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Abstract. This paper proposes a novel function for classifying environmental, social, and socio-

environmental objects. It is based on the sum of rank deviations between a given object and a 

reference object considering the significance of the object’s characteristics (factors). Characteris-

tics are estimated using weight coefficients, which are provided by expertise or another method. 

A verbal numerical scale is developed to assess the proximity of objects by the numerical value of 

the deviation function. As is demonstrated below, this function is not a metric in the geometric 

sense but a proximity function defined in multidimensional scaling theory. As illustrative exam-

ples, the values of the deviation function are calculated for two applications: an environmental 

problem of comparing the vulnerability of territories to accidental oil spills and an economic 

problem of choosing real estate objects to purchase. A recommended sequence with a set of pro-

cedures based on the deviation function is presented to solve these problems.  
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INTRODUCTION  

Classification is one of the main problems of sci-

ence. The goal of classification is to arrange objects so 

that those belonging to the same group can be consid-

ered close in their qualities. The result of classification 

is always a grouping of objects according to their 

properties. 

The methodology of classifications varies from one 

science to another. We can mark off social and natural 

sciences, where a unified approach is difficult to de-

velop. For example, researchers distinguish from 8 to 

22 types of civilizations [1]. It is even harder to classi-

fy mixed objects consisting of social, natural, anthro-

pogenic, and other components, e.g., different types of 

settlements. Nevertheless, mixed objects can be classi-

fied by comparing their components in some commen-

surable terms, such as scores, ranks, distances in hy-

perspaces, etc. 
 

________________________________ 
1 This work was performed within state order no. FMWE-2021-

0006 “Modern and ancient bottom sediments and suspended sedi-

ments of the World Ocean––a geological record of environmental 

and climate changes: dispersed sedimentary matter and bottom 

sediments of the seas of Russia, the Atlantic, Pacific and Arctic 

Oceans––lithological, geochemical, and micropaleontological 

studies; the research of pollution, paleoenvironments, and process-

es of marginal filters of rivers.”  

There exist no unified universal methods of classi-

fication. But they are actively developed by represent-

atives of various sciences. Carl Linnaeus contributed 

much to developing the classifications of natural ob-

jects [2].  

1. THE IDEOLOGY OF OBJECT COMPARISON   

The methodology proposed below involves the 

component-wise comparison of objects. Their belong-

ing to the same class is determined by a function, i.e., 

the total value of the deviations between the character-

istics (indicators) of the corresponding components. 

This idea is not novel and is adopted in many applica-

tions. One of the simplest and most efficient functions 

is the well-known metric of Richard Hamming [3], 

originally developed by him within coding theory. 

Later, it found application in many fields of science 

and technology. In addition, there are several modifi-

cations, e.g., the weighted Hamming metric [4]. 

Consider the Hamming metric in detail. It has the 

general form 

 
1

,  

,

N

i j i j

i j

d x x x x



  ,  

where xi and xj are the coordinates of the vectors of 
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objects under comparison, 1, ,i j N ; N denotes the 

number of object characteristics. The simplest method 

for determining the proximity of objects is to represent 

differences as binary relations: if the difference be-

tween the corresponding characteristics is below some 

threshold (e.g., 10%), it takes value 1, and value 0 oth-

erwise. Next, the unities are summed up; if the result 

equals or exceeds some percentage of the total number 

of object characteristics (e.g., 90%), such objects are 

considered close and belong to the same class. The 

criteria of proximity and belonging (in the current ex-

ample, 10% and 90%, respectively) are set by re-

searchers arbitrarily depending on the conditions of a 

particular problem. There are no unified recommenda-

tions here, and it seems impossible to provide them. 

Meanwhile, the approach is quite simple.  

Similar ideas are also employed in multidimen-

sional scaling methods to analyze data by reducing 

their dimension, implemented by comparing objects in 

different ways. They are widely used in sociology and 

psychology, and their founder is L. Guttman [5, 6]. 

Currently, due to advances in machine learning, ar-

tificial intelligence, and cybernetics, the clustering 

problem [7] occupies a special place in science. This 

problem is similar to classification, in which the clas-

ses must be determined by an algorithm. 

Nevertheless, various classification methods are 

still being developed. Among them, we note ATOVIC 

(Amended fused TOPSIS-VIKOR for classification) 

[8], a combination of two multicriteria choice methods 

modified for classification. In this method, an ideal 

object and the so-called negative object in terms of 

class belonging are determined for each class. Next, 

the proximity of each ideal object and each negative 

object to each class is checked using the Minkowski 

and Chebyshev metrics, and the belonging of each 

object is decided accordingly [9]. There exist other 

metric methods as well; k nearest neighbors [10] is the 

most popular algorithm. It has numerous modifications 

and can be used with different metrics.  

In addition, we mention the naive Bayes classifier, 

which is based on the Bayes theorem. This classifier 

uses various probability statistics for decision-making 

[11]. 

The practical application of the Hamming metric 

(including our experience) demonstrated its effective-

ness. At the same time, several disadvantages were 

revealed [12] (a common situation when a methodolo-

gy developed for solving particular problems is trans-

lated to other objects). These disadvantages appear in 

other metric methods as well; the main one is that 

even a very high percentage of the matched pairs of 

characteristics with an equally high criterion of single 

pair matching (which can be set even below 5%) does 

not guarantee the belonging of objects to the same 

class.  

For example, let some territories be geographically 

and ecologically classified by the degree of their pol-

lution. Such an object is often described by selecting a 

finite number of most typical indicators (characteris-

tics). In this case, almost all indicators, except for one, 

may have very close results (even completely coin-

cide), giving all formal grounds to assign the same 

class to the objects under comparison. Nevertheless, a 

single mismatch may be so large (by orders of magni-

tude) that the objects cannot belong to the same class 

under any conditions. This situation occurs for acci-

dental spills and large toxic releases causing environ-

mental disasters. In such cases, the Hamming metric 

becomes inappropriate because it leads to erroneous 

results. This metric and its analogs have other draw-

backs; see the presentation below.  

Despite the considerations above, the principle of 

comparing and classifying objects based on the analy-

sis of the deviations of their characteristics seems to be 

justified and methodologically correct. Based on this 

principle, we propose a function to compare and clas-

sify a wide range of objects. 

2. THE RANK-EXPERT DEVIATION FUNCTION  

To determine whether a given object belongs to a 

particular class, it must be compared with another ob-

ject from this class. For such comparisons, we intro-

duce the notion of a reference object, interpreted as an 

object characterizing a given class to the greatest ex-

tent. (How should a reference object be formalized? 

This issue will be discussed in a separate publication, 

as it requires a special methodology depending on the 

object’s complexity and the availability of infor-

mation.) From the viewpoint of computational proce-

dures, a reference is also an object; therefore, we will 

consider a more general case, i.e., the comparison of 

two objects. 

Deviations can be measured by several methods. 

The most natural approach is a simple difference ex-

pressed in percentage or Boolean symbols. Before 

that, it is possible to convert all characteristics into 

points using special scales and obtain differences in 

unified units. Indicators are often normalized to bring 

them to a dimensionless form. Other methods are also 

used to make object characteristics comparable.  

This paper proposes a method based on ranking 

scales with one important property: verbal definitions 

have no sign, and negative and positive values, both 

quantitative and qualitative, can be therefore treated as 
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unambiguous. This property is crucial for some char-

acteristics. For example, when assessing the climate 

comfort for living, air temperature is estimated ap-

proximately in the range from –50°C to +40°C; when 

assessing the efficiency of industrial enterprises by 

their financial result, which can be both negative and 

positive, the degree of their unprofitability or profita-

bility is estimated.  

We now proceed to the function proposed in this 

paper. Consider two objects x and y with the sets of 

characteristics  1
,…,  

N
x xx  and , 

respectively, where ,  Nx y . In other words, the 

characteristics belong to the set of N–dimensional vec-

tors, and their elements belong to the set of real num-

bers. Let the characteristics be represented in their 

“natural” units of measurement (e.g., physical). Then 

the vector of their deviations,  N


 z 0 , with 

nonnegative coordinates has the form 

 1
,…,  

N
z z  z x y .                  (1) 

However, such a vector quantity is not very in-

formative and can only indicate the proximity of the 

values of objects’ characteristics. For example, assume 

that the values of one characteristic of objects differ by 

0.01 units, all others being equal. Does it mean that the 

objects are close to each other? Not necessarily; in-

formation about only two values is insufficient to as-

sess the nature and range of variation of any character-

istic. 

One method for solving this problem is ranking: 

the values of characteristics are arranged in a certain 

order (in our case, by increasing the deviation of their 

values). Both quantitative and qualitative characteris-

tics are subject to ranking, and this procedure can be 

therefore used to measure deviations by the difference 

in ranks between the objects under comparison. In this 

case, it is possible to obtain a quantitative estimate and 

also a verbal assessment of the degree of deviation for 

each characteristic (“small,” “considerable,” etc.), i.e., 

to determine its significance. It can be useful in some 

particular optimization problems, e.g., in the analysis 

of alternatives. 

This approach requires developing special verbal 

numerical ranking scales for each characteristic. How-

ever, the corresponding costs are covered by the pos-

sibility of their independent application in other prob-

lems.  

We introduce a nonnegative matrix of private rank-

ing scales,   0
N M 

 H . In this matrix, 

row 1,   i N  corresponds to the scale of the charac-

teristic with the same number: 

1,1 1,

,1 ,

M

N N M

h h

h h

 
 

  
 
 

H ,  

where M   is the maximum rank value, 1M  .  

Then the number of gradations or intervals of the rank-

ing scale equals 1M ( ) . (For 1M  , we obtain the 

binary scale.) According to the aforesaid, the scale 

values must be arranged in ascending order, from the 

left column of the matrix H to the right one: for each i,
 

,1 ,
0

i i M
h h  . Different methods are used to 

construct ranking scales. Based on our experience, it 

seems preferable to design them by an expert survey 

within the theory of fuzzy sets. 

Different objects can be described by a different 

number of characteristics; moreover, the same object 

may have different lengths of components depending 

on its level of scrutiny or the conditions imposed on 

the accuracy of its classification. Therefore, the fol-

lowing question arises naturally: what shall we do if 

the number of gradations is not the same for each 

component? In this case, a technically simple scale 

synchronization procedure can be proposed: scale fac-

tors are introduced to bring all scales to the same 

number of gradations. But such situations should be 

quite justifiably avoided, and objects are often de-

scribed using scales with the same number of grada-

tions. For example, a single verbal scale of five grada-

tions was developed for all seven characteristics of the 

atmosphere [13] to classify the atmospheric pollution 

potential. This verbal scale has been used in practice 

for several decades. 

We define the vector of rank deviations 

 1
,…,  

N
r rr  of objects x and y, 

0
,Nr  such that 

0 ,  1,  
i
r M i N   . Then 

,

1

θ ,( )
M

i i i j

j

r z h



                          (2) 

where θ  denotes the Heaviside function: 

0, 0
θ

1, 0,

x
x x

x

 
 



( )    .
 

 

For each i, formula (2) yields the number of values 

hi,j strictly less than zi. This number is the deviation 

rank, which varies from 0 to M inclusive, where M is 

the number of columns in the matrix H and (M + 1) is 

the number of gradations of private ranking scales. 

This expression can also be written in vector form 

when replacing the Heaviside function with the func-

 1
,…,  

N
y yy
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tion of counting all nonnegative elements of the vec-

tor. 

All object’s characteristics are unequal by their 

role in the object’s functioning or intended purpose. 

This value inequality of characteristics is considered 

through weight coefficients expressed in unit fractions 

or percentage. We introduce the vector 

 1
,…,

N
k kk ,  N


 k 0  , of weight coefficients 

such that 

1

1

N

i

i

k



 .  

Then the rank-expert deviation function is defined 

as a mapping from the Cartesian product of the two 

sets of N-dimensional nonnegative real vectors into the 

set of nonnegative real numbers, i.e., 

       0N NR
  
    0 0:  and is 

given by 

 
1

, ,

N
i i

i

k r
R

M M



 

k r
k r                  (3) 

where   denotes the inner product of vectors. Note that 

in formula (3), the vector of rank deviations r  is also 

normalized by the maximum rank value. Therefore, 

the range of R is the set of unit fractions, which can be 

represented in percentage terms for convenience. 

The function described above is not a metric: it sat-

isfies neither the identity axiom nor the triangle ine-

quality. Therefore, this function does not define the 

distance between objects in some space in the conven-

tional geometric sense. Within the theory of multidi-

mensional scaling, this problem is solved using prox-

imity functions defined as follows [6, p. 39]. Consider 

three vectors of object’s characteristics, ai, aj, and ak. 

A proximity function  ,i js a a  is a function such that, 

for all i, j, k, the following relations (axioms) are satis-

fied: ( ,  ) ( ,  );i i i js a a s a a
 

( ,  ( ,  ;) )i j j is a a s a a  for 

large values  ,i js a a  and  ,j ks a a , the value

 ,i ks a a  has at least the same order [6, p. 39]. 

These relations are the weakened axioms from the 

definition of a metric. As is easily checked, they hold 

for the rank-expert deviation function defined above, 

so it represents a proximity function. In particular, the 

affine transformation, often used in multidimensional 

scaling methods for scaling and dimension reduction, 

can be applied to this function as well. 

One of the main advantages of the rank-expert de-

viation function is the possibility to establish equality 

criteria for values. For example, the objects whose 

measured physical quantities differ at most by the 

measurement error should be assumed equal. For such 

objects, the first gradation of the private ranking scale 

(the first column of the matrix H) should be not less 

than the measurement error. In the general case, how-

ever, it can be 0, meaning the absence of deviation 

only if the characteristics are exactly equal. This situa-

tion applies, e.g., to qualitative variables. 

In this context, the following questions seem natu-

ral. Why is it necessary to use private ranking scales? 

Is it prohibited to take the ratio of characteristics in 

percentage? For example, formulas (1) and (2) can be 

in theory replaced by 

min ,
1 ,   1,

max( , )
.

( )
i i

i

i i

x y
z i N

x y
              (4) 

We provide the answer with an illustrative exam-

ple. Let objects be some water masses characterized 

by the concentration of suspended solids in water, 

measured in mg/l. It has a rather wide range of varia-

tion, taking values in a few mg/l and in a few hun-

dredths of mg/l. If two objects under comparison have 

concentrations of 0.01 mg/l and 0.02 mg/l, respective-

ly, their difference by formula (4) is 50%; for objects 

with values of 2 mg/l and 0.01 mg/l, respectively, it 

equals 99.5%. In this case, the objects with values of 

0.01 mg/l and 0.02 mg/l may differ insignificantly 

within a particular problem or can be taken as equal 

under a measurement accuracy of 0.01 mg/l. There-

fore, in this example, the 50% difference in character-

istics becomes incorrect. 

3. A UNIVERSAL CLASSIFICATION SCALE FOR OBJECTS 

A special scale is needed to assess the proximity of 

objects under comparison. We propose a possible so-

lution based on the following considerations. Accord-

ing to the aforesaid, the function achieves maximum 

for the largest difference between the objects, i.e., 

when the deviation ranks of each characteristic take 

their maximum value M. The minimum value of the 

function is 0. (In this case, one object strictly matches 

another, and all deviations are 0.) Consequently, all 

possible deviations lie in the range from 0 to 1, or 

100%. As a result, the following estimation scale can 

be constructed (Table 1).  

Other modifications of this scale are possible, but 

it is a matter of discussion. (Note that this scale should 

be designed by fuzzy set methods.) The graphical form 

of this scale is presented in Fig. 1. The private ranking 

scales making up the matrix H have the same form as 

well.  
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Table 1 

The universal scale for assessing the proximity  

of objects by the rank-expert deviation function 

No. Interval, % The degree of proximity 

1 0–5 Coincidence 

2 6–10 Minor discrepancy 

3 11–20 Slight discrepancy 

4 21–30 Moderate discrepancy 

5 31–40 Notable discrepancy 

6 41–55 Substantial discrepancy 

7 56–70 Significant discrepancy 

8 71–100 Very significant discrepancy 

 
 

 

 
Fig. 1. The universal scale for assessing the proximity of objects. 

Numbers above the scale indicate the intervals according to Table 1. 
 

4. NUMERICAL EXAMPLES 

Example 1. This example primarily demonstrates the 

technical aspects of applying the calculation procedures: the 

techniques for selecting the private ranking scales and 

weight coefficients are beyond the scope of this paper.  

Consider an environmental problem of comparing the 

vulnerability of territories to accidental oil spills [14]. In 

this case, the objects are the domains with the available val-

ues of indicators. We adopt three indicators:  

 the forecasted (simulation-based) pollution area for a 

particular sector of the terrain (m
2
), used to assess the de-

gree of damage and the scope of restoration works;  

 the average surface slope (%), affecting the rate of pol-

lution spreading on the ground surface and the shape of the 

oil spot;  

 the share of waterbodies (%), where oil and oil prod-

ucts are transported by water streams to significant distanc-

es, thereby increasing the pollution area (banks and coastal 

territories) and environmental damage.  

For these indicators, private ranking scales with four 

gradations were developed and weight coefficients were 

determined. Thus, N = 3 and M = 4; the input data for the 

calculations are provided in Table 2. 

Note that all values in this table, except for columns 1 

and 4, are given in the indicator units. Columns 5–8 of Ta-

ble 2 present the matrix of private ranking scales H. Next, 

Table 3 shows the vector of the deviations of object’s char-

acteristics (formula (1), column 2), its transformation into 

the vector of rank deviations (formula (2), columns 3–6 and 

7), and the scalar product (formula (3), column 8). The 

transformation into the ranking scales is carried out by 

counting positive values in columns 3–6, which is the rank 

value (column 7). 

The value of the rank-expert deviation function is 0.725; 

it means that the objects differ from each other by 72.5%. 

According to the universal classification scale, it corre-

sponds to a very significant discrepancy by the degree of 

proximity (see Table 1). 

 

Table 2 

Input data for calculating the rank-expert deviation function  

Characteristic i x  y  k  ,1ih  ,2ih  ,3ih  ,4ih  

Column no. (1) (2) (3) (4) (5) (6) (7) (8) 

Pollution area, m
2 

1 2376.7 1831.6 0.5 10 25 100 200 

Surface slope, % 2 1.05 1.13 0.3 0.05 0.25 0.5 1 

The share of waterbodies, % 3 2 0.24 0.2 0.01 0.1 1 5 

 

Table 3 

Calculation results for the rank-expert deviation function 

i z  ,1i iz h  ,2i iz h  ,3i iz h  ,4i iz h  ir  /i ir k M  

(1) (2) (3) (4) (5) (6) (7) (8) 

1 545.1 535.1 520.1 445.1 345.1 4 0.5 

2 0.08 0.03 –0.17 –0.42 –0.92 1 0.075 

3 1.76 1.75 1.66 0.76 –3.24 3 0.15 

The value of the rank-expert deviation function                                                   R = 0.725 



 

 
 

 

 
 

CONTROL IN SOCIAL AND ECONOMIC SYSTEMS 
 

53 CONTROL SCIENCES  No. 6 ● 2023 

Such tables can be constructed for each sector of the ter-

rain of the object or a separate alternative. Then we obtain 

some set of objects for classification, which is a primary 

goal when studying objects and alternatives, e.g., in indus-

trial safety problems and choice problems (see below). ♦ 

Example 2. As another example, we solve a classical 

economic problem of choosing real estate objects (apart-

ments in a building). There are three alternatives (a, b, and 

c) and five different characteristics of apartments. We de-

note their vectors by ,  ,   and  a b c  (Table 4, columns 3–5). 

The easiest way to form a reference object ( e ) is to take the 

minimum or maximum possible values of the characteris-

tics. For example, for the depreciation of the building 

(in %), the acceptable value of the reference is 0: the less 

the depreciation is, the better the alternative will be (Ta-

ble 4, column 2). We form the vector of weight coefficients 

(the fastest method is simple ranking) and arrange the char-

acteristics in descending order of their significance by num-

ber i: 1, 2, 3, 4, and 5. As a result, for this problem, 

(6 ) /15ik i   (Table 4, column 6). Next, we construct the 

matrix of private ranking scales H  with four gradations or 

intervals for each characteristic. Then N = 5 and M = 3. In 

this case, to simplify the example, the scales are formed by 

questioning one expert (the purchaser or his or her repre-

sentative). There may be several experts; as we believe, the 

most appropriate number is about 10 people. Also, the scale 

can be designed by other methods. Thus, all the initial data 

necessary for the rank-expert deviation function have been 

formed (see Table 4). 

Let us proceed to the calculations, i.e., the sequential 

application of this function to compare the reference with 

each alternative. For convenience, the first few steps of cal-

culations are omitted; they are carried out by analogy with 

the previous example (see Table 3, columns 2–6). Table 5 

shows the rank values (columns 2, 4, and 6), their normali-

zation (columns 3–5), and the values of the rank-expert de-

viation function for each alternative. 

In this case, the best alternative is b as the one with the 

smallest value of the rank-expert deviation function 

0.553.R   (It differs least from the reference.) ♦ 

Table 4 

Input data for calculating the rank-expert deviation function  

Characteristic i e  a  b  c  k  ,1ih  ,2ih  ,3ih  

Column no. (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Value, thousand rubles/m
2 

1 70 80 100 150 0.33 5 10 50 

Distance to the city center, km 2 1 15 5 6 0.27 5 10 15 

The depreciation of the building, % 3 0 30 60 10 0.2 10 25 50 

The number of parking lots near the building, 

pcs. 
4 1000 500 50 100 0.07 100 500 1000 

Apartment area, m
2
 5 60 63 78 55 0.13 5 10 25 

 

 

Table 5 

Calculation results for the rank-expert deviation function 

Alternative i 
a  b  c  

ir  /i ir k M  ir  /i ir k M  ir  /i ir k M  

Column no. (1) (2) (3) (4) (5) (6) (7) 

Value, thousand rubles/m
2
 1 2 0.220 2 0.220 3 0.330 

Distance to the city center, km 2 2 0.180 0 0.000 1 0.090 

The depreciation of the building, % 3 2 0.133 3 0.200 1 0.067 

The number of parking lots near the 

building, pcs. 

4 2 0.047 2 0.047 2 0.047 

Apartment area, m
2
 5 0 0.000 2 0.087 1 0.043 

The value of the rank-expert deviation function R 0.580 0.553 0.577 
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5. APPLICATIONS OF THE RANK-EXPERT DEVIATION 

FUNCTION 

The function proposed above serves to classify ob-

jects with characteristics (indicators) expressed in a 
variety of quantitative and qualitative values. First of 

all, such objects include social and economic, geo-
graphical, and ecological objects. They are formalized 

by considering many factors from various fields of 
knowledge: natural, technical, social, military, geopo-

litical, and others. Ranking scales make such charac-
teristics commensurable. It is possible to use available 

verbal numerical scales provided that they correspond 
to the problem conditions. 

Generally speaking, the rank-expert deviation 
function and its components can be treated as one el-

ement of classification technologies [15] and can be 

used for such complex problems as the geographical 
and ecological zoning of territories [14] and others. 

We will demonstrate it on some intentionally simpli-
fied examples from real life. 

Consider again the vulnerability of territories to 
accidental oil spills along a pipeline route (see Exam-

ple 1 in Section 4). Let us divide the entire route into 
equally long sectors. The length and width of the sec-

tors are of no fundamental importance: due to the ca-
pabilities of GIS technologies, they can be set as small 

as desired. The rank-expert deviation function calcu-
lated for each sector (see Table 4) is mapped (Fig. 2) 

to assess the vulnerability of the entire object, to de-
velop   scientifically   grounded   recommendations   for 

 
 

 

 
Fig. 2. The value diagram of the rank-expert deviation function for the 

fragment of a linear object (oil pipeline).  

industrial environmental monitoring, and to select op-
timal locations for emergency spill response equip-

ment (barrier booms, sorbents, etc.). For example, 
such equipment should be placed in the sector of the 

terrain with the highest vulnerability (according to 
Fig. 2, in the northeastern sector with R = 0.87). 

CONCLUSIONS 

An object classification methodology based on the 

rank-expert deviation function has been proposed. It 
represents a set of procedures performed in the follow-

ing recommended sequence. 
1) The goal of classification is determined. 

2) According to this goal, object’s characteristics 
are selected for an appropriate formalization of the 

object; the number of such characteristics is not lim-
ited but must be the same for all objects. 

3) Private verbal numerical ranking scales are con-
structed (if available, selected) for each characteristic 

of the object. All of them must have the same number 
of gradations or be preliminarily synchronized using a 

correction factor. 
4) A reference object with the most appropriate 

characteristics is designed for each class. 

5) The weight coefficients of the characteristics are 
calculated. 

6) After determining the initial data, the rank-
expert deviation function is calculated in three steps. 

6.1) The vector of the deviations of characteris-
tics is constructed. 

6.2) This vector is transformed into the vector of 
rank deviations. 

6.3) The vector of rank deviations is normalized, 
and the inner product of the normalized one with the 

vector of weight coefficients is obtained. 
7) The verbal numerical scale is used to find the 

degree of proximity of the object under comparison 
and the reference objects; if necessary, a sequential 

comparison with other reference objects is made. 
This function may serve to solve other problems, 

e.g., simple comparison of two objects with specified 
characteristics in the analysis of alternatives, scenario 

design problems, and object optimization. 

However, all values of the rank-expert deviation 
function may fall into the same gradation, i.e., the ob-

ject is homogeneous. This situation sometimes occurs 
in practice. In such cases, additional classification 

rules are developed to differentiate the object under 
consideration. It often suffices to add one or two con-

ditions; e.g., among equally important alternatives, 
priority can be given to the one where the greatest 

contribution is made by the characteristic with the 
highest weight factor and the minimum deviation from 

the reference. 
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