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Abstract. This survey deals with mathematical models for the formation of information com-

munities under uncertainty. The models of opinion dynamics are considered in detail. Within 

these models, individuals change their opinions under the influence of other individuals in a 

social network of a nontrivial structure.  Two classes of such models are presented: the models 

with rational (Bayesian) individuals and the models with naive (heuristic) individuals. For each 

of the classes, conditions for the formation of information communities in social networks are 

described. For various information communities to emerge in a society with rational agents, the 

rationality of individuals is often limited, and some assumptions on different awareness of indi-

viduals are introduced considering the network structure. For a society with naive individuals, 

different modifications of the opinion dynamics mechanism are often adopted.  
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As noted in part I of the survey (see [1]), identify-

ing and studying information communities in social 

networks – the sets of individuals with similar and 

stable beliefs about a given issue – is an important 

problem in many subject areas. To solve this problem, 

we should understand the patterns of belief dynamics 

in a social network. Features of information pro-

cessing by an individual are considered in cognitive 

science, psychology, and social psychology; for ex-

ample, see [2, 3]. Formal microlevel models are de-

veloped to describe the belief dynamics in networks 

with these features; for example, see [4–8]. Models of 

belief dynamics and the formation of information 

communities in social networks based on microeco-

nomic, cognitive, and socio-psychological foundations 

were discussed in part I of the survey [1]. Particularly, 

the  concept  of  an  information  community  was out- 
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lined, and a general conceptual model was introduced 

to describe information processing and decision-

making by an individual in a social network. Within 

this model, agents seek to eliminate uncertainty about 

the environment’s parameter, observing external sig-

nals and the actions of their neighbors in the social 

network. The factors affecting belief dynamics and the 

formation of information communities in social net-

works were considered. According to the analysis of 

the existing models, rational agents in a society of a 

degenerate structure often reach a true belief about the 

issue. For various information communities to emerge 

in such a society, the rationality of individuals and 

their awareness should be modified somehow; for ex-

ample, see [9–11]. However, part I of the survey did 

not touch upon two key factors affecting the formation 

of information communities: the structure of a social 

network and agents with heuristic belief updating 

rules. These issues will be considered below. 

Part II of the survey is organized as follows. Sec-

tion 1 considers the formation of information commu-

nities in models with Bayesian agents interacting in 

the network. Section 2 considers the formation of in-

formation communities in a network of agents with 

heuristic belief updating rules.  
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In models with a network structure, a finite or 

countable set of individuals is specified. The main el-

ements of networked models of belief dynamics are 

the awareness structure of agents, the set of their ac-

tions and payoff functions, and the observability of the 

actions of other agents. Let us describe them in detail. 

The awareness structure of agents. The state of the 

world – the value of the parameter θ ∈ Θ – is a realiza-

tion of a random variable unobservable by individuals. 

Each individual i has private information: a private 

signal si representing a random variable whose distri-

bution depends on the value θ. The signal value pro-

vides information about the true value of θ. Private 
signals are conditionally independent of the state of 

the world θ. The private belief is set initially and does 
not change over time. The agent’s belief in some peri-
od t will depend on his observations in previous peri-

ods. 

The actions and payoffs of agents. In a given peri-

od, each agent i can perform an action xi ∈ X once, 

gaining a payoff u(xi, θ). When choosing his action, 

the agent is guided by the subjective probability θ and 
the expected payoff from performing the action, U = 

Ei[u(xi, θ)], considering all available information. The 

informative value of the agent’s action for observers 
depends on the set X. 

In the case of binary actions X = {0, 1} and the 

state space Θ = {0, 1}, the payoff function is defined 
as u(x, θ) = θ – c, where 0 < c < 1. Under uncertainty, 

the payoff is given by 

    θ .u x E c x   

The standard way to define continual choice is to 

assume that the agent chooses an action 
1

x R  by 

maximizing the expected value of a quadratic payoff 

function: 

   2
, θ θ .u x E x      

The optimal action is  θx E , yielding the 

agent’s expected payoff  Var θU   . 

Public information and action history. The order of 

agents’ actions (interaction protocol) is defined in ad-

vance. Agent t (t ≥ 1) chooses an action in period t. 

The action history by this period has the form 

 1 1, , . t th x x    

Agent t knows the action history th  when choos-

ing his action. At the beginning of period t (before 

making their decisions), the agents have the following 

common knowledge: 

 the prior probability distribution of the state of 
the world θ,  

 the distribution of private signals and the payoff 
functions of all agents, 

 the action history th . 

The payoffs of different agents are unobservable. 
With the elements described above, the belief up-

dating process of individuals is as follows. In a period 
t ≥ 1, the probability distribution of the state of the 
world θ, which is based on the public information th  

only, is called the public or social belief F(θ | ht). 
Agent t uses the public belief and private information 
(signal st) to form his belief about the state of the 
world, which has the distribution F(θ | ht, st). Then he 
chooses an action maximizing the payoff E[u(xt, θ)] 
depending on his belief. The other agents know the 
payoff function of agent t and his decision model. The 
observed action xt is treated by them as the infor-
mation available to agent t (the private signal st). Ac-
cording to this information, the agents update the pub-
lic belief F(θ | ht + 1).  

Remark. Social learning is effective if the individ-
ual’s action fully reveals his private information. This 
is possible if the set of admissible actions is large 
enough. 

Let us consider basic models – the models of belief 
updating with continual and discrete actions – in 
which individuals observe the actions of all predeces-
sors. 

In the model of belief dynamics with continual ac-

tions, the state of the world is the realization of a ran-
dom variable or vector with the Gaussian distribution 

 θθ,1/ ρN  in the initial period. A countable number 

of individuals i = 1, 2, ..., is given. Each individual i 
receives a private signal si representing the sum of the 

true value and some noise  ~ 0, 1/ ρi N : 

si = θ + ϵi. 

The agent’s payoff is    2
, θ θu x E x     . In-

dividual t chooses an action tx R . The public infor-

mation at the beginning of period t consists of the pri-

or distribution  θθ, 1/ ρN  and the action history 

 1 1, ,t th x x   . 

Suppose that the public opinion about the value θ 
in period t obeys the Gaussian distribution N(µt, 1/ρt). 
Then the same assumption is valid in the period t = 1 
for the parameters µ1 = θ and ρ1 = ρθ. As is easily 
demonstrated, it will hold for each subsequent period. 
In any period, the public belief is updated in three 
stages as follows. 

 Calculating the belief of agent t. The public belief 

N(µt, 1/ρt) is updated according to Bayes’ rule based 
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on the private information st = θ + ϵ. The public belief 

is the distribution  μ , 1/ ρt tN  with the parameters  

ρ ρ ρt t  , 

 μ α 1 α μt t t t ts   , where tα ρ / ρt  . 

 Choosing the action xt of agent t. The agent seeks 

to maximize the payoff  2θE x    . He chooses an 

action equal to the expectation of θ:  

 α 1 α μt t t t tx s   . 

 Social learning. Network agents observe the ac-

tion xt and update the public belief about θ during the 

next period. Recall that the decision rule of agent t and 

the values αt  and μt  are known to all agents. There-

fore, the observed action xt fully reveals the private 

signal st. The public information at the end of period t 

is identical to the information of agent t: 1μ μt t   and 

1ρ ρt t  . Hence, in period (t + 1), the belief still has 

the Gaussian distribution N(µt+1, 1/ρt+1), and the learn-

ing process can be continued. Note that the action his-

tory  1 1, ,  t th x x    is equivalent by information 

content to the sequence of signals ( 1 1, ,   ts s  ). 

The accuracy of public persuasion increases ac-

cording to the law  θρ ρ 1 ρt t   , i.e., the variance 

will converge to zero. Also, the significance of private 

signals tends to zero, and the agents will accordingly 

imitate each other’s actions. Under “noisy” observa-

tions of the actions of other agents, the rate of social 

learning decreases [12]. There are modifications of the 

basic model of social learning [13] in which the agent 

pays for the required accuracy p of his private signal 

and then performs an action. Under minimum assump-

tions about the cost function c(p), it can be proved that 

the agents will stop “buying” the signal after some 
time, and social learning will stop.  

In the model of belief dynamics with discrete ac-

tions, the state of the world  θ Θ 0,1    is specified 

randomly in the initial period,  1μ θ 1P  . A finite 

(N) or countable number of agents is indexed by inte-

ger t. Each agent receives a symmetric private signal 

q> ½:  θ|θtP s q  . Agent t chooses an action 

 0,1 tx   in period t (and only in this period). The 

agent’s payoff is given by the state of the world: 

  0,   0,
, θ

θ ,   1,
x

u x
c x


   

 

where 0 < c < 1. (In the classical BHW-model, pro-

posed by Bikhchandani, Hirshleifer, and Welch [144], 

the state of the world θ is the agent’s payoff from ac-

tion 1 (accept), and the parameter c describes the costs 

incurred by action 1.) Since  0,1x , the payoff can 

be written as    ,θ θu x c x  . Under uncertainty, 

the agent considers the payoff to be the expectation of 

u(x, θ) given the available information.  

As before, the information available to agent t is 

his private signal and the action history ht. The public 

belief at the beginning of period t is the probability of 

state 1 given the public history ht: 

 μ θ 1| .t tP h   

As was shown in [14], an information cascade can 

quickly arise in such models: the agents in sequence 

ignore their private signals and act in the same way as 

their predecessors, thereby not providing their follow-

ers with new information. In other words, the entire 

society ineffectively aggregates the available infor-

mation and may come to wrong beliefs. In a possible 

modification [15] of this model, the agents acquire 

information to change their actions. If the information 

helps break the current consensus and is reasonably 

“inexpensive,” the agents will reach the right beliefs 
and actions. 

Thus, in the models of belief updating with a ca-

nonical structure of a social network (in which each 

agent observes the actions of all predecessors), social 

interactions will yield one information community 

with a true or false belief about the issue of interest. 

(The conditions of true or false belief have been dis-

cussed above.) Let us now consider the models of be-

lief updating for Bayesian agents with a more complex 

topology of social networks.  

Formation of information communities in net-

works with a nontrivial structure  
Let us start with the exemplary model of sequential 

social learning with a nontrivial structure. Consider a 

countable set of agents (individuals) indexed by 

n  [16]. Agents make decisions sequentially and 

once. The payoff of agent n depends on his action and 

the initial state of the world θ. For simplicity, the state 

of the world and the actions of agents are assumed 

binary: for agent n, the action is  0,1 nx  , and the 

state of the world is  θ 0,1  . The payoff of agent n is 

given by 

 
1,   θ,

, θ
0,   θ.

n

n n

n

x
u x

x


  

 

Also, the values of the state of the world are sup-

posed equally probable, i.e., 

   θ 0 θ 1 1/ 2P P    . The agents do not know 

the state θ. Each agent forms a belief about the state of 

the world by observing a private signal ns S  ( S  is a 
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metric space) and the actions of other agents. The sig-

nals are conditionally independently generated accord-

ing to the probability measure θF . The pair (F0, F1) is 

called the signal structure. The measures F0 and F1 are 

absolutely continuous relative to each other: a signal 

that would completely reveal the state of the world is 

impossible. 

Each agent n observes the actions of his neighbors 

in the social network only, i.e., the agents from the set 

   1,  2, ,   1B n n   . Each network neighborhood 

B(n) is generated according to some probability distri-

bution nQ  defined on the set of all subsets {1, 2,…, n 

– 1}. Each distribution Qn in the sequence {Qn}n ∈ N 

does not depend on other distributions and the realiza-

tions of private signals. The sequence {Qn}n ∈ N forms 

the social network topology, which is common 

knowledge, unlike the realized neighborhood B(n) and 

the private signal sn. The canonical topology consid-

ered in the literature, when each agent observes all 

previous actions, is realized if for any n  the 

probability of the neighborhood {1, 2,…, n – 1} is 

equal to 1 in the distribution Qn. Other options are also 

possible, for example, the realization of a random 

graph model. 

The information set of agent n is defined as 

    ,  ,  for all  .n n kI s B n x k B n   

Let In denote the set of all admissible information 

sets of agent n. The strategy of agent n, σn: In → {0,1}, 

is a mapping of the set of all admissible information 

sets into the action set. The strategy profile is a se-

quence of strategies σ = {σn}n ∈ N. For a given strategy 

profile σ, the sequence of actions of network agents is 

a random process {xn}n ∈ N. This process generates a 

measure Pσ. A strategy profile σ*
 is a perfect Bayesian 

equilibrium in the class of pure strategies in the social 

learning game if, for any n ∈ N, the strategy σ*
n max-

imizes the expected payoff of agent n under the oppo-

nents’ strategy profile *σ n .  

For a given strategy profile σ, the expected payoff 

of agent n from the action  σn n nx I  is 

σ ( θ | )n nP x I . Hence, for any equilibrium σ*
,  

 
     *

*

,σ
0,1

σ Argmax θ| .
n

n n ny
y

I P y I


   

This social learning game has a perfect Bayesian 

equilibrium in the class of pure strategies. The set of 

all such equilibria is denoted by Σ*
.  

The following question is of interest: Will the equi-

librium behavior guarantee asymptotic learning? For-

mally speaking, asymptotic learning arises in an equi-

librium σ if the value xn converges in probability to θ:  

 σlim θ 1.n
n

P x


   

The agents’ actions can be characterized as a func-

tion of the sum of two posterior beliefs: the agent’s 
private belief and the social belief. In an equilibrium 

σ ∈ Σ*
, the decision of agent n,  σn n nx I , has the 

form 

1,   1,

0,   1,

n n

n

n n

p q
x

p q

 
   

 

and  0,1 nx   otherwise. Here σ (θ 1| )n np P s   is 

the private belief, and 

   σ (θ 1| ,   ,   )n kq P B n x k B n    is the social belief.  

The private belief of agent n does not depend on 

the strategy profile. Using Bayes’ rule, it can be writ-
ten as  

 
1

0

1

1 .n n

dF
p s

dF


 

  
 

 

The support of the private beliefs is the range 

β,  β   , where     1β inf 0, 1 0r P p r    and 

   1β sup{ 0,1  | 1}r P p r    . The signal structure 

has bounded private beliefs if β 0  and β 1 , and 

unbounded if β 1 β 1   . In the latter case, the 

agents can receive an arbitrarily strong signal in favor 

a certain state.  

Consider some properties of network topologies 

and signal structures to present further results on as-

ymptotic social learning. A network topology has ex-

panding observations if, for all K N , 

 
lim max 0.n
n b B n

Q b K
 

   
 

  

The following theorem was proved: if the network 

topology {Qn}n ∈ N does not have expanding observa-

tions, then there exists no equilibrium σ in which as-

ymptotic learning will be achieved. If the network to-

pology does not have expanding observations, there is 

a finite set of agents whose actions will be observed 

with a positive probability by an infinite number of 

agents. As a result, they will be unable to aggregate 

information dispersed through the network. (Such a 

finite set of agents is called excessively influential 

[16].) 

If the network topology {Qn}n ∈ N has expanding 

observations, and the signal structure (F0, F1) implies 

the unboundedness of private beliefs, then the theorem 

on asymptotic learning in each equilibrium σ ∈ Σ*
 

holds. In particular, this theorem guarantees learning 

in the case of moderately influential agents (i.e., their 
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actions are visible to the entire society): they are not 

the only sources of information in the network. As an 

example, consider a network in which all other agents 

observe the actions of the first K agents, but each 

agent also observes its immediate neighbor, i.e., 

B(n) = {1, 2, ..., K, n – 1}. This network topology has 

expanding observations and, therefore, leads to learn-

ing under unbounded private beliefs. This conclusion 

contradicts the results for non-Bayesian learning mod-

els (see [17, 18]), in which the new beliefs of agents 

are the weighted average of the private beliefs and the 

beliefs of the agents they observe: if the first K agents 

are influential (other agents observe their actions), 

there will be no asymptotic learning. 

Now consider the signal structure (F0, F1) in which 

the private beliefs are bounded, and the network to-

pology {Qn}n ∈ N satisfies one of the following condi-

tions: 

–    1, , 1B n n    for all n (see the paper 

[199]). 

–   1B n   for all n. 

– There exists a constant M such that  B n M  

for all n and 

 
lim max  a.s.
n b B n

b
 

   

Then asymptotic learning will not be achieved in 

any equilibrium σ ∈ Σ*
. Particularly, there is no as-

ymptotic learning in a network where each agent n 

chooses 1M   neighbors from the set {1, …, n–1} 

uniformly and independently.  

Note that in this model, the agents perform their 

actions once, subsequently gaining their payoffs. In 

some situations, action can be postponed: agents may 

exchange messages––their information––without con-

siderable costs (except for time) to obtain additional 

information. An example of the agent’s payoff func-

tion [20] is  

 
τ

,τ ,δ π  if   θ and  wait for  τ,
, θ  

  otherwise,

i i t
i i

x x t
u x

x

    


 

where , 0,1i i t t
x x

 
     is the action sequence of agent i 

(  wait, 0, 1ix  ); π > 0 specifies the agent’s payoff; 
δ ∈ (0, 1) denotes the discount factor. At the qualita-

tive level, an analog of this two-stage model in the 

case of agents with heuristic belief updating rules is 

the model [21], in which agents first form their opin-

ions and then simultaneously perform their actions in 

accordance with the payoff functions.  

The conditions for achieving learning in a social 

network [16] are rather mild. The typical outcome of 

Bayesian social learning models is a long-term con-

sensus. In order to obtain information communities 

with different beliefs, it is necessary to relax the ra-

tionality requirement for social network individuals. 

In particular, the concept of quasi-Bayesian updat-

ing of agents is widespread [22–24]: each agent in the 

network believes that the actions of other agents are 

caused exclusively by their private signals. (This con-

cept is associated with cognitive constraints––the lim-

ited depth of agent’s inference.) The paper [24] con-

sidered sequential social learning in a social network 

(observation network) under the following assump-

tions. The world can be in one of two equiprobable 

states w ∈ {0, 1}. There is a countable set of agents 

indexed by i = 1, 2, 3,…, which act once and in turn 

(sequentially). At his move, agent i receives a private 

signal about the state of the world, si ~ N(1, σ2
) if w = 

1, or si ~ N(−1, σ2
) if w = 0. In addition, agent i ob-

serves the actions of his predecessors in a directed ob-

servation network Ni ⊆ {1, 2, ..., i − 1}. Based on this 

information, the agent forms his belief about the state 

of the world w and chooses an action ai ∈ [0, 1] max-

imizing his utility function ui(ai, w) = − (ai − w)
2
, more 

precisely, the expected utility  2

ia w     (Thus, 

the action chosen by him corresponds to his belief 

about the probability of the event {w = 1}.) The agents 

in the model are Bayesian, but the cited authors made 

a rather strong assumption about the naivety of net-

work participants: agent i mistakenly believes that the 

action of his predecessor j in the observation network 

is conditioned by the private signal of agent j only (he 

has no predecessors). In other words, agent i supposes 

that aj = P[w = 1 | sj], underestimating the correlation 

of the actions of his predecessors. Interestingly, the 

agent’s optimal action can be derived by a rule similar 
to the updating rule in DeGroot’s opinion dynamics 
model. As was established in [24], the society (all 

agents) of denser observation networks more often 

comes in the long run to a false estimate of the state of 

the world compared to that of sparse networks. Erro-

neous learning takes place: either lim 0n
n

a


  if w = 1, 

or lim 1n
n

a


  if w = 0. This effect can be explained as 

follows: in sparse networks, “early” agents do not 
strongly affect each other, and the consensus reached 

“includes” more independent sources of information 
and is likely to be correct. Also, it was demonstrated 

that the agents will almost surely come to a consensus 

in the case of continuous actions: their disagreements 

will disappear. However, if the agents’ actions are bi-

nary (for any agent i, ai ∈ {0, 1}), and the set of agents 

is divided into two groups with even and odd numbers 

so that, in accordance with the stochastic block model, 

the probability of an observation connection from 
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agent i to agent j is equal to qs if they belong to the 

same group, and equal to qd otherwise (qs > qd > 0), 

then there is a positive probability that all odd (even) 

agents will choose action 0 (action 1, respectively). 

Thus, information communities with opposite beliefs 

about the state of the world will be formed in the con-

nected network. 

In the paper [25], agents were assumed locally 

Bayesian: they process information as Bayesian 

agents, but each considers his ego (local) network to 

be the entire initial global network, undirected and 

connected. (In contrast to the models discussed above, 

the agent does not suppose that his neighbors are guid-

ed only by private signals.) In each period, agents 

form their beliefs about the state of the world based on 

the private signal received in the previous period and 

messages from their neighbors (the complete history 

of messages from neighbors since agents have perfect 

memory) and then exchange their beliefs. A simple 

belief updating rule was proposed: agents attribute 

unexpected changes in the beliefs of their neighbors to 

the new private signals they receive. (Agents suppose 

that there are no other agents outside their local net-

work.) As was shown, agents’ beliefs fluctuate without 
stabilizing in some networks. 

Constraints on the rationality of network agents are 

also imposed in models with repeated actions, in 

which agents repeatedly revise their beliefs and ac-

tions (repeated Bayesian updating). This class includes 

models of repeated actions (1) with locally optimal 

agents, (2) with heuristic inclusion of information 

from neighbors, and (3) with rational expectations of 

agents. 

Models of repeated actions with locally optimal 

agents. In each period, agents choose the best response 

based on their current beliefs (formed rationally), ne-

glecting the influence of their actions on other agents 

and the possibility of obtaining additional information 

in the future. If the agents’ actions are continuous and 
their prior beliefs coincide, a consensus is reached in 

any connected network with discrete states of the 

world [23] and Gaussian states of the world [26]. In 

the case of discrete actions of agents (xn(t) ∈ {0, 1}), a 

consensus can also be reached in a connected network; 

see [27, 28]. In the model [28], each agent performs a 

locally optimal action in each period, taking into ac-

count his current beliefs. 

Models of repeated actions with heuristic inclusion 

of information from neighbors. A striking example is 

the model [29, 30], partly resembling DeGroot’s ap-

proach. Agents have prior beliefs about the state of the 

world θ ∈ {0, 1}. At the beginning of each period, 

each agent receives a private signal and observes the 

beliefs of his neighbors. In period t, agent n has the 

belief pn(t) = P(θ = 1). First, he updates the belief ac-

cording to Bayes’ rule, taking into account the re-

ceived signal sn(t):  

    
    

          

' θ 1|

|θ 1
|θ 1 |θ 0 1

n n

n n

n n n n

p t P s t

P s t p t

P s t p t P s t p t

  




   

. 

Then he averages the resulting belief based on the 

beliefs of his neighbors using DeGroot’s rule:  
     '1 ,n nn n nm m

m

p t a p t a p t    

where the matrix A specifies the weights of his 

neighbors. If the signals received by the agents are not 

informative, then their beliefs are formed according to 

DeGroot’s rule; see Section 2. If the signals are in-

formative, the network graph is strongly connected, 

and each agent “trusts” himself, then the agents’ be-

liefs will almost surely converge to the true estimate of 

the state of the world. 

Models of repeated actions with rational expecta-

tions of agents. In the paper [31], the states of the 

world are from the set Θ = {0, 1}. In the initial period, 
each agent n receives an informative signal sn. In each 

period, agent n observes the action of each neighbor m ∈ B(n) and chooses the action  nx t , obtaining the 

payoff 

         , ,  θ | , ,n n n n n nu x t h t s P x t h t s   

where hn(t) is the history of neighbors’ actions by the 
beginning of period t. Agents discount their future 

payoffs with a factor λ ∈ (0, 1) and play a repeated 

game with incomplete information. If the network 

graph is L-locally connected and there is an upper 

bound d on the number of observed neighbors, all 

agents in an infinite (large) network will almost surely 

(with a high probability) reach the true estimate of the 

state of the world. A graph G is L-locally connected if, 

for each edge (n, m), the length of a path from m to n 

does not exceed L. The property of L-connectedness 

and the existence of the bound d can be interpreted as 

the absence of excessively influential agents in the 

network. 

 

Bayesian models initially do not consider the psy-

chological components of personality. As is known 

from psychology and social psychology, individuals 

have cognitive limitations and are subject to various 

socio-psychological factors (including a predisposition 

to their point of view, the social impact of some indi-

viduals on others, conformism, etc.). Various theories 
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and models are being developed to explain the emerg-

ing effects. Since the 1950s, mathematical models 

with simple empirical rules for updating agents’ be-

liefs have been developed and improved to demon-

strate the effects observed in practice. The fundamen-

tal works in the field of opinion dynamics modeling 

investigate and describe, first of all, the phenomenon 

of coordinating the opinions of agents (reaching a con-

sensus) when the interaction between network mem-

bers gradually decreases the disagreement of their 

opinions. This phenomenon is explained in social psy-

chology by several reasons, particularly by conform-

ism, the acceptance of evidence (persuasion), incom-

plete information, uncertainty in one’s own decisions, 

etc. 

In classical formal models of opinion dynamics 

(see [4, 7, 32–35]), the sequential averaging of contin-

uous (continual) opinions of agents in discrete time 

was considered. There are some variations of this kind 

of models with continuous-time averaging [36, 37]. 

Here is a slightly modified example of the classical 

DeGroot’s model of reaching a consensus in a network 

structure. In this structure, each agent from the set N = 

{1, …, n} forms his current opinion at each step as the 

weighted sum of the opinions of all other network 

agents and his opinion at the previous step:  

   1
,  0,

t t

i ij j

j N

x a x t




   

where 
 0

ix  denotes the initial opinion of agent i. The 

parameter  0,1 ija   reflects the degree of influence 

of agent j on agent i ( 1ij

j

a  ). 

In matrix form, the opinion dynamics can be writ-

ten as 
   1

,
t t

x Ax
   

where A is a row-stochastic influence matrix. 

Note that DeGroot’s model has microeconomic 

foundations and relation to Bayesian models. In par-

ticular, if the initial beliefs of individuals are noisy, 

then the DeGroot updating rule is optimal at the first 

step [17]: the new opinion of an individual is the 

weighted sum of the opinions of his neighbors, and the 

weight of the neighbor’s opinion is the accuracy of his 

information. In subsequent periods, the individual 

must tune the weights of his neighbors since the in-

coming information can be repeated. This procedure is 

not easy, so DeGroot’s rule with constant weights can 

be treated as a behavioral heuristic. Another microe-

conomic foundation is the representation of agents as 

players participating in a simple coordination game 

[38]. In this game, the locally optimal best response 

dynamics (coinciding with the dynamics in DeGroot’s 
model) yield a Nash equilibrium. 

The opinion dynamics in DeGroot’s model allow 

reaching a consensus in a strongly connected social 

network. The agents’ opinions gradually coincide 

since each agent has a direct or indirect impact on any 

other agent in the network, and the deviations in their 

opinions finally vanish. 

The structure of the interaction network restricts 

the possibility of reaching a consensus. For example, 

in a disconnected network, consensus can only be 

reached in special cases. The disagreement of opinions 

can also be observed in strongly connected networks 

if, e.g., agents have initial beliefs somewhat “insensi-

tive” to any influence [39]. In such models, the agent’s 

opinion at each step is the weighted sum of the opin-

ions at the previous step and his initial opinion: 

     1 0Λ Λ ,t t

nx Ax I x
     

where  Λ   diagnI A  . 

The initial opinions of agents can be interpreted as 

individual preferences or ingrained beliefs remaining 

in force during opinions exchange. 

The opinion dynamics similar to the considered 

ones can be obtained using the model with compound 

nodes [40] in which each node consists of two agents–
–external and internal––interacting with each other. 

Each node exchanges information with other nodes 

through its external agent, and the internal agent (a 

trusted person of the external one, his friend or con-

sultant) interacts only with the corresponding external 

agent. 

A multidimensional generalization of the model 

with “insensitive” agents is the model [41] where each 

agent has an opinion on several interrelated issues (m 

different topics). The opinion of agent i (i  N) on m 

different topics is given by the vector 
          1 , ,
t t t

i i ix x x m  . The opinion dynamics of 

agent i in period t are described by 

       1 0λ 1 λ ,t t

i ii ij j ii i

j N

x a y x




   . 

   1 1
,

t t

j jy Cx
   

where C denotes the mutual influence matrix of the 

topics under discussion, and 
 1t

jy


 are convex combi-

nations of agent j on several topics. The dynamics can 

be written in matrix form:  
         1 0Λ Λ ,t t

n mx A C x I I x
            

where   indicates the Kronecker product, and Λ nI  

or Λ diagnI A   (depending on the model).  
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Despite the additional factors of these models (the 

presence of biases and mutually influencing topics) 

that preserve some mismatch of opinions, the mutual 

influence of agents gradually decrease their disagree-

ments. In particular, the averaging assumption implies 

that opinions will never go beyond the range of initial 

opinions. 

Numerous theoretical results were obtained for 

opinion dynamics models, often associated with reach-

ing a consensus in networks. Such models are studied 

using the theory of stochastic matrices and the theory 

of homogeneous and inhomogeous Markov chains. As 

is known, opinion dynamics can be modeled by Mar-

kov chains. In a homogeneous Markov chain, reaching 

a consensus is determined by the convergence of the 

powers of its stochastic matrix. Some sufficient condi-

tions for the convergence of the powers of a stochastic 

matrix were given in [4, 42]. For the class of stochas-

tic matrices without guaranteed consensus, the neces-

sary conditions for reaching a consensus were present-

ed in [42]. The minimum changes in the initial beliefs 

of agents leading to a consensus were found in [43]. 

Also, some particular results were established. For 

example, in [38], random (stochastically block) net-

works were considered, and the dependence of the rate 

of convergence of agents’ beliefs (updated by the sim-

ple averaging rule) on the value of homophily was 

determined. 

The analysis above deals with long-term consen-

sus. In practice, it is often interesting to know the pos-

sibility of reaching disagreements in a finite time. 

How does the network structure affect medium-term 

disagreements and the formation of medium-term in-

formation communities? If the initial beliefs of the 

agents are the same, a consensus is reached immedi-

ately and does not depend on the network structure. In 

general, consensus depends on the initial beliefs and 

the network structure. The worst case [44] can be ex-

amined: What is the rate of convergence of beliefs (the 

number of steps required for making the disagree-

ments sufficiently small) under any initial beliefs? For 

simplicity, irreducible and primitive influence matri-

ces A are considered. For a typical matrix of this kind, 

the following relation holds almost everywhere:  

1

λ .
n

t t
l l

l

A P


  

Also, this matrix has the following properties: 

– The values λ1 = 1, λ2, λ3, …, and λn are different 

eigenvalues of the matrix A sorted in the non-

ascending order of the magnitude.  

– The matrix Pl is a projection operator corre-

sponding to a nontrivial one-dimensional subspace 

associated with the eigenvalue λl.  

– 1P A
  and 

   0

1Px x
 . 

– 1 0lP   for all 0l  .  

The matrix P1 corresponds to the resulting influ-

ence matrix A


 and determines a stable state of the 

system (the resulting beliefs of the agents). The other 

matrices Pl > 1 reflect the deviation from this resulting 

matrix in period t. The domination of the matrix P1 

depends on λ2: the smaller this value is, the faster the 

stable state will arise in the network [455]. As it turned 

out, the agents’ beliefs in period t satisfy the inequality  

 
   

     
0

2 3 2

0,1

1 λ 2 λ sup 1 λ .
2 n

tt tt

x

n x x n





       

Thus, the value 2λ t
 determines the maximum de-

viation of the agent’s belief from the resulting belief in 

the network. The matrix P2 mainly determines the de-

viation of beliefs from the resulting belief (consensus) 

and corresponds to the metastable state of the network 

in which most of the disagreements disappear, but 

some stable part remains valid. 

Since 
T

2   σρP  , where 
Tρ  and σ are the left and 

right eigenvectors, respectively, of the matrix A corre-

sponding to the eigenvalue λ2, for sufficiently large t 

the deviation 
   t

x x
  will be equal to 

 0T

2λ σ(ρ )t x . 

If the eigenvalue λ2 is a positive real number, then the 

deviation of agent i from the consensus is proportional 

to the component σi, irrespective of the initial beliefs 
 0

x . The order of the medium-term beliefs of the 

agents is determined by one network-dependent num-

ber. An interesting interpretation was given in [17]: 

the opinions of individuals about different issues can 

be approximated well by a line; the individual’s posi-

tion on this line (in the left-right spectrum) determines 

his opinion about all issues. (For example, the opin-

ions of many people about a wide range of fundamen-

tally unrelated issues can be characterized by a meas-

ure of their conservatism/liberality.) 

The following question arises immediately: How 

does the network structure (influence matrix) affect the 

preservation of different information communities in 

the network? The effect of splitting (dividing) the 

network into groups can be estimated, e.g., using the 

Cheeger isoperimetric constant (an indicator of graph 

bottlenecks) [45]: 

  ,

*
1

: ,  π
2

π
Φ   min ,

π
i

i S

i iji S j S

S S N ii S

A
A



 

 








 

where π denotes the left eigenvector of the matrix 

A corresponding to the eigenvalue λ1 (the influence 

vector of agents). This constant is small if there exists 

some set of agents with at most 50% of social influ-
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ence and a relatively small external influence. If the 

influence matrix corresponds to a reversible Markov 

chain, then    2
* 2 *Φ 1 λ 2ΦA A    [45]. In other 

words, the Cheeger isoperimetric constant provides 

lower and upper bounds on λ2: the smaller this con-

stant is, the greater the eigenvalue λ2 will be, and the 

longer the disagreements will hold in the network.  

The influence (trust) matrix in the belief dynamics 

models considered above remains invariable. There 

are studies in which the influence matrix changes over 

time. The belief dynamics model was generalized in 

[46] as follows: the influence matrix evolves at each 

step, and the iterative process is given by the product 

of matrices: 
     1

.
t t t

x A x
  

In this problem statement, the opinions are coordi-

nated by studying the convergence of inhomogeneous 

Markov chains. Note that the class of opinion for-

mation models is closely related to extensive research 

into consensus in multi-agent systems (see the surveys 

[47, 48]). The theoretical results obtained in this area 

can be transferred to social networks. (Of course, in 

the case of simple belief updating rules, which often 

neglect the specifics of the subject area.) 

Consensus formation is given much attention in the 

publications generalizing the classical DeGroot’s 

model, unlike the issues of social learning (the for-

mation of a society with true beliefs). 

Forming true beliefs in DeGroot’s model. If the 
agents’ beliefs in the network reflect their estimates of 

the state of the world μ∈ [0, 1], the agents come to a 
true or false consensus. Is social learning possible in a 

network where the agents update their beliefs by 
DeGroot’s rule? In [18], the initial beliefs (private sig-

nals) 
 0

ix  were supposed independent random varia-

bles on [0, 1] with a mean μ and a positive variance. 

As is known, under sufficiently weak conditions, the 
agents’ beliefs converge to the same final opinion. To 

assess convergence to the true resulting estimate in a 
growing society, the sequence of influence matrices 

  
1n

A n



 indexed by n (the number of agents in each 

network) was considered. Each network (the corre-
sponding influence matrix) was assumed convergent: 

any initial beliefs of agents have some limit with re-

spect to it. A sequence   
1n

A n



 is said to be wise if 

   plimmax μ 0i
i nn

x n



  .  

One of the society’s “wisdom” conditions is asso-

ciated with the influence of agents. Without loss of 

generality, agents are rearranged in the descending 

order of their influence so that    1 0i is n s n   for 

any i and n, where si(n) is the weight of the initial 

opinion of agent i in the final opinion of network n. As 

was established, the sequence of converging stochastic 

matrices .  is wise if and only if the corresponding 

influence vectors have the property  1 0s n  : the 

influence of the most influential agent tends to 0 as the 

society grows infinitely. 

Another obstacle to wisdom is the so-called prom-

inent groups, which receive a disproportionate share of 

social attention and lead it astray. For a fixed network 

with n agents, a group B is a subset of the agents’ set 

{1,…, n}. A group B is t-prominent with respect to A 

(or prominent within t steps) if any agent i B  is in-

directly influenced by it: , 0t
i BA  . The minimum 

weight of such an influence is called the t-step promi-

nence of B:   ,π ; min t

B i B
i B

A t A


 . A family is a se-

quence of groups (Bn), where  1, ,nB n   for each 

n. A family (Bn) is uniformly prominent with respect to 

  
1n

A n



 if there is a constant a > 0 such that, for 

each n,   π ;
nB A n t a  at some step t. A family (Bn) 

is finite if it eventually stops growing, i.e., there exists 

a number q such that supn nB q . As was estab-

lished, if there is a finite uniformly prominent family 

with respect to (A(n)), then the sequence is not wise. 

Thus, large societies with a “small” group affecting 

everyone in the network will never reach true beliefs 

about the state of the world. 

The opinion dynamics models considered above 

describe the phenomenon of consensus (disagreements 

in the opinions of interacting agents decrease over 

time) and the accompanying phenomenon of social 

learning. In addition, the effect of medium-term disa-

greements is possible due to the network structure. In 

many cases, social and psychological phenomena are 

observed in social networks [49] as the result of long-

term disagreements and stable information communi-

ties: the persistence of disagreements, group polariza-

tion (during a group discussion, any initially dominant 

point of view will strengthen), opinion polarization 

(disagreements between two opposition groups will 

increase), etc. The classical opinion dynamics models 

in the long term do not explain well the persistence of 

disagreements or even the strengthening of radical 

opinions in strongly connected networks. For these 

phenomena, new formal mathematical models are be-

ing developed [5, 6, 37, 50–53]. In particular, the for-

mation of sets of agents with different beliefs is de-

scribed by bounded confidence models [5, 6, 51] in 

which only sufficiently close agents can influence 
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each other. (This rule of interaction is usually motivat-

ed by the phenomena of homophily and social identi-

fication.) 

In the model [54], the opinion dynamics were de-

scribed by a vector  1, , n
nx x x R   . Agent i per-

ceives the opinions of other agents only if they are 

sufficiently close to his opinion. In other words, the set 

of influence agents of agent i has the form 

 , {1  |  }i j iI i x j n x x     , where 0i   is the 

degree of confidence. (As a rule, ϵi = ϵ.) Then the 

opinion dynamics are given by 

    
  

 
1

,

1 , .i j

j I i x t

x t I i x t x t




    

These dynamics match DeGroot’s model with an 

influence matrix depending on the agents’ opinions: 
aij(x) = 1/|I(i, x)| if j ∈ I(i, x), and aij(x) = 0 otherwise. 

The necessary and sufficient conditions for reaching a 

consensus were presented. In order to reach a consen-

sus, it is necessary that the opinion vector at any step 

be an ϵ-profile. (A vector is an ϵ-profile if after sorting 

its elements in the ascending order, the distance be-

tween two neighbor elements will not exceed ϵ.) Oth-

erwise, consensus is impossible: the trust network 

splits into connected components, and groups of indi-

viduals with the same beliefs (information communi-

ties) appear in it. In any case, the agents will come to 

equilibrium in a finite number of steps [55]. 

In [56], “cautious” agents were considered: their 

trust to received messages depends on the content of 

messages (opinions expressed in them). In order to 

reflect this dependence, a trust function G(x, u) was 

introduced, where x and u denote the agent’s opinion 

and message received by him, respectively. A series of 

assumptions were accepted regarding the properties of 

the trust function: different combinations of assump-

tions lead to different formalizations of the trust func-

tion corresponding to: an agent trusting to the received 

messages regardless of the content, a conservative 

agent, an innovator agent, a moderate conservative 

agent, and a moderate innovator agent. For example, 

the trust function of a moderate conservative agent has 

the form 

G(x, u) =  [1 – (1 – exp× 

×(– |x – u|)) exp(–  |x – u|)], 

where  and  are constants. In a practical interpreta-

tion, the agent selects and perceives information coin-

ciding with his opinion until the disagreement be-

comes significant enough. Under very large devia-

tions, the probability that he will notice such infor-

mation increases. In the general case, the controlled 

opinion dynamics in a social network are described by  

 
 

1 1 1 1

1 1 1

,

, ,  1, 2, ,

i

k k k k k
i ii i i i

k k k
ij i i j j

j N

x a x G x u u

a G x x x k

   

  



  

    

where u denotes an external control (e.g., the media), 

and the individual trust functions {Gi()}i  N are such 

that the normalization condition holds. Within this 

model, the matrix A reflects the trust of agents to in-

formation sources; the trust functions, the trust of 

agents to the content of information. In a particular 

case of a homogeneous and regular network, an opti-

mal informational control problem was stated: find a 

sequence of controls maximizing an efficiency criteri-

on. This problem can be solved by standard methods. 

The dependence of the agent’s degree of trust to the 

messages of other agents on their content led to the 

development of another model [8] of two interrelated 

processes: the propagation of actions through the net-

work and the formation of agents’ opinions. Accord-

ing to numerical simulations, various information 

communities can be formed in the network as a result 

of exchanging the beliefs. 

We have discussed opinion dynamics models of 

“heuristic” individuals in a social network with con-

tinual beliefs. Generally speaking, these kinds of mod-

els––with gradually changing opinions––seem to be 

most natural. This fact was confirmed by studies in 

social psychology and behavioral economics. Particu-

larly, as noted in [57], society (Indian villages) is di-

vided into two types of agents: Bayesian agents and 

those acting by DeGroot’s rule. Nevertheless, there are 

numerous publications where the opinions have ordi-

nal or even nominal scales, etc. Models with discrete 

beliefs (opinions) also include voter models [58], ma-

jority models, and threshold models [59]. Many of 

these models, considering the network structure of 

interactions, are also known as models of the propaga-

tion of activity (information) in the network; for ex-

ample, see the paper [60]. Here are some examples of 

voter models with discrete beliefs of individuals that 

illustrate the effect of disagreements in the network. 

The paper [61] considered a set of N agents on an 

L × L regular lattice (L
2 
= N). Agent  1, 2, ,i N   

chooses an action 
   1, , , ,
i

g Ga A a a a    , guided 

by his opinion according to a rule 
   1, , , ,
i

k Kr R r r r    . The peculiarity of this 

model is the possibility of specifying multiple rela-

tions between opinions-rules and actions: rules are 

exclusive (one action is mandatory, the rest are prohib-

ited) and inclusive (one of several actions may be per-

formed with equal probability). The agents know the 

sets A and R and the relation matrix S of dimensions 
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K × G. They can also observe the actions of neighbors 

in the network but not their opinions. At the initial 

step, each agent i randomly chooses a rule  i
r R  

with equal probability and acts according to it. At each 

next step τ, a randomly chosen agent i updates his be-

liefs about the rule followed by his neighbor 
ij M  

based on the observed action 
   τj

a : 

          
      

      1

τ |
τ | τ .

τ |

i j

ki j j

k K i j

kk

P a r
P r r a

P a r


 


 

Then––at the same step––agent i accepts an action 

rule in accordance with the probability of its use by 

the network neighbors. 

As was established, various information communi-

ties exist in the network if the agents apply inclusive 

rules. If the agents apply only exclusive rules, the 

model reduces to the classical voter model. 

A voting-based belief formation model richer by 

practical interpretations was proposed in [62]. As not-

ed, long-term disagreements are rare in traditional 

economic models of social learning, although disa-

greements arise more often in reality than consensus. 

Many economic models of social learning rest on the 

assumption that each new piece of information re-

ceived by an agent is true: the agent observes an ele-

ment of the partitioned state space, containing the true 

state. This assumption (in some cases implicit) leads 

the agents to a consensus. The concept of information 

processing by agents was also introduced: agents can 

receive false information, making disagreements in 

such models a common outcome of network interac-

tions. Two classes of axioms were presented for the 

belief updating rules of agents: the axioms of willing-

ness-to-learn (the updating rule allows the agent to 

learn and reach the true estimate of the state of the 

world) and the axiom of non-manipulability (the up-

dating rule leads the agent to the same belief when 

receiving the same information regardless of its form). 

Different updating rules are possible depending on the 

selected combinations of axioms. The author discussed 

two of them in detail: 

– the agents adhering to the stubborn updating rule 

never give up their beliefs; 

– the agents follow the stubborn updating rule, but 

they can completely change their beliefs if the new 

information completely eliminates the uncertainty 

about the state of the world. 

The agents’ interaction protocol is as follows: at 

each discrete time instant (step), an edge ij of the so-

cial network graph is selected randomly; agent i re-

ports a randomly chosen statement P included in his 

belief Bj to agent j; then agent j updates his belief ac-

cording to a rule Uj(Bj, P), where the statement P is a 

subset of the states of the world Ω, i.e., P⊆Ω. The 

network agents will reach a consensus if, at some step, 

there is a statement P
*
 such that P(Bi) = P

* 
for each 

agent i, where P(Bi) is the intersection of all state-

ments from the beliefs of agent i. As it turned out, to 

reach a consensus in the network, rather strong as-

sumptions about the truth of the initial beliefs and the 

number of stubborn agents have to be accepted. As 

was established, the formation of different information 

communities in large networks is possible and even 

inevitable.  

Part II of the survey has considered the formation 

of information communities in societies with a non-

trivial network structure. Individuals––the members of 

society––interact with each other within this structure. 

Observing the actions of his neighbors in the network, 

an individual (agent) can obtain additional information 

about the issue of interest. 

Rational agents in such networks reach a consen-

sus in the long run (come to a true or false agreement, 

depending on the conditions imposed on the topology 

and/or their initial beliefs). It is necessary to relax the 

agents’ rationality requirement to obtain different in-

formation communities. In the first class of the models 

discussed, the agents are conditionally Bayesian: for 

example, they have “naive” beliefs about the composi-

tion and structure of the network or naively take into 

account the signals of neighbors. In the second class of 

the models, the agents are “simple” and forming their 

beliefs based on heuristic rules. In the case of individ-

uals unconditionally trusting to the actions of their 

network neighbors, a consensus is a common outcome 

of network interactions: a single information commu-

nity will appear. However, it is possible to specify the 

conditions for forming various medium-term (meta-

stable) information communities. As has been demon-

strated, stable information communities differing from 

each other may appear when: (a) in addition to social 

influence, individuals are affected by other socio-

psychological factors (homophily, the inclination to 

confirm one’s own point of view, etc.) and (b) along 

with the true information, false information propagates 

through the network. 

Part III of the survey will consider empirical stud-

ies related to the existence of information communities 

in real social networks and their features.  
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