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Abstract. This paper designs a control law to maintain the temperature in the jacket of a con-

tinuous stirred tank reactor (CSTR). The standard mathematical model describing the reactor 

operation is extended by introducing the actuator’s dynamics. The state-space and control con-

straints are considered by a nonlinear change of the variables of the plant’s initial model using 

linear sat functions. In the transformed system, these constraints are considered by feedback 

control law design. The block approach allows linearizing the feedback control law by sequen-

tially solving the first-order design subproblems. Under incomplete information on the state 

vector and the effect of exogenous disturbances, an observer of the state vector and disturbances 

is constructed to estimate the unknown signals with a given accuracy. The effectiveness of the 

proposed approach is illustrated by simulating the CSTR–DC motor system in MATLAB. 

 
Keywords: CSTR, tracking problem, block approach, observer of state vector and disturbances, state-

space and control constraints. 
 

 

 

INTRODUCTION 

The continuous stirred tank reactor (CSTR) is 

widespread in the chemical industry. The CSTR dy-

namics are usually described by two nonlinear first-

order differential equations [1, 2], a reference model 

for applying and testing new control algorithms. 

Nowadays, improving CSTR control is a topical 

problem that attracts the attention of many control 

theorists and practitioners [3–8]. 

Much research in this field involves the sliding 

mode approach [9–16]: it ensures robust properties of 

closed loop systems and invariance to exogenous dis-

turbances acting in control channels. Note that within 

this approach, control laws are often represented by 

the plant’s variables that physically cannot be discon-

tinuous functions, e.g., the flow rate of the coolant in 

the CSTR jacket. Hence, the practical importance of 

the sliding mode approach in the automation of vari-

ous technological processes is significantly reduced. 
 

 
_________________________________ 

State observers based on sliding modes and sys-

tems with deep feedback [17–21] are widely used to 

obtain information about the state vector and disturb-

ances. Note that under disturbances, all these vectors 

can be estimated only within such an approach. 

The problem of considering physical constraints 

on the state vector and control is underinvestigated in 

control theory. For example, only control constraints 

were taken into account in [22–24]. 

This paper proposes a complex solution for CSTR 

control that develops the original control law design 

method [25] for mechanical systems with constraints. 

It is methodologically based on a block approach to 

control [26], which decomposes high-dimensional 

problems into independently solvable subproblems of 

lower dimensions when designing feedback control 

laws and state observers. Treating the state variables 

as fictitious control actions, first of all, we satisfy the 

matching conditions for the disturbances in each sub-

problem. (In other words, the disturbance belongs 

to the control space.) In addition, using sat functions 

in local feedback law design, we ensure the bounded 

components of the state vector and controls. 
1This work was supported by the Russian Foundation for Basic 

Research, project no. 20-01-00363 A. 
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This paper is organized as follows. Section 1 brief-

ly describes the operation principle of a CSTR and its 

mathematical model and states the problem. In Sec-

tion 2, we construct an observer of the state vector 

and disturbances with discontinuous and continuous 

corrections with large gains. In Section 3, feedback 

design algorithms are developed by combining local 

feedback laws with continuous sat functions and dis-

continuous control of the armature voltage of a DC 

motor. Section 4 illustrates the effectiveness of the 

proposed algorithms by simulation modeling in 

MATLAB. 

1. PLANT’S MATHEMATICAL MODEL. PROBLEM 

STATEMENT 

A CSTR is a key component of equipment needed 

to complete chemical reactions in many chemical and 

biochemical industries. A complex chemical reaction 

occurs in a CSTR, e.g., converting a hazardous chem-

ical waste (reagent) into an acceptable chemical prod-

uct. The schematic diagram of the reactor is shown in 

Fig. 1. 

 

 
  

Fig. 1. The schematic diagram of a CSTR. 

 

An irreversible first-order exothermic reaction 

AB + ΔH occurs in the tank, where A is a reagent, B 

is a product, and ΔH is the thermal effect of the chem-

ical reaction (enthalpy). 

The CSTR volume is equal to V. A reagent having 

a concentration CAf, a temperature Tf, and a density ρ 

is supplied to the reactor input at a flow rate q. 

The temperature in the reactor is maintained at a 

certain level through setting a coolant temperature in 

the jacket, Tc, by controlling the flow rate of the cool-

ant. The reactor’s output product is characterized by a 

temperature T, a concentration CA, and a flow rate q 

under the invariable substance volume in the reactor. 

Assuming the invariable substance volume in the 

reactor, ideal mixing, and the invariable substance 

density in the reactor, the laws of conservation of 

mass and energy yield the following dynamic model 

of CSTR [16]: 
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(1) 

The parameters of the model (1) are described in 

Table 1.  

 
Table 1 

The parameters of the CSTR model: values and units 

of measurement 

 

Parameter Value 

Unit of 

measure-

ment 

СА The concentration of product 

B 

kmol/m
3
 

T  Temperature in the reactor 

and product temperature 

K 

q Reagent flow rate m
3
/min 

V Reactor volume  m
3
 

Caf Reagent concentration kmol/m
3
 

k0 First-order reaction rate con-

stant 
min

1 

E Activation energy J/mol 

R Universal gas constant J/(molK) 

Tf Reagent temperature K 

ΔH Reaction enthalpy cal/kmol 

ρ Reagent density g/m
3
 

Tc Coolant temperature K 

Cp Reagent specific heat cal/(Kg) 

U Heat-transfer coefficient W/(m
2
K) 

A Heat delivery surface m
2
 

 

The goal of CSTR control is to tune the coolant 

temperature Тс by changing the coolant flow rate so 

that the temperature T in the reactor corresponds to 

the desired values. 

The coolant is supplied to the reactor by a pump 

with a DC motor. According to [27], the operation of 

this motor is described by the system of equations 

3 21 4( ) ( ( ) ( )),Lx t a gx t m t   

4 32 2 3 31 4( ) ( ( ) ( ) ( ))x t a u t gx t a x t   ,          (2) 

where 3( )x t  is the motor shaft rotation frequency; 

4( )x t  is the armature current; 2( )u t  is the armature 

voltage; constg   is a magnetic flux; ( )Lm t  is the 
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load moment; const 0ija    are the motor’s design 

parameters. 

The problem is to track a given coolant tempera-

ture in the jacket, ( )dT t , by the output variable ( )T t : 

2( ) ( ) ( ) 0.de t T t T t    

Assume that the pump load is 
2
3 ( ), const,Lm mx t m   and the temperature in the 

jacket is proportional to the coolant flow rate: 

3 0( ) ( ) ( ( ))c cT t T t x T T t   , where 0 const 0cT    

denotes the coolant temperature at the jacket input. 
Under these assumptions, we write the plant’s model 
(1), (2) in new variables: 

1 1 1 2 1 1

2 2 1 2 1

3 0 2 2

2
3 21 4 3

4 32 2 3 31 4

( ) ( ) ( ) ( ) ξ ( ),

( ) ( ) ( ) ( )

( ( ) ) ξ ( ),

( ) ( ( ) ( )),

( ) ( ( ) ( ) ( )),

c d

x t ax t f x x t t

e t ae t bf x x t

x T T t e t

x t a gx t mx t

x t a u t gx t a x t

   

   

   

 

  

         (3) 

где 1( ) ( )Ax t C t , 2( ) ( )x t T t , 2 2( ) ( ) ( )de t x t T t  , 

1ξ ( ) ( )Aft aC t , ddf TTTat  )()(ξ2 , 1 2( )f x   

2γ/ ( )
0

x tk e ,
q

a
V

 , γ
E

R
 , Δ

ρp

H
b

C
 , and β .
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UA
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  

For the control of (3), let the output variable 

2( ) ( )y t e t  and the armature current 4x  be measured.  

The disturbance 1ξ ( )t  depends on the input rea-

gent concentration ( )AfC t  and is difficult to measure 

in real-time. On the contrary, the input reagent tem-

perature ( )fT t  is rather easy to measure. In the se-

quel, assume that the disturbance 1ξ ( )t  is unmeasured, 

whereas the signal 2ξ ( )t  is measured.  

In view of the technological process features, the 

system variables should satisfy the constraints 

     4 4

2

[0, ], 2, 3; ;

, , const 0.

i i

i

x X i x X

u U X U

  

  
    (4) 

The problem of considering state-space and con-

trol constraints is currently underinvestigated in con-

trol theory. This paper proposes to take them into ac-

count in the plant’s mathematical model by introduc-

ing a change of variables––a linear sat function. For 

details, see Section 3. 

Control should maintain given values for the out-

put product’s temperature and concentration. In this 

case, the voltage 2u  at the DC motor armature is the 

control action in the temperature loop, and the reagent 

flow rate q  is the control action in the concentration 

loop. In what follows, we will design the temperature 

control loop in the reactor, assuming the value 
q

a
V

  

to be known. The next section deals with estimating 

the state vector and disturbances in the system (3). 

2. DESIGNING AN OBSERVER OF THE STATE VECTOR 

AND DISTURBANCES 

Consider the problem of estimating the state vec-
tor and disturbances in the system (3) from the meas-

ured output variables 2e  and 4x
 
under the assumption 

that the signals q
 
and 2ξ

 
are measured. 

The observability of the system (3) in the output 

variables 2e  and 4x
 
is established based on the fol-

lowing considerations: 

 The DC motor model (the last two equations in 
(3)) does not depend on the variables of the reactor 
model (the first two equations in (3)), and its observa-

bility in the variable 4x
 
is obvious due to the block 

observability form (BOF) [28]. The variable 3x is es-

timated by an observer designed using the DC motor 
model.  

 Since the variables 2 3, ,e x
 
and 2ξ

 
are measured 

(see below), the reactor model structurally coincides 

with the block observability form considering the dis-

turbances [21]. Hence, it is also observable [21]. 

Note that the desired observer will be constructed 

designed in the sequence indicated above. Now we 

formulate some theoretical results on systems with 

deep feedback, which will be used in the further 

presentation. 

Lemma. Consider a first-order system of the form 

ε( ) ξ( )t u t  ,                        (5) 

where ε( ), ( ), ξ( )t u t t R  denote the state variable, 

control, and disturbance, respectively, such that 

ξ( ) constt E   and ξ( ) const, 0t E t    . 

Then there exists a control law 

( ) αε(t), α const 0,u t     such that the relations: 

1) 0ε( ) Δt  ,  

2) 0ε( ) Δt  , 

3) 0αε ξ Δ   

hold for any given constants 0 0Δ ,Δ ,α,α const 0   in 

a finite time 0 0t  . 

P r o o f  

1) The convergence of the state variable ε  of the 

system (5) to a given neighborhood of zero, 0ε Δ , is 

ensured by choosing a candidate Lyapunov function 

20.5εV  . We define the gain as 0
0

α
E




. 

Then the condition 0 0εε ε( α ε ξ) ε ( α εV       

0) 0 α ε 0E E     holds out of the domain 
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0
0

E
ε Δ

α
  . In the case 0ε(0) Δ , the variable does not 

leave the given neighborhood 0ε( ) Δ ,  0t t   ; in the 

case 0ε(0)   , it can approach this neighborhood from 

outside without limit. Hence, choosing 0α α  ensures the 

convergence of the state variable to the given neighborhood 

0ε( ) Δt   in a finite time. Really, since 0
0

Δ Δ
α α

E E
   , 

the variable will stay in the new neighborhood 

ε( ) Δ,  0t t   , if ε(0) Δ , or approach the new neigh-

borhood without limit if ε(0)   , reaching the neighbor-

hood 0
0

Δ
α

E
  in a finite time. The solution of (5) satisfies 

the bound  α α ατ

0

ε( ) ε(0) ξ τ  τ

t

t tt e e e d   
αε(0) te 

α(1 )
α

tE
e , and the time 0t  of reaching the domain 

0 0ε Δ , t t   , can be estimated as: 

α
0 0

0

ε(0) Δ1
( ε(0) Δ) Δ Δ ln ,

α Δ Δ

te t   
      

 
0ε(0) Δ .  

2) A similar result applies to the derivative of the 

state variable in the system ε αε ξ    obtained by differ-

entiating both sides of equation (5). Let 0
0

ε Δ
α

E
   be a 

given neighborhood of zero. We choose 0α α  and denote 

0
0

Δ Δ
α α

E E
   . Then the relation 0 0ε Δ , t t  , where 

0
0 0

ε(0) Δ1
ln

Δ Δ Δ
t

 
    

 and 0ε(0) Δ , will hold in a finite 

time.  

3) Due to equality (5) and item 2), we have 

0 0αε( ) ξ( ) Δ ,t t t t    . Hence, the disturbance can be 

estimated with a given accuracy: αε( ) ξ( ) δ( ),t t t 

0 0δ( ) Δ ,t t t   . Note that for constant disturbances, the 

system ε αε ξ, 0,      has the solution αε ε(0) te . 

Therefore, the disturbance estimate is asymptotically con-

vergent: αε ξ, t  .  

Choosing the parameter α  based on the condition 

0 0α max{ /Δ  , /Δ }E E  ensures the desired convergence of 

the variable ε( )t  and its derivative ε( )t  to the given do-

mains: 1) 0ε( ) Δt  , 2) 0ε( ) Δt  , 3) 0αε( ) ξ( ) Δt t  ,

0 0max{ , }t t t  . The proof of this lemma is complete. ♦ 

For estimating the state vector of the system (3), 

we design an observer of the form 

1 1 2 1 1

2 2 3 0 2 2 2

3 21 4 3

4 32 2 31 4 4

[ ( )] ν ,

β ( ) ξ ν ,

ν ,

( ) ν ,

c d

z a f x z

z az z T T e

z a gx

z a u a z

   

      

 

  

          (6) 

where iν  are the observer corrections determined be-

low. 

Using formulas (3) and (6), we rewrite the system 

in the residues ε  i i ix z  , 1, 3, 4i  , and 

2 2 2ε  e z  : 

1 1 2 1 1 1

2 2 0 2 3 1 2 1 2

2
3 21 3 3

4 32 31 4 32 3 4

ε ( ( ))ε ξ ( ) ν ,

ε ε β( )ε ( ) ( ) ν ,

ε ν ,

ε ε ν .

c d

a f x t

a T T e bf x x t

a mx

a a a gx

    

      

  

   

(7) 

Within the cascade approach [28], a design proce-

dure for the observer (7) of the state vector and dis-

turbances includes the following steps: 

1. We choose an appropriate correction for the 

last subsystem of the system (7), i.e., the discontinu-

ous function 4 4 4ν sign(ε )l , where 4 constl  

32 3a gx , to ensure the occurrence of a sliding mode 

on the line 4ε 0 . The average (equivalent) value of 

the discontinuous signal is 4 32 3ν eq a gx  . In prac-

tice, the equivalent value of the discontinuous control 

can be obtained using the first-order filter 

4μτ τ ν ,    where μ 0  and 4ν τeq  [28]. 

2. Using the equivalent value and 

3 4 32ν / ( )eqx a g  , we construct the correction 

3 21ν a m   2
4eq 32 3 4 32 3(ν / ( )) [ ν / ( ) ]eqa g l a g z    

for the third subsystem of the system (7). As a result, 

the third subsystem of (7) takes the form 333 εε l , 

and the variable 3ε  asymptotically vanishes with an 

appropriately assigned coefficient l3 > 0: 3ε 0 

3 3z x . 

3. Under the assumption 3 3 3ε 0 z x   , the 

second equation of the system (7) takes the form 

2 2 1 2 1 2ε ε ( ) νa bf x x    . 

We choose the correction 2 2 2ν sign(ε )l , 

2 1 2 1const ( ) ,l bf x x   to ensure the occurrence of a 

sliding mode on the plane 2ε 0 . The average value 

of the discontinuous signal is 2 1 2 1ν ( )eq bf x x .  

4. In the last step, we choose 1ν 

2

1 2 1 1 1 2 1 1

1 2

ν
( ( ) ) ( ( ) )ε

( )

eq
f x l z f x l

bf x

 
      

 
.  
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Then the first equation of (7) takes the form 

1 1 1 1ε ( )ε ξa l    . Under the assumptions 

1 1ξ ( )t E  and 1ξ ( ) ,t E  the relations 

1
1 1

1

ε Δ
E

a l
 


 and 1

1 1

1

ε Δ
E

a l
 


 hold by the 

lemma. Thus, assigning an appropriate coefficient 

1 0l  , we ensure the desired stabilization accuracy 

1 1ε Δ  in a finite time, thereby estimating the varia-

ble 1 1 1( ) ( ) δ ( )x t z t t   and the disturbance 

1 1 1 1ξ ( ) ( )ε ( ) δ ( )t a l t t    with the desired accuracy: 

1 1δ ( ) Δt   and 1 1δ ( ) Δt  . Note that 1 1, 0    as 

1l  . (The estimation accuracy grows infinitely in 

the case of large gains.) 

Thus, the state vector of the system (3) and the 

disturbance 1ξ ( )t  have been estimated. 

This design procedure for an observer of the state 

vector and disturbances involves discontinuous and 

continuous corrections. Clearly, the design based on 

sliding modes is easier from a computational view-

point. However, the average (equivalent) values of 

corrections are produced by first-order filters [28], 

which dynamically extends the state space of the orig-

inal model. The technique for linearizing the residual 

equations (7) with continuous corrections (Step 4 of 

the observer design procedure) can be used in all oth-

er steps by analogy. In this case, the cascade approach 

[28] allows decomposing the observer design proce-

dure into one-dimensional subproblems successively 

solved with a predetermined accuracy of the resulting 

estimates without extending the state space of the 

closed loop system. 

The next section considers a control law design 

procedure for the system (7) under complete infor-

mation (the available estimates of the state vector and 

disturbances). 

3. FEEDBACK LAW DESIGN 

Using the block approach, we present the general 

solution under complete information about the state 

vector and disturbances provided by the observer (6). 

In the case of complete information and the state-

space and control constraints (4), the feedback law 

design procedure based on the block approach [21] 

includes the following steps. 

Step 1. We rewrite the second equation of the sys-

tem (3) as 

2 2 3 2( ) β ( ) ξ ( )e ae t d t x t    ,                (8) 

where 2 1 2 1 2ξ ( ) ξbf x x   and 0( ) ( )c dd t T T t  

2( ) 0,e t  constd D  . 

In the system (8), the control action is the motor 

shaft rotation frequency 3x . Under pump loading, this 

frequency is positive. We introduce the change of var-

iable 

3 3 3 3β ( ) sat ( )e d t x M s  ,                (9) 

where 3 2 2 2ξs k e  . Stabilizing the variable 

3 3 3 3β ( ) sat ( ) 0e d t x M s   , we consider the con-

straint (4) on the variable 3 3[0, ]x X  by choosing 

3 30 βM DX  .  

Definition. Let const 0M    and constb  . 

Then  sat( ) min ,  sign( )M s M s s  and sat ( )M s 

sat( )0.5[1 sign( )]M s s . 

 

 
 

Fig. 2. The graph of Msat(t). 

 

 
 

Fig. 3. The graph of Msat+(t). 
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Substituting the sum (9) into formula (8), we 

transform the second equation to  

2 2 3 3 3 2sat ( ) ξe ae e M s     .        (10) 

If the variable 3s  falls into the linear zone 

3 30 s M  , equation (10) reduces to  

2 2 2 3( )e a k e e    , 

where the parameter 2 0k   determines the conver-

gence of 2e  to a given neighborhood of zero. Accord-

ing to the lemma, this neighborhood is described by 

2 3 2Δ / ( )e a k   under the condition 

3 3Δ conste   . 

Falling into the linear zone depends on the ampli-

tude 3M  due to the relation 3 3 0s s   holding in the 

nonlinear zone 3 3(0, )s M ; see Fig. 3. We write the 

equation for the variable 3s : 
3 3 2 2( ξ ) ξs as    

2 3 3 3 2[ sat ( ) ξ ]k M s e   .  

The parameters 3M  and 2k  of the function 

3 3sat ( )M s
 are assigned from the following consider-

ations.  

 For 3 3[ , ]s M   (which implies 3 3sat ( )M s 

3M ), the inequality 
3 3 2 2( ξ ) ξs a s    

2 3 3 2[ ξ ] 0k M e     holds. Hence, the amplitude 

3M  should satisfy the constraint 3M 

2 2 3 2

2

1
[ ξ ξ ] ξa e

k
   . 

 For 3 ( ,0)s    (which implies M3sat
+
(s3) = 0 

and 3 3sat ( ) 0M s  ), the inequality 3 3 2( ξ )s a s   

2 2 3 2ξ [ ξ ] 0k e    holds. Hence, under the condi-

tions 3 2ξ 0e    and 3 3Δ conste   , the coefficient 

2k  should satisfy the constraint 
2 2

2

3 2

ξ ξ

ξ

a
k

e





. Note 

that due to 1 2 1( ) ( ( ) ) 0f dbf x x a T t T   , the require-

ment 2 3ξ e  1 2 1 3( ) ( ( ) ) 0f d dbf x x a T t T T e      

restricts the desired stabilization accuracy 3 3Δe   

(see the next step) and the rate of change of the given 

neighborhood: 3 1 2 1Δ ( ) ( ( ) ( ))f dbf x x a T t T t    and 

1 2 1( ) ( )dT t bf x x  3( ( ) ( )) Δf da T t T t  . In the phys-

ical sense, the latter inequality limits the rate of 

change of the given neighborhood to an acceptable 

level when the tracking problem becomes solvable.  

Step 2. We ensure that the variable 3e  from equa-

tion (10) falls into the neighborhood of zero: 3 3Δe  . 

According to (9), the dynamics of the variable 3e  are 

described by 

34213 ξ)(β  gxatde .               (11) 

Treating the variable 4x  in the system (11) as a ficti-

tious control action, we make it equal to 

4 21 4 4 4β ( ) sat( )e d t a gx M s  ,       (12) 

where  4 4 4 4 4sat(s ) min , sign( )M M s s  (Fig. 2) and 

4 3 3 3ξs k e  . Stabilizing the variable 4 0e  , we 

consider the constraint 4 4x X  by choosing an am-

plitude 4 21 4βM Da gX . 

Equation (11) with the local feedback law (12) 

takes the form 

3 4 4 4 3sat( ) ξe e M s   . 

In the linear zone (ǀs4ǀ 4 4 4 4sat( )M M s s   ), it re-

duces to 

3 3 3 4e k e e   . 

The amplitude 4M  under which the variable 4s  

falls into the linear zone is found using Lyapunov’s 

second method. 

We write the derivative of the function 4s  as 

4 3 4 4 4 3[ sat( ) φ (.)] ξs k M s    , 

where 
2

3 21 3 3 3 32
ξ 2β [ sat ( )]

d
da mx x M s

dt

   and 

2
4 4 21 3 3 3φ β [ sat ( )]

d
e da mx M s

dt

   .  

We choose a candidate Lyapunov function of the 

form 
2
40.5V s . Then the requirement 4 4 0V s s   

outside the linear zone ( 4 4s M ) yields the deriva-

tive 4 3 4 4 4{ [ sign( ) φ (.)]V s k M s    3ξ } 0 . Hence, 

the amplitude should be assigned from the condition 

4 4 3 3Φ /M E k  , where 3 3ξ constE   and 

4 4φ Φ const  . 

Step 3. The last step is to stabilize the variable (12) 

described by 

4 21 32 2 4β ξe da ga u  ,  (13) 

where 4 21 4 21 32 3 31 4ξ β ( ) β ( ) ( )d t a gx d t a ga gx a x   

4 4[ sat(s )].
d

M
dt

 

We choose the discontinuous control 

2 2 4sign( )u M e .                    (14) 
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In the system (13), a sliding mode occurs on the 

plane 4 0e    in a finite time under the existence con-

dition 4
2

21 32

ξ

β
M

da ga
 . 

For clarity, we write the dynamic equation of the 

system (5) in this sliding mode:    

1 1 1 d 1 1

2 2 2 3 3 3 3 4

(T ) ξ ( ),

( ) , , 0.

x ax f x t

e a k e e e k e e

   

      
   (15) 

In the system (15), the variables 3e  and 2e  asymp-

totically vanish: 4 3 20 0 0e e e     . At the 

same time, the first subsystem is an equation of zero 

dynamics. Due to 1 d( ) 0f T  , this equation is stable. 

Thus, the discontinuous control (14) ensures a 

sliding motion on the plane 4 0e   in a finite time, 

described by the stable system (15) of linear differen-

tial equations. 

Note that if the subsystem (13) is stabilized using 

the continuous feedback law  

4 4 4
21 32 2 4 4 4 2

21 32

ξ
β ξ ,

β

k e
da ga u k e u

da ga


       

then the last equation of the system (15) will take the 

form 4 4 4e k e  . Hence, the closed loop system will 

be stable. Among additional requirements for imple-

menting this continuous control, we mention infor-

mation about the variable 4ξ  and a pulse-width 

modulation device to control the DC motor voltage 

inverter. For implementing the discontinuous control 

(14), we need only an upper bound on this variable: 

4 4ξ const.E   

The first subsystem of (15), treated as an equation 

of zero dynamics, has a bounded solution: 

1
1

1( )d

E
x

a f T



 for 1 1ξ ( ) constAft aC E   ; see 

the lemma. Particularly for 1 1ξ constE   and 

2 constdx T  , the lemma implies 1

1( )

Af

d

qC
x

q Vf T



. 

(Recall that 
q

a
V

 .) Choosing the parameter q  as the 

control action in the product concentration loop, we 

have the following limit relations: q 

A AfC C  and 0 0Aq C   . Therefore, we can 

maintain the product concentration within a reasona-

ble range 1 2[ , ]A A AC C C  by tuning the reagent flow 

rate into the reactor. 

Clearly, increasing (decreasing) the reagent flow 

rate into the reactor, we decrease (increase, respec-

tively) the product concentration. 

Consider three sets of parameters in which the 

values 0.9AfC  and 0.9q   are fixed, whereas the 

desired temperature varies: 1) 350dT  , 2) 380dT  , 

3) 400dT  . According to the relation 1x 

1( )

Af

d

qC

q Vf T
, we obtain: 1) 1 0.3251x  , 2) 1x 

0.3214 , 3) 1 0.3192x  . 

Thus, the product concentration decreases as the 

temperature in the reactor increases, and this conclu-

sion agrees with the simulation results; see Fig. 10 in 

Section 4. 

4. SIMULATION RESULTS 

The effectiveness of the proposed approach was 

verified by numerical simulations of the CSTR–DC 

motor system in MATLAB. The parameters for the 

system (3), observer (6), and control (14) were select-

ed from Table 2. 
Table 2 

Model parameters 

Group of 
parameters 

Parameter values 

CSTR parameters 
 
 
 
 
DC motor 
parameters 

0.9, 1, β 0.003,γ 80, 5,q V b    

0 2k  , 0 300cT  , 

0.9 0.005sin(0.03π )AfC t  ,

395 0.01sin(0.05π )fT t  . 

21 0.8, 0.7, 0.0001,a g m    

31 3212.5, 2a a   

Initial conditions 
and reference 

1 2 3(0) 0.3, (0) 400, (0) 100,x x x  

4(0) 20x   

Simulation 
scenario 

(0) 350dT   for 1[0, ]t t ,  

1( ) 380dT t   for 1 1( , ], 75t t t    

Observer 
parameters 

(0) 0, 1,4iz i  ,

1 2 3 4100, 3, 100, 500l l l l     

Controller 
parameters 

2 3 4400, 50, 170,M M M  

2 30.5, 0.1k k   

Physical 
constraints on 
state variables 

3[0,1], [0,400], [0, 100],AC T x  

4 2150, 400x u    

 

The temperature in the reactor jacket, x2, the arma-

ture current x4, the reagent flow rate q , and its tem-

perature fT  were assumed measurable in the plant. 

The state observer (6) was constructed to obtain com-

plete information about the state variables of the 

CSTR–DC motor system and the exogenous disturb-

ances (to estimate the unknown signals with a given 

accuracy). 
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The observation errors ε , 1,4i i ix z i   , are pre-

sented in Figs. 4–7.  

Figure 8 shows the graph of the exogenous dis-

turbance 1ξ 0.9(0.9 0.005sin(0.03π ))t 
 
reconstruct-

ed  using  the  observer  (6).  The  dashed  line  corre- 

 

 
  

Fig. 4. The observation error ε1(t). 

 

 

 
  

Fig. 5. The observation error ε2(t). 

 

 

   

 
Fig. 6. The observation error ε3(t). 

sponds to the real disturbance values and the solid line 

to the restored ones. Figure 9 shows the graph of tem-

perature variations in the reactor jacket.  

 

 
  

Fig. 7. The observation error ε4(t). 

 

    

 
  

Fig. 8. The exogenous disturbance ξ1(t). 

 

 

 
  

Fig. 9. Temperature in the jacket, x2(t). 
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Figures 10–13 show the graphs of the product con-

centration 1( )x t , the motor shaft rotation frequency 

3( )x t , the armature current 4( )x t , and the armature 

voltage 2( )u t , respectively.  

 

 
  

Fig. 10. The product concentration x1(t). 

 

 

 
  

Fig. 11. The motor shaft rotation frequency x3(t). 

 

 

 
  

Fig. 12. The armature current x4(t). 

 

 
  

Fig. 13. The armature voltage u2(t). 

 

CONCLUSIONS 

The mathematical model of a continuous stirred 

tank reactor has been extended by introducing the dy-

namics of an actuator (DC motor) to apply the theory 

of sliding modes by (de)activating the switches of the 

voltage inverter. 

An observer with mixed corrections (discontinu-

ous and continuous) has been designed to obtain in-

formation about the unmeasured state variables and 

disturbances. 

In the proposed feedback law design procedure, an 

observer estimates the real signals with a given accu-

racy both in a real sliding mode and when using deep 

feedback. A key feature of this work is the feedback 

law designed within the block approach to consider 

state-space and control constraints for the CSTR. 

The effectiveness of this control algorithm has 

been validated analytically and illustrated numerically 

by simulations in MATLAB. 
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