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Abstract. This paper develops an approximate method to optimize a time-varying objective 

function on a discrete time scale. The method should provide an admissible (controllable) error 

value. The conditions to be satisfied by the time scale, the objective function, and the environ-

ment’s parameters are established. The unconstrained optimization of a time-varying objective 

function that depends on the control vector components is considered on a discrete set of time 

instants. To find a solution, a discrete gradient constrained optimization method is proposed. 

Efficiency conditions for the gradient method are formulated. A lower bound on the solution 

error is obtained in terms of the time step, the rate of change of the objective function, and its 

first- and second-order derivatives with respect to the control vector components. The method is 

illustrated on a numerical example of an optimal controller design for a time-varying plant with 

a nonlinear objective function. According to the numerical experiments, the wide-range varia-

tions of the controller’s parameters have no significant effect on the qualitative behavior of the 

resulting trajectory. The method can be used to calculate an optimal control function for a sys-

tem with a discrete-valued objective function. 
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INTRODUCTION  

Purposeful developing systems, such as the nation-

al and regional economy or large multiple product 

farms, use optimal management mechanisms to max-

imize a target indicator [1]. This indicator can be total 

output, added value, profit, etc. Under crisis condi-

tions, in an unpredictable environment (economic 

sanctions, financial catastrophes, force majeure), the 

management methods based on knowledge of normal 

business processes do not provide the desired result. 

For example, the international division of labor, which 

usually plays a positive role, becomes useless under 

sanctions. In such a situation, successful economic 

management should primarily focus on its internal ca-

pabilities and closed technological cycles within the 

economic system, thereby being autonomous in some 

sense [2]. 

Mathematical models for managing developing 

systems under crisis conditions may have little or even 

no accuracy. In such cases, management has to be lim-

ited only to a set of target indicators. In addition, the 

available statistical reports usually provide economic 

indicators only for certain periods (month, quarter, or 

year). All these factors restrict the applicability of any 

methods involving a smooth objective function and 

should be considered when developing appropriate 

management and decision-making methods. 

Under uncertain behavioral rules of an object, the 

most appropriate method is optimal control. It consists 

in determining and maintaining a mode of operation in 

which the optimal (minimum or maximum) value of 

some criterion characterizing the object’s performance 

is achieved. The construction of management mecha-

nisms for autonomous system models has much in 

common with the design of an optimal controller that 

automatically finds and maintains the optimal value of 

the controlled variable. It ensures some stability of the 

controlled object (often called plant). The optimal con-

troller’s applicability is restricted since we cannot 

manage the long-term consequences of its operation. 
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In addition, in the case of a limited amount of infor-

mation about the object, its inertial properties may be 

neglected. 

In the 1960s, optimal (extremal) control formed an 

independent branch in the theory of nonlinear automat-
ic control systems [3], and optimal controllers became 

widespread. For example, they were used in optimal 
relay systems [4] and pulse self-adjusting (adaptive) 

and optimal automatic control systems [5]; when tun-
ing resonance loops and automatic measuring devices; 

when finding the optimal parameters of tunable mod-
els; when controlling chemical reactors and heating 

units for flotation and crushing [6].  
Depending on the available information about the 

plant, the control laws in optimal controllers involve 
various approaches, differing in their validity and con-

vergence of the result to the optimum. For example, in 
the paper [7], a heuristic extreme regulation algorithm 

was proposed to simulate the metabolic process. At 

each iteration, this algorithm performs a random search 
for the best response. The convergence of the process 

was demonstrated using an example for a particular 
object. In the paper [8], the air supply u in the furnace 

was regulated using the optimal control of the inertial 
object’s static characteristic f as follows: 

∆ u(i + 1) = h sign [∆f(i + 1) ∆ u(i)], 
where u and f are the scalar control parameter and the 
measurable response parameter (control criterion), re-

spectively; i denotes the time instant. The convergence 
of the control process in the cited paper was also 

demonstrated experimentally. A particular case of an 
optimal controller with a nonlinear objective function 

was considered in [9] for a linear dynamic system de-
scribed by an ordinary first-order differential equation. 

The control step was chosen constant, and its sign was 
inverse to that of the derivative with respect to the con-

trol variable. The convergence of the control process 

was proved under the exactly known system’s dynam-
ics and derivatives of the objective function with re-

spect to the time and control variables. The algorithm 
proposed below does not require this knowledge. 

Consider a time-varying autonomous system mod-
el. For this system, let a control u be designed by 

( , ) opt
u

F y u    

at each point t , where (t)u  denotes the control vector; 

, )F( y u  is an objective function that satisfies 

smoothness and convexity in u ; ( , , , )y t p x u  de-

notes the system’s state vector; p  
is the parameters 

vector; finally, )(tx  
is the environment’s state vector. 

If such an optimal control exists, it depends on the cur-

rent state of the system and can be determined, e.g., 
using the gradient-based unconstrained optimization 

method from the first-order optimality condition 

0
dF

du
 . 

If at the corresponding time instants only the values 

of the objective function are known, and the current 

state of the system is considered implicitly, we will 

find the control by the value of this function, denoting 

( , ) ( , , ( ), ), )f t u F( y t p x t u u .  

For the nonstationary problems of this type, the con-

vergence of the gradient-based unconstrained optimi-

zation method was considered in the paper [10]. As-

suming the exactly known gradient of the objective 

function, the convergence of the discrete-time iterative 

process 

1( )  ( ) ( , ( ))k k u k kku t u t f t u t       

was established under the requirement  

atutua kk   )(*  )(*:0 1 ,  

where )(* tu
 

is the optimum of the function ( , )f t u  

at the time instant t ; a specifies the deviation of the 

limit value from the optimum )(* ktu  as k ; the 

step k  is determined by the properties of the matrix 

fuu . The results of [10] were further developed in the 

paper [11] by weakening the convergence condition of 

the iterative process: 

1( , ) ( , ) , 0   u k u kf t u f t u a a .  

When considering nonstationary unconstrained op-

timization problems in [10, 11], both the deviation of 

the solution from the exact value at the current time 

instant t and the limit deviation as t  were con-

trolled. As a disadvantage of purely gradient methods, 

note the relatively slow convergence to the exact solu-

tion, which can be explained by the following fact: 

when approaching the optimum of the objective func-

tion with smooth derivatives, the gradient norm  

( , )
u k
f t u  may tend to 0 faster than the growth of 

the step γk. Therefore, the approximate solution “lags” 

the exact counterpart at every step. The methods pro-

posed in [8, 9] allow the advance of the exact solution, 

which does not reduce their errors but accelerates their 

convergence. 

If the objective function values are measured at 

discrete instants, the derivative ( , )uf t u  can be es-

timated only approximately, for example, using the 

spline representation of the function  ( , )f t u  (ambig-

uously). The expected consequence of such assump-

tions is an increase in the solution error compared to 

the methods based on the accurate estimation of the 

objective function’s derivatives. Moreover, the solu-

tion error will not vanish over time, i.e., it cannot be 

eliminated. Naturally, its value should increase with an 

increase in the discretization step of the time interval 
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and the rate of change of the objective function. Ac-

cordingly, “the deviation of the solution from the exact 

value” becomes an incorrect concept due to the latter’s 

ambiguity. It can be replaced by “the deviation of the 

solution from an exact value” or “the deviation of the 

solution from the set of exact values.” 

This paper develops an approximate method to op-

timize a time-varying objective function on a discrete 

time scale. The method should provide an admissible 

(controllable) error value. The conditions to be satis-

fied by the time scale, the objective function, and the 

environment’s parameters are established. This method 

can be used to design an optimal controller for a sys-

tem defined at discrete time instants.  

1. PROBLEM STATEMENT  

Let the objective function ( , )f t u , where t is the 

scalar time and nRu , be continuously differentiable 

with respect to both variables and convex in u. Also, 

let this function together with the vector )(tu  be given 

at discrete time instants 1 2 it t ... t   .  

Consider the unconstrained optimization of the ob-

jective function at the time instant 1tt  : 

1( , ) opt i

u

f t u . 

More precisely, the problem is to find the control 

vector value )( 1 ituu  approximating the objective 

function value ),( 1 utf i   to the optimum using the 

values ( , ( ))j jf t u t , ij  , and estimate the resulting 

error.  

2. BASIC RESULTS  

Let the function ),( utf  have continuous first-

order partial derivatives with respect to both variables. 

We introduce the following notations for the kth com-

ponents of the vectors: nktuu i
k

i
k ,...,1),(  , 

),( iii utff  , where ,..2,1i . The first-order partial 

derivatives on the two-point data have the approxima-

tions 

i
k

i

i
k

i
k

ii

i
k u

f

uu

ff

u

f



















1

1

, 

written in the vector form as 

iuiu ff 
. 

Here the gradient and its approximations apply to 

the values of the variables ti and ui. Also, we denote by 

f iu  the vector composed of 
i

i
k

f

u




.  

Proposition 1. Assume that: 

1. The function ),( utf  is continuously differen-

tiable with respect to both variables. 

2. The values of this function are given on the 

discrete set {ti} with the step t. 

3. For each ti, 0




itt

f
. 

4. There exists a stationary point of this function 

in the variable u.  

Then for some value hi, the iterative method 

 1 / ,i i i i u i ifu u h u f       

0 / ,
 

      
 

i
i i u i

f
h t f

t
  

yields a sequence of values ui deviating from the sta-

tionary point u~  so that the differences k
i

k uu


  and 
k

i
k uu


 1 , nk ,...,1 , are of opposite sign. Thus, the 

result ui fluctuates around the stationary points 

0, 
i

u tuf  . 

Proposition 2. In addition to the conditions of 

Proposition 1, assume that: 

1. The function (t, u) has second-order partial de-

rivatives with respect to the variable u that 

form the matrix fuu . 

2. At each point ( ii ut , ), this matrix satisfies the 

strong convexity in u: 0 iuuf .  

Then for 
i

tf
t

f
h ui 




  and 

0 /  i h /
 

   
 

i
i u i

f
t f

t
, where the gradient 

approximation applies to the values of the variables ti 

and ui, the iterative method 

 1 /i i i i u i ifu u h u f       

yields a sequence of values ui deviating from the sta-

tionary points alternately by each coordinate in the 

opposite directions by the value  Δui. Moreover, the 

lower bound 
2

1

inf
iuu

ifi

i

f

uth
u




  of its norm is 

achieved for 
i

tf
t

f
h ui 




 .  

Proposition 3. In the maximization problem, the 

sign of the step hi obeys the following rule: hi has the 

same sign as 
1

( , )
ˆ [ , ]

i i i

i i

f
f t u t

t t tt 

  
  

  
 if 
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0),(  ii utf  and the opposite sign otherwise 

( ( , ) 0) i if t u . 

The proofs of Propositions 1–3 are postponed to 

the Appendix.   

Remark 1. Given an admissible solution error δ, 

the admissible class of all functions ( , )f t u  for which 

 iu δ must satisfy the inequality 








2

1

iuu

iuif

f

fut
it

f

δ on the time interval under 

consideration (when needed, on the entire definitional 

domain). Therefore, greater values 
it

f




 and t  lead 

to greater errors.  

Remark 2. According to Proposition 1, a fluctuat-

ing process approximates the optimum at the first it-

eration of the method. According to Remark 1, the 

process will not leave the tube  iu δ.  

Remark 3.  Proposition 3 is applicable if the deriv-

ative 
t

f




 varies in the period Δti so that the sign of 

( , )i i i
f

f t u t
tt

  
  

 
 is fixed for ],[ 1 ii ttt . Un-

der a fixed step t , the value 
tt

f
t

ˆ


   can be estimat-

ed using the three-point approximation  

1 1 1 1

1 1

ˆ

( )( ) ( )( )
.

2

   

 


 



    


 

i i i i i i i i

i i i

f
t

t t

f f u u f f u u

u u u

 

This estimate can be obtained from the system of 

equations  

tt

f
tuu

u

f
ff iiii

ˆ
)( 11









  , 

tt

f
tuu

u

f
ff iiii

ˆ
)( 11









  , 

assuming that the derivative 
t

f




 has a small variation 

in the period t . 

Remark 4. Choosing the value α in the iterative 

method so that const 0i     , we obtain a great-

er range of the increment  

 1( ) / ( )i i u i ifu h u f u         , 

for which the differences i
k

i
k uu ˆ  and i

k
i

k uu ˆ1   have 

opposite signs. The greater the difference αi – α is, the 

greater the range of fluctuations ii uu ˆ  will be.  

The admissible values of the parameters αi and hi 

can be chosen within a rather wide range without any 

accurate estimates of the values 
it

f




 and iuuf . The 

closer the parameter αi to 0 is, the greater the range of 

Δui will be. Decreasing the parameter hi reduces the 

range of Δui; however, for very small hi, the algorithm 

diverges: the total error increases between iterations.  

Remark 5. Since the external factors affect the ob-

jective function through its derivative
itt

f




, the range 

of control values directly depends on the value of this 

effect.  

Remark 6. Since the values of the target function 

( , )f t u  are calculated (or measured) only at the nodes 

of the discrete time grid and for the corresponding val-

ues of the control vectors, it is possible to construct a 

spline approximation of this function of the required 

smoothness and apply exact methods of gradient de-

scent for it [10, 11]. However, the accuracy of the ob-

tained result will remain finite, since such a spline ap-

proximation is not unique. In addition, the computa-

tional complexity of this method will significantly ex-

ceed the complexity of the proposed approach. 

3. NUMERICAL EXAMPLE  

The approximate method for optimizing a discrete 

time-varying system is illustrated below by a numerical ex-

ample of optimal controller design for a simplified model of 

production. This model is described by the following dis-

crete-time finite difference relations. However, according to 

the problem statement, only the values of the objective func-

tion and control at the previous and current time instants are 

used for solution. 

The control (and simultaneously the state parameter) is 

the production output )(tu . The objective function––profit–

–has the form 

u
tcuCtutptutftr max)()()())(,()( 2

0  , 

where ,...2,1,0t ; )()( tutp  gives the income; C0  are 

fixed costs; C0 + cu
2
 is an estimate of the total costs includ-

ing production assets, remuneration of labor and direct ex-

penditures; finally, )(tp  specifies the unit price of the 

products  (the environment’s parameter)  

0( ) ( 1), (0)  p t d p t p p ,   

where d is the growth coefficient, and p0 is an initial price.  

The marginal profit (the gradient of the objective func-

tion with respect to the control variable) is estimated as 

( ) ( ( ) ( 1))/( ( ) ( 1))    e t r t r t u t u t .  
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At the next step, the control is calculated using the 

proposed approximate optimization method: 

)(()(/(()()1( tetehtutu  + α)).   

Here   is the stabilization parameter, and h  is the 

coupling coefficient. 

The figure shows the simulation results for the produc-

tion output model with the parameters С0 = 1 and c = 1 and 

the optimal controller with the parameters α = 0.1 and h = 1. 

The product price with the initial value p0 = 3 varies with the 

constant rate d = 1.03. The exact optimal solution has the 

form  

c

tp
tu

2

)(
)(  . 

 

 
 

Fig. Simulation results for optimal controller:  

                      optimal solution,                          calculated solution,  

                      optimal profit, and                         calculated profit. 

 

The optimal controller quickly (in one step) approxi-

mates the production output the optimal one and, over time, 

tracks the optimal output within the method’s error. 

The range of fluctuations around the optimal output is 

conditioned by the discrete nature of the model, the nonsta-

tionary behavior of the product price, and an inaccurate 

choice of the controller’s parameters. With an increase in 

the time derivative of the price, the solution error grows, 

which agrees with the approximation estimate presented 

above. At the initial steps, the value hi has the estimate 

1





i
tf

t

f
h ui  and the sign +1. An appropriate 

estimate of the coefficient αi was selected from the stability 

considerations to satisfy iuf >> αi >0. They can be exper-

imentally refined along the trajectory by maximizing the 

value achieved by the objective function ( , ( ))f t u t  during 

several steps of the discrete algorithm. In the example, the 

values of αi and hi were constant along the entire trajectory. 

 

CONCLUSIONS  

The approximate optimization method proposed in 

this paper is not very critical to the choice of the pa-

rameters  and h . They can be determined in a partic-

ular way depending on the applied problem under con-

sideration. In the numerical example, the value of the 

parameters corresponds to the rate of increase in the 

unit price of products. In addition, the parameter h can 

be estimated using finite-difference approximations for 

the derivatives of the function f(t, u). In this case, the 

parameter α can be estimated as 
2

0  uf  

/ max



t

f
h

t
. According to numerical simulations, 

varying the controller’s parameters in a rather wide 

range has an insignificant effect on the qualitative be-

havior of the calculated trajectory. 

APPENDIX  

Proof of Proposition 1. Using the linear part of the 

Taylor–Lagrange series for the function ( , )f t u  at the 

point ( 1 1,i it u  ), where the remainder is given at the in-

termediate point   , 1, 1ˆ ˆ( ), , ,k k k k
i i i i it u t t t u u u     

we obtain 

1 1( , ) ( , )   i i i if t u f t u .  

1 1( ) ( ).
ˆ ˆˆ ˆ,,

 
 

   
 

 k k
i i i i

k
k

f f
u u t t

u tu ut t
 

According to the first-order optimality condition, let 

0
ˆ ˆ,




 k

f

u ut
. Then  

1

1 1
1

1

( , ) ( , )
( ) /

ˆ ˆ,



 




   

 
 

 

k k k
i i i

i i i i
i i

k k
i i

u u u

f f t u f t u
t t

t u uut

, 

which can be written in the vector form as 

ifii u
utt

f
tu 





ˆ,ˆ
.                          (1) 

Now we present a calculation method suitable for nu-

merical implementation. Let αi and hi be determined from 

the relation 

  /


   


i
i i u i i

f
h t f

t
.                     (2) 

Then, near the stationary point  1ˆ , i i iu u u , we have 

 /    i i f u i iu h u f .  

Since iû  is an inner point of the interval  1, i iu u , the 

differences ˆk k
i iu u  and i

k
i

k uu ˆ1   have opposite signs. 

Thus, ui will coordinate-wise fluctuate around the stationary 

points ˆ 0 u
i

uf .  

Proof of Proposition 2.  We denote by u  the method 

error at the current step due to the discrete time scale. Near 

the stationary point, the gradient can be estimated as 
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  u i uu if f u .  

If the value of the derivative 




f

t
 is exactly known, then 

for the values h and α satisfying (2), we use condition (1) to 
obtain 

 /      i uu ifu h t u f u . 

Solving the quadratic equation for u  yields  

1
2

2

2

4

2 4

     
    
  
 

i uu if

uu i uu i

h t u f
u

f f
. 

Obviously, the function u (α) is monotonically in-

creasing.  
From the relation (2) it follows that 

 


   


i
i u i i i

f
h f t

t
, 


  


i u

f
h f t

t i
.                       (3) 

For α = 0, the expressions (2) and (3) give 
1

2

1

2

.

( 0)
  
     
 
 


  






if

uu i

i u if

uu i

h t u
u

f

f
t u f

t i

f

.  

Due to this equality, the estimate 

1

2


  


 



i u if

uu i

f
t u f

t i
u

f
 

is a lower bound for the solution error. 

Proof of Proposition 3.  According to Proposition 1, 

the interval  1, i iu u  does not contain the stationary point if 

for some (or all) coordinates, the differences ui +1 – ui have 
the same signs.  

In this case, assuming 
1

0
ˆ [ , ]




 
k

i i

f

u t tt
, we obtain 
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which can be written in the vector form 

( , ) .
ˆ ˆ

  
      

 
ii i i i f

f
u f t u t u

t t t
    

In the maximization problem, for a fixed absolute val-

ue of the step h , the descent direction is chosen from the 

condition 

sign( ) sign ( , )
ˆ

  
    

 
i i i

f
h f t u t

t t
 if ( , ) 0 i if t u , 

sign( ) sign ( , )
ˆ

  
     

 
i i i

f
h f t u t

t t
 if ( , ) 0 i if t u .  
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