zero mean and the standard deviations 1  

and 2 , respectively, are added to the observed state. 

A two-layer fully connected neural network was 

implemented as the simplest reinforcement learning 

agent. The input layer of the network receives the con-

catenated observations 1 2o o  of dimension 5. The 

inner layer consists of 128 neurons with the ReLU 

activation function. The output layer is an action clas-

sifier of dimension 2 (according to the dimension of 

the space ) with the SoftMax activation function. 

The network was trained on synthetic data with varia-

tion of the noise levels of the FB1 and FB2 channels 

1(  and 2 ).  Reinforcement learning was performed 

using the Gymnasium library
1
, which implements the 

logic of the CartPole experiment in the same-name 

environment. The Adam optimizer from the Keras li-

brary
2
 was used for training (with a learning rate of 

0.01 and the categorical cross-entropy loss function). 

The training session took place within 300 epochs, 

each representing an experiment with the given pa-

rameters 
1  and 

2 . The Policy Gradient method was 

implemented for training with the gradient descent 

coefficient 410   and the reward discount coeffi-

cient 410  . The total (undiscounted) reward was 

selected to estimate the efficiency of the control prob-

lem solution. To manage the experiment, values from 

the set  -2 -3 -40, 10 ,  10 ,  10  were taken.  The logic of 

the benchmark experiment corresponded to situations 

where 1 2   . Scenarios with the presence and ab-

sence of the feedback component 2o  were used to 

simulate the optionality of the FB2 channel during 

agent training. (For the epochs with even numbers, 

0.)a   

The trained model was used in an assessment ex-

periment with checking the agent’s efficiency in a 

noisy environment with different gains a . For the 

checking procedure, the trained models were executed 

similarly in CartPole with varying:  

– the feedback noise coefficients 1  and 2  (dif-

ferent values from the training set); 

– the gain a  (in the range  0, 300  with a step of 

20). 

For robustness, each assessment experiment was 

repeated five times with the results averaged. As a re-

sult, we assessed the influence of both the feedback 

channel noise (coinciding with or differing from the 

noise during training) and the gain on control perfor-

mance.  

From an experiment interpretation viewpoint, the 

assessment process can be treated as placing the agent 

in artificially formed augmented feedback conditions 

differing from his/her common (trained) ones. For ex-

ample, in the experiment with the task of maintaining 

posture stability, an additional visual feedback com-

ponent is formed by shifting the aerodynamic center in 

the support, in addition to the full (basic) observation 

in the form of a sensory component that includes this 

component as well as many others. Not fully reproduc-

                                                           
1 Gymnasium Documentation. URL: https://gymnasium.farama. 

org/ (Accessed October 1, 2024.) 
2 Keras. URL: https://keras.io/ (Accessed October 1, 2024.) 

https://gymnasium.farama.org/
https://gymnasium.farama.org/
https://keras.io/
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ing the balance holding scenario, this analogy never-

theless allows comparing control performance changes 

due to varying the values of the additional feedback 

component characteristics. In the next section, we con-

sider the assessment results in comparison with the 

benchmark experiment. 

3. EXPERIMENTAL ASSESSMENTS 

3.1. Structuring the Benchmark Experiment Assessments 

According to the benchmark experiment focused 
on assessing the efficiency of visual feedback [6], a 
significant rise in its gain worsens control performance 
(in the case under consideration, the task of holding a 
stable upright posture by a human). An overshoot oc-
curs when increasing the sensitivity (“scale,” “depth”) 
of the feedback by about 20% or more. This approxi-
mately matches the properties of transients in linear 
automatic control systems. Compared to balance hold-
ing only by internal assessment with natural sensors, 
the presence of feedback outside of overshoot has of-
ten a positive influence on control performance. Note 
also that the effects manifested differently between 
humans. Probably, this can be explained by individual 
peculiarities: to reduce overshoot, it is necessary to 
decrease the speed of reaching a new state by the sys-
tem, which leads to a higher regulation time (and 
smaller values of posture control characteristics in a 
given period). 

According to a more detailed analysis, the reduc-
tion in control performance differs in intensity and 

time; see Fig. 3a, representing control performance in 
conditional units depending on the gain of the artificial 
visual feedback component for 25 tested humans). 
Within the study, the reduction curves were parame-

terized by the logistic curve     0/ 1
k X x

Y x L e
   . 

As was established (Fig. 3b), “smoothness” (corre-

sponding to the parameter k ) and “delay” (corre-

sponding to the parameter 
0X , interpreted as a half 

decrease in control performance) generally have an 
inversely proportional relationship. The scale parame-
ter L  in the experiment was equal to 107, which cor-
responds to the maximum control performance ob-
served in the dataset (according to the original meas-
urement methodology [6]). 

 

3.2. Implementation of Artificial Intelligence Agents 

The behavior of reinforcement learning agents in 

the CartPole task demonstrates clear reward degrada-

tion under feedback scaling. Figure 4 shows the cumu-

lative reward reduction as a function of the gain a  for 

different values of the parameter 2  and 3

1 10   

(Fig. 4a) and different values of 1  and 3

2 10   

(Fig. 4b). The resulting data can be interpreted as fol-

lows. When varying the noise level of the artificial 

feedback FB2 (see Fig. 4a), the earlier reduction in the 

cumulative reward is typical for the models with 

2 0   (i.e., those expecting the exact value of FB2 

without noise) and the models with 3

2 10   (i.e., 

2 1   ,  presumably  due  to  the  inconsistency  of  the  

  

 

(a) 
 

(b) 

 
Fig. 3. Regulation and overshoot in the assessed feedback influence of tested humans under experimental conditions: (a) reduced control performance for 

different tested humans and (b) the parameterization results of the control performance reduction curves for different tested humans. 
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(a) 

 
(b) 

 
Fig. 4. Assessed feedback influence in reinforcement learning: (a) when varying the noise level of the artificial feedback FB2 and (b) when varying the noise 

level of the basic feedback FB1.  

 
unamplified and amplified signals in FB1 and FB2, 

respectively). When varying the noise level of the 

basic feedback FB1 (see Fig. 4b), in contrast, these 

options are characterized by the latest performance 

reduction due to the possibility of the best recovery of 

the system state. 

At the same time, it seems interesting to note the 

observed relationship between the noise levels of the 

FB1 and FB2 signals, in terms of their connection with 

the effective feedback scaling influence. Figure 5 

shows the change of the FB2 scaling value that de-

creases control efficiency (cumulative reward) twofold  

 
 

 

 
Fig. 5. Feedback scaling of feedback with a twofold reward reduction. 

depending on the noise levels of the FB1 and FB2 sig-

nals. Presumably, certain “phase transitions” in terms 

of control performance in different states can be ob-

served in the behavior of the considered system. 

DISCUSSION AND CONCLUSIONS 

A striking example of multisensory integration for 

the human’s self-perception of the body or its part is 

“rubber hand” experiments: under illusion conditions, 

the tested human perceives a dummy as his/her hand 

[25]. According to the authors, this illusion can also be 

compared with the ideas about sensory reweighting. 

As is believed, the probability of the rubber hand illu-

sion increases with proprioceptive noise (the signal 

from muscles, ligaments, etc.) and fits well with the 

Bayesian model of causality. This noise can be de-

scribed by a change in the a priori probability of activ-

ity for the central part of the visual and proprioceptive 

analyzer [26]. In other words, under certain condi-

tions, the brain’s analysis of incoming information 

treats as “its own” some additional information that 

can only be passed off as “its own” (in the case of an 

illusion) or understood as “external” but overcoming 

the conditional boundary of “its own” (in the case of 

the artificial sensory component paradigm proposed in 

this paper). Note that increasing the share of uncertain-

ty (deficit of suitable signaling) of sensory support 

“switches” the analysis to the use of additional infor-

mation. This allows organizing “rubber hand illusion” 

experiments as well as other experiments with artifi-
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cial sensory support components of a certain activity 

and, moreover, expanding the ideas of the boundaries 

and interaction of “living” and “inanimate” in man–
machine systems and the adaptability of the human 

brain. 

According to the individual peculiarities of posture 

control based on the benchmark data [6], the behavior 

of a man–machine system (one of the variants) is simi-

lar to linear automatic control systems. In particular, 

overshoot and changes in the system performance are 

observed. Similar effects have been discovered both in 

numerical “artificial” experiments and in observations 

with human participation. As we believe, this fact 

points to the conceptual similarity of the observed ef-

fects. An important aspect of this paper is the quantifi-

able characteristics of artificial components; in the 

future, it may yield a more accurate description of the 

states of a man–machine system and its main link 

(human). The second important conclusion is the pos-

sibility of incorporating artificial intelligence agents in 

the control system of man-machine systems (see the 

diagram in Fig. 3), with the possibility of optimizing 

the functional structure and parameters of the feedback 

channels to improve the efficiency of the multi-agent 

system (in the general case) at the macro level. Short-

ly, this possibility may be valuable, e.g., in medical 

rehabilitation via replacing or supporting the deficient 

functions of the patient by introducing adaptive com-

bined feedback elements. 
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