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Abstract. This paper considers a scalar plant with current parametric uncertainty in which only 

the input and output are measured. For such plants, an adaptive control design approach based on 

simplified adaptability conditions is presented. The approach refers to indirect self-tuning control 

using the current parametric identification algorithm and an implicit reference model. The tuned 

model structure in the identification algorithm is selected as simple as possible, corresponding to 

the main motion of the controlled plant and an elementary dynamic link or links. As a result, the 

current estimates in this model approximate the plant’s motion, which is confirmed by the con-

vergence criterion of the identification residual. Also, it is required to satisfy definite require-

ments for the current parameter estimates. The estimates, even if imprecise, are used to construct 

a control law ensuring given properties of the closed-loop control system. This postulate is inter-

preted as a refinement of the well-known certainty equivalence principle except for the asymptot-

ically accurate parameter estimation requirement to achieve adaptive properties of a self-tuning 

control system in output-feedback control problems. The main relationships are given for an ex-

ample when the plant’s dominant dynamics are close to an oscillatory process without an addi-

tional time delay. The identification algorithm is applied in the form of a recurrent least-squares 

method with a forgetting factor and some modifications. Two illustrative examples of adaptive 

control system design are provided: control of the angular motion of an overhead crane and coun-

teraction to the vibrations of an elastic three-mass drive. The approach under consideration is 

called the identification–approximation one. The possibilities and ways of its further improve-

ment are outlined. 
 

Keywords: adaptive control with self-tuning, current parametric uncertainty, current parametric identifica-

tion algorithm, certainty equivalence principle, convergence of parameter estimates.  
 

 

 

INTRODUCTION 

Adaptive control systems have been developed by 

the scientific community for over 70 years, beginning 

in the 1950s. Outstanding results have been obtained 

in the substantiation of theoretical postulates and ap-

plications of adaptive control methods. These include 

self-tuning adaptive control systems, control systems 

with a reference model, predictive control with self-

tuning, sliding mode control, neurocontrollers, control 

with fuzzy logic, etc. However, many researchers ad-

mit that adaptive control methods under current uncer-

tainty (without a predetermined program or parameter 

setting, even if automatic) are modestly used in prac-

tice [1–5].  

At the same time, practical tasks require the oppo-

site, due to the wide development of automation tools 

in modern applications of various fields of technology 

and the need for further development. As we believe, 

one reason is the complexity and, sometimes, the prac-

tical unattainability of the formulated adaptability 

conditions of a closed-loop control system. For exam-

ple, consider self-tuning systems, i.e., those based on 

the identification approach (systems with a tunable 

model); the stumbling block here is the so-called cer-

tainty equivalence principle, which requires asymptot-

ically accurate estimates of unknown parameters from 

the identifier (e.g., see [6]). In practical conditions, 

this is extremely difficult to achieve due to a mismatch 

between the structure of the model being tuned and the 

plant, uncontrolled disturbances, and noise. In addi-
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tion, a persistently exciting input signal is required, 

etc. 

Much research into adaptive control systems is de-

voted to systems based on the MIT rule and stability 

theory: the use of Lyapunov functions, Popov’s hyper-

stability criterion, and other methods; for example, see 

[7, 8]. However, such approaches often yield tuning 

algorithms with constant coefficients that are not ob-

vious to select for particular problems and the discrete 

implementation, the algorithms have weak identifying 

properties, and so on. No doubt, multiple modifica-

tions related to increasing the robustness of adaptive 

control, namely, introduction of estimate-feedback 

loops in the adaptation algorithm, assignment of Lya-

punov barrier functions, etc. (e.g., see [5]) contribute 

to practical implementability but do not completely 

settle this issue. The latter conclusion follows from the 

considerations above.  

Moreover, many works of the approach with indi-

rect control (when first the parameters of a plant are 

estimated by an algorithm derived from a Lyapunov 

function, and then a control law is designed based on 

them) also require the persistent excitation of the re-

gressor and asymptotically accurate estimates [9, p. 

296, 10–12]. 

This paper is an attempt to simplify the adaptive 

control system design scheme under current paramet-

ric uncertainty using self-tuning in the form of a para-

metric identification algorithm and simplified adapta-

bility conditions. In particular, it refines the certainty 

equivalence principle by reducing the requirements for 

the identifier (eliminating the requirements for asymp-

totically accurate parameter estimates, persistent exci-

tation, etc.) in the problems of output-feedback con-

trol. This is demonstrated on an example of a scalar 

plant in which only the input and output are measured. 

This study is a logical continuation of the earlier pub-

lications [13, 14] and others. 

1. PROBLEM STATEMENT 

Consider a mathematical model of a scalar plant in 

the input–output form: 

 1 0 0

2

, , , ( )

( , ),

v f v u t v t v

y f v t

  




                  (1) 

where v  is the finite-dimension state vector with an 

initial value v0; u is a scalar control action (the input); 

y is the scalar output; t denotes the current time with 

an initial instant t0. In engineering applications, the 

structures of the dependencies 1( , , )f v u t  and 2 ( , )f v t  

are usually known whereas their parameters at the cur-

rent time are unknown. These structures and general 

data about the plant can often be used to obtain a priori 

information about the qualitative relationship of some 

parameters and estimate their approximate values. 

Assume that in principle, the plant (1) allows 

achieving a given control objective, which particularly 

means its controllability. In addition, it has a low-

frequency operating range with a known upper limit 

(denoted by Ω), which matches most engineering ap-

plications. Further analysis will be restricted to the 

class of minimum-phase (input-stable) plants. 

Let the dynamics of the plant (1) be close to those 

of some elementary link from the theory of automatic 

control or the simplest set of such links, in the range of 

used controls on a limited time interval and in the op-

erating frequency range. This paper does not consider 

delayed dynamics (i.e., the presence of a transport de-

lay link) since, in this case, the approach discussed 

below requires additional solutions. 

As an example, the presentation below concerns 

the case when the input–output relationship of the 

plant (1) is close to oscillatory dynamics (an oscillato-

ry link). The criterion for no time delays is a small 

phase delay of the plant’s output under low frequen-

cies of the input. This behavior is characteristic of 

some mechanical systems. For this example, the plant 

(1) can be approximated by a quasi-stationary link of 

the second order: 

 2
1 0 1 0( ) ( ) ( ) ( ) ( ) ( )p a t p a t y t b t p b t u t     

,  (2) 

where p d dt  indicates the differentiation operator; 

1 0 1( ), ( ), ( ),a t a t b t  and 0 ( )b t  are unknown time-

varying parameters; the domains of 1( )b t  and  0 ( )b t  

are approximately known in the sense specified below; 

due to the minimum phase condition of the plant (1), 

we have 1 0sign ( ) sign ( ).b b  

The problem is to design a control law for this 

plant so that the closed-loop control system dynamics 

will be close to given dynamics assigned by an implic-

it reference model. 

2. CONTROL ALGORITHM 

To solve the problem, we introduce the operator 

1( ) 1d p d p  , where 1 0d   and 1

1d   . Dividing 

equation (2) by the polynomial ( )d p  yields 

0 1 1 2 2 3 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),z t t z t t z t t z t z t        (3) 

where 0 1 2 3( ), ( ), ( ), ( )z t z t z t z t , and 4 ( )z t  are new vari-

ables of time, the first three being given by 
2

0 ( ) ( )
( )

p
z t y t

d p
 , 1( ) ( )

( )

p
z t y t

d p
 , and 2 ( )z t
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1
( )

( )
y t

d p
 ; 1 1( ) ( )t a t    and 2 0( ) ( )t a t   ; final-

ly, the variable 4 ( )z t  completes equality (3) to the cor-

rect form and consists of the sum of parts proportional 

to the rates of change of the parameters of equation 

(2). Due to the quasi-stationarity assumption, this vari-

able has a small contribution in the main dynamic 

modes compared to the rest of the terms on the right-

hand side of equation (3). We will study two cases of 

the terms 3 ( )t  and 3( )z t , arising from a priori infor-

mation about the parameters 1( )b t  and 0 ( )b t :  

 Case 1. The contribution of the term 1( )b t p  is 

significantly small compared to 0 ( )b t ; then it is possi-

ble to suppose that 3 0( ) ( )t b t   and, consequently, 

3 1

1
( ) ( ) ( )

( ) ( )

p
z t t u t

d p d p

 
   
 

, where 
1

1

0

( )
( ) ;

( )

b t
t

b t
   

let 10 ( ) 0.1t   . 

 Case 2 holds if case 1 is false: 3 1( ) ( )t b t   and 

3 2

1
( ) ( ) ( )

( ) ( )

p
z t t u t

d p d p

 
   
 

, where 
0

2

1

( )
( )

( )

b t
t

b t
  ; 

let 20 ( ) 10t   . 

The signal 0 ( )z t  is technically nonimplementable, 

so we replace it with the approximate variable 

 0 0

2

1
( ) ( )

1
z t z t

d p



, where 2 10 d d  . Then the 

plant (3) is modeled by 

т
0 4( ) ( ) ( ) ( )z t t t z t θ z ,                   (4) 

where 0 ( )z t  is the plant’s response; 

 
т

1 2 3( ) ( ), ( ), ( )t t t t   θ  is the vector of unknown 

parameters;  
т

1 2 3( ) ( ), ( ), ( )t z t z t z tz  is the vector 

of regressors; and the superscript “T” means trans-

pose. 

We assign an implicit reference model in the form 

of the second-order link 

m 1 2 giv

0 0 0 0

,

( ) ( ), ( ) ( ),

m m m
m m

m m

y a y a y b u

y t y t y t y t

  

 
                (5) 

where giv giv ( )u u t  and ( )m my y t  are the input and 

output of the reference model, respectively; 1 0, ,m ma a  

and  mb  are constant parameters assigned by 

1 2m
m ma     , 2

0
m

ma   , and 2m
m mb k  , where 

m  is the relative attenuation coefficient, m  is the 

natural frequency of oscillations of the reference mod-

el, and mk  is the gain of the reference model. 

Dividing equation (5) by the polynomial ( )d p  

yields 

0 1 1 2 2 3

0 0 0 0

( ) ( ) ( ) ( ),

( ) ( ), ( ) ( ),

m m m m m m m

m m

z t a z t a z t b z t

y t y t y t y t

  

 
 

        (6) 

where 
2

0 ( ) ( )
( )

m
m

p
z t y t

d p
 , 1 ( ) ( )

( )

m
m

p
z t y t

d p
 , 

2

1
( ) ( )

( )

m
mz t y t

d p
 , and 3 giv

1
( ) ( )

( )

mz t u t
d p

 . 

In accordance with the assigned reference model, 

we introduce the desired plant’s response (4): 

 des
0 0 1 2 3

1 1 2 2 3

( ) ( ), ( ), ( )

( ) ( ) ( ).

m m

m m m m

z t z z t z t z t

a z t a z t b z t



    

               (7) 

Indeed, des
0 0( ) ( )z t z t  as des

0 0( ) ( )z t z t , and the 

expression (7) directly implies the behavior of the 

plant (3) (and hence, that of (4)) tends to the dynamics 

(6). Therefore, 1 2 giv( ) ( ) ( ) ( )m m my t a y t a y t b u t    

and, consequently, the output (1) tends to the desired 

one of the reference model (5). 

To find the corresponding control action, it is nec-

essary to equate the right-hand sides of the relations 

(4) and (7). As a result, we obtain a control law, called 

accurate, based on complete a priori information about 

the parameters (4) and the variable 4 ( )z t : 

 

 

 

 

* 1
1 1 1 1

1

2 2 2 3 4 0

* 1
2 1 1 1

2

2 2 2 3 4 1

1
( ) ( ) ( )

( ) 1

( ) ( ) ( ) ( ) ( ),

1
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ),

m

m m m

m

m m m

d p
u t a t z t

t p

a t z t b z t z t b t

d p
u t a t z t

p t

a t z t b z t z t b t


  
 

    



  
 

    
  

   (8) 

where *
1u  and *

2u  denote the accurate control laws in 

the first and second cases, respectively. 

Since the parameters of the plant (4) are unknown, 

we will determine them using a current parametric 

identification algorithm. The variable 4 ( )z t  will be 

neglected due to its small value and the approximation 

properties of the identification algorithm. Under the 

variable parameters of the plant, the recurrent least-

squares method with the forgetting factor is the most 

effective and frequently used [3]. Its discrete imple-

mentation in continuous time is described by 



 

 
 

 

 
 

CONTROL OF TECHNICAL SYSTEMS AND INDUSTRIAL PROCESSES 
 

35 CONTROL SCIENCES  No. 6 ● 2024 

 

 

1

т
0 1

1
т

1 1

т
1

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) , 1, 1,

i i i i

i i i i

i i i i i i

i i i i

t t t t

t z t t t

t t t t t t

t t t t

t







 



   

  



  



  



    

θ θ K

θ z

K P z z P z

P E K z P

P E

    (9) 

where the cap symbol means the estimate of the corre-

sponding parameter;  ( 1),it t i i   is the current 

discrete time with a sampling step t , 1, 2, 3,...i  ; 

( )it  is the identification residual; ( )itK  and ( )itP  

are a vector and a square matrix, respectively, of di-

mensions corresponding to the vectors θ  and z ;   is 

a large positive number; E  is an identity matrix of 

appropriate dimensions;   is the forgetting factor that 

exponentially excludes past information from the algo-

rithm to track the variable parameters of the plant with 

a past information forgetting time constant equal to 

 1t   [15]. 

To generate the vector ( )itz  in the algorithm (9) by 

the dependencies (3), we need information about the 

value of  1 2( ) ( ), ( )i i it t t    . Assume that its esti-

mate ( )it  is available. (Some ways to achieve this 

will be discussed below.) 

For the above cases, the discrete implementation of 

the control law will be based on (8) with the parameter 

estimates delivered by the algorithm (9) instead of 

their exact values: 

 

 

 

 

1 1 1

1

0 1

1
1 1

1

1 1 1

2

1 2

2 1

2

( ) ( )
( )

( ) ( )

( )
( ),

( )

( ) ( )
( )

( ) 1 ( )

1
( ),

1 ( )

i i
i

i i

i
i

i

i i

i

i i

i

i

d t t d t
u t

b t t t

t
u t

t t

d t t d t
u t

b t t t

u t
t t









    


  



  

    


  


  

             (10) 

where    m m
1 1 1 2 2 2( ) ( ) ( ) ( ) ( )i i i i it a t z t a t z t      

m m
3 ( ).ib z t  

To prevent high-frequency components of the 

tuned parameter estimates with the discrete identifica-

tion algorithm from entering the control signal, it is 

recommended to apply a low-pass filter with a cutoff 

frequency of at least Ω to this signal.  

The control laws (10) with the identification algo-

rithm (9) are the solution of the problem. Let us con-

sider its main properties. 

The peculiarity of identification algorithms is as 

follows. In the case of open-loop identification (when 

the algorithm (9) operates autonomously without 

forming the control law (10)), provided that (a) the 

regressors (4) are linearly independent on a sliding 

interval and full enough to describe (2), (b) the value 

of the parameter   is chosen in accordance with the 

rate of change of the parameters, and (c) the sampling 

step t  is sufficiently small, the identification residual 

will tend to zero from the first steps of the algorithm 

and subsequently stay close to it. In addition, the pa-

rameter estimates converge very slowly to their true 

values. Under linear dependent regressors and/or the 

presence of noise, the estimates even diverge, which is 

a well-known fact. 

Within the identification approach (to self-tuning 

systems), one often uses the certainty equivalence 

principle: the structure of the control law is based on 

calculating complete a priori information about un-

known parameters, and the latter are replaced by their 

current estimates during the control process, assuming 

that they approach the true values over time. This al-

lows achieving the control objective, which directly 

requires a persistently exciting (“rich”) input signal. 

Otherwise, the stability of the closed loop system is 

not guaranteed [1–6]. 

At the same time, many researchers note a 

“strange” property of the closed-loop control system: 

sometimes, the generated control law exactly achieves 

the objective with the estimates being far from the true 

values (e.g., see [2, 3, 16–18], etc.). This phenomenon 

has not been clearly explained so far. 

In the author’s opinion, a possible recipe is to con-

sider not the parameter estimates and their conver-

gence to the true values but the identification residual 

and its convergence to zero [13]. Indeed, the plant (4) 

can be described via the current estimates in continu-

ous form: 

т
0 ( ) ( ) ( ) ( ).z t t t t  θ z                    (11) 

In this expression, the term т( ) ( )t tθ z  is a tunable 

model of the plant response built on the current pa-

rameter estimates. If ( ) 0,t   the parameter estimates 

“build” this model, approximating the current trajecto-

ry of the plant (4) and, hence, that of the output of the 

original plant (1). Consequently, the above conclu-

sions are also valid for the model of the plant (11) 

built on the current (even inaccurate) estimates. How-

ever, there are additional requirements, which are de-
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termined (in the problem under study) by the conver-

gence conditions of the identification residual in the 

closed loop of the control system [13, 14]. They are 

much simpler than the requirement of asymptotically 

exact estimates and are basically reduced to definite 

parameter estimation quality during control. As a re-

sult, the need for a persistently exciting input signal, 

etc. is eliminated. 

These requirements were called simplified and de-

fined as sufficient and, at the same time, necessary for 

the quality of the estimates delivered by the identifier 

[13]. For the scalar control problem under considera-

tion, the requirements apply only to the estimates 1b  

and 0b  [14]: 

   

   

   

1 0

1 1

1 1 1

0 0

0 0 0

sign sign

sign sign

2, ( ) const

sign sign

2, ( ) const,

i

i

b b

b b

b b b t

b b

b b b t

 







  






   


       (12) 

where т( ) ( ) ( ) ( ), 0 ( ) 1i i i i it t t t t    z P z . The first 

condition in (12) is necessary to ensure the stability of 

the designed law (10), which follows from the law (8) 

when replacing the parameters with their estimates; 

the others are necessary for the stability of the identifi-

cation residual in the closed loop with the control law 

(10).  

It can be shown that conditions (12) settle the “ex-

plosive” behavior problem of the closed loop system 

described in [19] and their violation causes high-

frequency oscillations in the closed-loop control sys-

tem. The upper bounds for the estimates 1b  and 0b  

exist in the form of the criterion of the resulting con-

trol quality: higher absolute values of these estimates 

lead to longer transients in the closed loop system. The 

requirements (12) concern only the parameters at the 

control action; if the ranges of 1b  and 0b  are known, 

they become simple enough to be implemented in 

practice. 

Under the convergent identification residual, the 

above requirements for the parameter estimates of the 

controlled plant can be interpreted as a refinement of 

the certainty equivalence principle of self-tuning con-

trol systems in tracking problems (when the output of 

a controlled plant should follow a given trajectory, a 

reference system, etc.). 

Based on the requirements (12), in order to simpli-

fy the implementation of the control algorithm, we 

assign constant estimates 1 0,b b , and   while observ-

ing (12). (Therefore, these estimates are excluded from 

the current identification procedure.) Then in the iden-

tification algorithm (9), the plant response and the vec-

tors of estimated parameters and regressors are, re-

spectively, 

0 3 3( ) ( )z t z t  ,  
т

1 2( ) ( ), ( )t t t  θ ,   

 
т

1 2( ) ( ), ( )t z t z tz .                     (13) 

The solution proposed may increase the rate of 

change of the exact resulting values of the parameters 

1( )t  and 2 ( )t  in formula (2) and, hence, enlarge the 

spread of 4 ( ).z t  A recipe is to reduce the value of the 

parameter   in the identification algorithm (decrease 

the forgetting time constant). According to studies, the 

best solution is to assign the forgetting factor to the 

variables dependent on the identification residual. For 

this purpose, we employ the approach from [20] with a 

slight modification: 

2
lf( ) sat 1 ( )i it k t

     
,                   (14) 

where  sat   is the saturation function applied to limit 

the value of ( )it , i.e., min max( )it    with as-

signed minimum min  and maximum max , 

min max0 1   ; 2
lf ( )it  is the squared low-

frequency component of the current value of the iden-

tification residual, obtained at a low-pass filter with a 

cutoff frequency not smaller than  ; finally, kε is the 

coefficient chosen depending on the average spread of 

the squared low-frequency component of the identifi-

cation residual. 

As is known, when using small values of the for-

getting factor, the norm of the matrix ( )itP  of the al-

gorithm (9) may strongly increase, which reduces the 

stability of the delivered estimates and the generated 

control. The same effect occurs when there is a linear 

dependence in the vector of regressors, e.g., on a de-

generate motion. To exclude this, we use a modifica-

tion of the algorithm (9) described in [21]. It consists 

in regularizing the matrix 1( )it


P , i.e., limiting the 

norm of ( )itP  by checking whether its diagonal ele-

ments exceed an assigned number maxq  and perform-

ing its subsequent correction by the dependence (im-

mediately after computing this matrix in the original 

algorithm): 

cor ( ) ( ) ( ) ( )i i i it t t t  P P ,  
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where cor ( )itP  is the corrected value of the matrix 

( )itP ; ( )it  is a diagonal matrix of appropriate di-

mensions with unit elements on the diagonal, except 

the elements (with conventionally denoted numbers j) 

corresponding to the inequality maxj   ; j  is the 

diagonal element of the original matrix ( )itP  with the 

number j ; max  is the limit assigned for the diagonal 

elements; the value of the jth element of the matrix 

( )it  equals max j  . 

An additional way to improve the quality of control 

(in some cases, unnecessary) in condition (13) is to 

write the control laws (10) considering the low-

frequency component of the identification residual as 

part of the variable ( ):it  

 

 

1 1 1

2 2 2 3 lf

( ) ( ) ( )

( ) ( ) ( ) ( ),

m
i i i

m m m
i i i i

t a t z t

a t z t b z t t

  

    

     (15) 

where lf ( )it  is the low-frequency component of the 

current value of the identification residual (different 

from the one in (14)), obtained at a low-pass filter with 

a cutoff frequency smaller than Ω. This solution im-

proves the adequacy of the original plant’s model with 

the desired estimates 1( )it  and 2 ( )it  under the ac-

cepted conditions. 

We propose to call this adaptive control design ap-

proach for the plant (1) based on simplified adaptabil-

ity conditions the identification method of adaptive 

control with approximation or identification–

approximation control. 

 

3. APPLICATION TO OVERHEAD CRANE CONTROL 

Consider the control of an overhead crane to move 

a cargo in the horizontal plane along one axis. The 

control action is the force applied to the crane trolley 

(Fig. 1). 

When neglecting the cable mass, angular motion 

friction, wind disturbances, and dry friction, the cargo 

dynamics are described by the system of nonlinear 

differential equations [22] 

   

   

1 2 2

2
2 con fri

2
2 2 2

cos

sin

cos sin ,

m m x m l

m l f f

m l x m l J m gl

    



   


      

   (16) 

where x is the linear movement of the crane trolley;   

is the deviation angle of the cargo suspension from the 

vertical axis; conf  is the control force applied to the 

 

 

 
Fig. 1. The kinematic diagram of the overhead crane with a cargo 

along the horizontal axis. 

 
trolley; fri xf k x  is the friction force counteracting 

trolley movements; xk  is the viscous friction coeffi-

cient; 1m  and 2m  are the masses of the crane trolley 

and transported cargo, respectively; l  is the suspen-

sion length; J  is the cargo’s central axial moment of 

inertia; finally, g  is the free fall acceleration. 

Consider the control problem with the signal conf  

as the controlled plant’s input and the velocity of the 

deviation angle ( )  as the output. Elementary 

physics implies an oscillatory relationship between the 

input and output of the plant (16). Moreover, this in-

put–output combination is used since, according to the 

preliminary studies, they have a minimum phase delay 

at low frequencies. (This issue has been discussed 

above.) 

Let the crane have the parameters 1 450 kgm  , 

2 1000 kgm  , 21000 kg mJ    (which corresponds to 

the cargo’s radius of inertia equal to 1 m), 7 ml  , 

and 0 3 N s/mxk .  . Due to the smallness of the angle 

  and its velocity, the transfer function from the input 

conf  to the output   can be obtained by linearizing 

equations (16): 

2
2

3 2
con 2 1 0

4 2

3 4 2 4

( )

( )

2.98 10
,

6.38 10 4.24 8.77 10

b pt

f t p a p a p a

p

p p p



 




  

 


    

    (17) 

where 2 2b m l   ,  2
2 2 xa J m l k   , 

 1 1 2 2 lga m m m   , 0 2 xa m lk g  , and 

  2
1 2 1 2m m J m m l    . From this point onwards, all  
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transfer functions are written through the differentia-

tion operator; by assumption, the initial values of the 

input and output of the corresponding link and their 

derivatives are zero. 

The natural frequency of oscillation of this me-

chanical system is 2.1 rad/s with the variations of the 

crane parameters 
15 s   specified below. Let the 

output variable ω be directly measured. 

The reference model (5) has the following descrip-

tion: m my  , where m  corresponds to the angular 

velocity ω; givu  is a given value of the angular veloci-

ty of the suspension (denoted by giv ); m 1  , 

1
m 3 s ,   and m 1k  . 

Based on the value of Ω, we choose 1 0.2 sd   and 

2 0.1sd  . Hence,  

  

2

0 ( ) ( )
0.2 1 0.1 1

p
z t t

p p
 

 
, 

 1( ) 0.2 1 ( )z t p p t     ,  

 2 ( ) 1 0.2 1 ( ),z t p t      

 m
3 giv( ) 1 0.2 1 ( )z t p t     . 

Note that formula (2) does not structurally coincide 

with the expression (17), so on the current trajectory 

the transfer function (17) can be approximated only 

using ( )tθ θ . In other words, model (2), (3) is time-

varying (nonstationary). 

For control design, we need a priori information 

about the values of the parameters 1b  and 0b  in equa-

tion (2) approximating the plant (16), (17). Due to 

formula (17), their sign is negative. More accurate in-

formation can be obtained in different ways. The first 

method is to estimate preliminarily all parameters of 

(2) (calculate their approximate values). The second 

one is to get only the estimates 1b  and 0b  based on 

identification outside the operating frequency range of 

the plant, as was suggested in the patent [23]. 

The third method, more simple, consists in the fol-

lowing. As is known, too small absolute values of 1b  

and 0b  cause high-frequency unstable motions in the 

closed-loop control system by conditions (12). There-

fore, it is possible to select their values experimentally 

on the control system model. We apply this method 

here, taking the second case of model (3), 

 
14

1 3 10 m kgb
    , and 

1
2 5 s  . As a result, 

   3 con( ) 5 0.2 1 ( )z t p p f t      . 

The algorithm (9), (13), (14) with the parameters

0.01st  , max 10    , min 0.01  , max 0.99  , 

and 
210 sk   was used for identification. (The dis-

crete control law 2 ( )iu t  (10), (15) was implemented 

with the same sampling step.) The low-frequency 

components of the identification residual were 

 lf ( ) 1 0.1 1 ( )t p t       and  lf ( ) 1 1 ( )t p t      . 

The signal conf  generated by the system was filtered 

on the link  1 0.1 1p   before supplying to the con-

trolled plant. 

Numerical simulations were carried out in 

Matlab/Simulink/Multibody for the controlled plant’s 

model corresponding to the dependencies (16) with the 

above parameter values. 

Figure 2 shows the simulation results for these pa-

rameter values of the control algorithm with the as-

signed angular velocity reference curve (Fig. 2c). Ob-

viously, the current angular velocity ( ) almost fol-

lows the reference one (ωm), and the angular motion is 

stable. Of course, in practice, such a system requires 

an additional control loop on trolley movements; this 

issue goes beyond the scope of the problem under con-

sideration. 

This control law yielded almost the same-quality 

behavior of the signals ω and  under other values of 

the crane parameters in large ranges: load mass from 

50 to 10 000 kg, suspension length from 2 to 10 m, 

and the cargo’s radius of inertia from 0.5 to 2 m (pro-

portionally to the cargo mass). Only the control ac-

tions changed, i.e., we can speak about adaptive con-

trol under the current parametric uncertainty. 

In addition, the robust properties of the control al-

gorithm were assessed under real factors affecting the 

control system. In particular, the output of the plant 

(16) was measured with centered Gaussian noise, and 

a delay was introduced into the control action. Accord-

ing to the simulation results, the noise with a standard 

deviation up to 0.001 rad/s and a delay up to 0.005 s 

have almost no effect on control quality. The hypo-

thetical case of large amplitudes of the angle  , up to 

30   and more, with nonlinear effects was also investi-

gated. In this case, the closed-loop system demonstrat-

ed a lower reference tracking quality, but the angular 

motion remained stable. 
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(a) 

 

 
(b) 

 

 

(c) 

 

 
(d) 

 

Fig. 2. The closed-loop control system of the overhead crane: (a) control force, (b) the deviation angle of cargo suspension, (c) given angular velocity giv ,  

reference angular velocity м ,  and the velocity of deviation angle   and (d) the distance traveled by the crane trolley. 

 

 

4. APPLICATION TO THREE-MASS ELASTIC PLANT 

CONTROL 

Consider the adaptive control of an elastic three-

mass plant, a model of many fast-response drives of 

mechatronic systems. Its kinematic diagram is pre-

sented in Fig. 3 [24].  

 
 

 

 
Fig. 3. Kinematic diagram of a three-mass elastic actuator. 

 

This figure has the following notations: 0 1, ,m m , 

and 2m  are the reduced masses of drive bodies, me-

chanical motion transmission, and actuator, respective-

ly; 0 1, ,x x , and 2x  are the movements of these bodies 

relative to their initial position; 1c  and 2c  are the re-

duced stiffness coefficients of the elastic elements;

0 1, ,q q  and 2q  are the viscous friction coefficients; 

finally, conf  is the control force of the drive. The dia-

gram contains two elastic elements (see Fig. 3) with 

the natural frequencies 1 1 1c m   and 

2 2 2 .c m   

This system is described by the differential equa-

tions 

0 0 0 0 1 0 1 1 0 1 con

1 1 1 1 0 1 1 0

2 1 2 2 1 2

2 2 2 2 1 2 2 1

( ) ( )

( ) ( )

( ) ( ) 0

( ) ( ) 0.

m x q x q x x c x x f

m x q x x c x x

q x x c x x

m x q x x c x x

     

    


    

     

 (18) 

Let the first elastic element be at least as fast as the 

second, i.e., 1 2  : 0 10 kgm  , 1 1kgm  , 

2 0.5 kgm  , 
1

0 3 N cmq   , 
1

1 2 0.5 N cmq q    , 

1
1 10000 N mc   , and 

1
2 30 N mc   . These param-

eters correspond to 
1

1 100 s   and 
1

2 7.7 s  . As-
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sume that only the second elastic element is subject to 

parameter variations, so 
1100 s  . 

In this system, we choose the variable conf  as the 

input and the variable 2 0x x x   as the output, which 

characterizes the elastic properties of the system. The 

relationship between these variables is oscillatory, and 

the phase delay is negligible at low frequencies. The 

transfer function from the input to the output has the 

form 

 

 

3 2

3 2 1

5 4 3 2

con 4 3 2 1 0

3 2

5 4 3 2 3 4

( )

( )

0 1 0 2 1009
,

2 35 11091 14561 693 10 18 10

b p b p b px t

f t p a p a p a p a p a

. p . p p

p . p p p p

  


    

  


      

 

where 3 1 2b m m  ,  2 1 2 2 1 2b q m q m m       ,  

 1 1 2 2 1 2 2b с m с m с m    , 





4 0 1 2 1 0 2

2 0 1 1 1 2 2 0 2 ,

a q m m q m m

q m m q m m q m m

 

   
  

 

 

   

0 1 2 0 2 1 2

3 1 2 0 1 2

1 2 0 1 2 0 1 2

,

q q m q q m m

a q q m m m

c m m m c m m m

  
 
     
 
 
     

   

 

  

0 1 2 0 1 2 2 1 2 2

2

1 2 2 1 0 1 2

q q q q с m с m с m
a

q с q с m m m

   
  
     

,  

   1 0 1 2 2 1 1 2 0 1 2a q q c q c c c m m m        ,  

0 0 1 2a q c c  , and 0 1 2m m m  . 

The reference model (5) is described by m my x , 

where mx  corresponds to 2 0x x x  ; givu  is a given 

value of x: giv 0x  ; m 1  , 
1

m 10 s  , and m 1k  . 

Based on the value of Ω, we choose 1 0 01sd .  

and 2 0 001sd . . Hence, 0 ( )z t

  

2

( )
0.01 1 0 001 1

p
x t

p . p


 
, 1( ) ( )

0.01 1

p
z t x t

p



, 

2

1
( ) ( )

0.01 1
z t x t

p



, and 

m
3 ( ) 0.z t   We calculate the 

estimates 1b  and 0b  by the same method as in Section 

3, taking the first case of model (3), 
1

0 0.4 kgb   , 

and 1 1d  . Therefore, 3 con( ) ( )z t f t . 

The identification algorithm was applied with the 

same parameters as in Section 3, except 0.001st   

and 
20.5 mk  ; the low-frequency components of the 

identification residual were set equal to lf ( )t  

 1 0.1 1 ( )p t      and  lf ( ) 1 0.05 1 ( ).t p t       

The signal conf  was filtered on an aperiodic link with 

a time constant of 0.01s. 

Figure 4 shows the initial behavior of the plant 

(18) under the control signal 
d

con conf f , where 
d

conf  is 

a disturbance. Next, Fig. 5 presents the simulation re-

sults for the closed-loop control system with 
d t

con con conf f f  , where 
t

conf  is the target control 

generated by the control system to ensure the given 

properties of the closed-loop control system. 

Numerical simulations were also carried out with 

other values of the parameters (18) of the second elas-

tic element, which were varied in a random combina-

tion: c2 from 3 to 240 Ns/m and m2 from 0.1 to 6 kg. 

(These values correspond to a change in the frequency 

2  from 0.7 to 50 s
-1

.) According to the simulation 

results, in all cases, the control system provides the 

 
 

 

(a) 
 

 

(b) 
 

 

(c) 

 
Fig. 4. The behavior of the elastic three-mass drive under the 

disturbance: (a) the exogenous disturbing force, (b) the relative movement 

of the drive masses, (c) the movements of bodies with masses m0 and m2. 
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stable behavior of the variable 2 0x x x  : the error on 

this variable did not exceed 0.002 m in 1–1.5 s after 

the disturbing effect. Note that the transients may 

slightly differ from those illustrated in Fig. 5. The con-

trol system retains its control quality even if the meas-

urements of the output variable y include centered 

Gaussian noise with a standard deviation of no more 

than 0.1 mm and there is a control delay of no more 

than 0.003 s. 

 
 

 

(a) 
 

 

(b) 
 

 

(c) 

 
Fig. 5. The closed-loop control system of the elastic three-mass drive: 

(a) the exogenous disturbing force d
conf  and the control force t

conf , (b) the 

relative movement of the drive masses, and (c) the movements of bodies 

with masses m0 and m2.   

 

Obviously, the system successfully damps elastic 

vibrations: by the end of the exogenous disturbance, 

0x  within a large variety of the plant parameters. 

CONCLUSIONS 

This paper has proposed an approach based on 

simplified adaptability conditions, or the identifica-

tion–approximation approach for self-tuning systems, 

to design adaptive control of a scalar plant in which 

only the input and output are measured. The main pe-

culiarity of the approach is the use of structural and 

parametric approximation of plant dynamics. The for-

mer is implemented through describing the dynamics 

by a simple-structure model (a simple link or a set of 

such links) compared to that of the plant. The latter is 

reduced to the use of current parameter estimates de-

livered by the identification algorithm, not necessarily 

tending in asymptotics to their exact values and being 

time-varying. Then exact parameter estimates are not 

required to achieve the properties of the closed-loop 

control system close to an assigned reference model: it 

suffices to fulfill conditions (12) and make the identi-

fication residual convergent. A control law is con-

structed based on this model. This result can be inter-

preted as a refinement of the well-known certainty 

equivalence principle of self-tuning systems with out-

put-feedback control of the plant. A concomitant posi-

tive feature of the latter is the nonnecessity of persis-

tently exciting regressors (the “richness” of the input 

signal). 

This approach allows for different modifications. 

For example, it is possible to apply Kaczmarz’s se-

quential projection algorithm [3] instead of the identi-

fication algorithm (9). The constant parameter esti-

mates at the control action of the approximating model 

can be replaced by the variables delivered by two-

stage identification [23]. Also, to improve the robust-

ness of the current parametric identification procedure 

and adaptive control in general, one may utilize the 

approaches described, e.g., in [2, 3], etc. These in-

clude: introducing a feedback loop on small parameter 

estimates into the identification algorithm, “attracting” 

the estimates to their a priori known values, using the 

insensitivity zone of the identification residual, limit-

ing its spread, and others. Note also that this paper has 

addressed only the plants with oscillatory dynamics 

approximated by an oscillatory link without any 

transport delay. At the same time, generalizations to 

other classes of plants are obvious. 

Undoubtedly, the above method cannot be attribut-

ed to universal adaptive control design procedures. 

Nevertheless, many applications-relevant problems 

can be effectively solved by this method: in addition to 

the illustrative examples of Sections 3 and 4, it has 

been successfully applied, e.g., in [25] and other pub-

lications. 
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