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Abstract. This paper proposes a method for analyzing the vulnerability of network infrastruc-

tures. The method uses a genetic algorithm for finding cross-sections that block delivering re-

sources from their sources to consumers. The well-known approaches to solving network prob-

lems based on combinatorial and evolutionary approaches are considered. A feature of the pro-

posed method is the fitness function chosen as an algorithm for calculating the number of paths 

in the graph when isolating the graph vertices that make up the individual. The graph reachabil-

ity matrix and simple mathematical operations are adopted to optimize the fitness function and 

calculate the number of paths. The efficiency of the genetic algorithm compared to combinato-

rial methods is shown: multiple failures are found significantly faster than using exhaustive 

search algorithms.   
 

Keywords: safety, engineering networks, vulnerability, reliability, combinatorial algorithms, models for 

damage analysis, crucial elements of an engineering network, genetic algorithms.  
 

 

 

The object of this research is a network infrastruc-

ture, i.e., a complex technical system (electricity, gas, 

etc.) [1]. 

Vulnerability is an internal property that makes the 

object susceptible to the impact of a risk source that 

can lead to some consequence [2]. The presence of 

vulnerability contributes to the realization of a threat. 

For technical systems under consideration, threats are 

destructive effects such as natural disasters, terrorist 

attacks, technical failures of system components, etc. 

The negative consequences of realizing a threat in-

clude, first of all, the lost operability of large consum-

ers (enterprises, research centers, etc.) due to interrupt-

ing the supply of any resource. This understanding of 

technical system vulnerability corresponds to the defi-

nition of supply system reliability, which is directly 

related to the continuous supply of resources to con-

sumers.  

As an internal property, this paper considers the 

object’s structure. It includes sets of nodes (vertices, 

elements), further referred to as key ones, destructive 

impacts on which disrupt the continuous supply of re-

sources to consumers.  

Various methods and models are used to find key 

nodes. One approach is the mathematical modeling of 

physical processes in resource supply networks (elec-

tricity, gas, heat, water, and others). The disadvantages 

of this approach include the need to use information 

about the parameters and modes of the system’s opera-

tion (which should be introduced into the model), the 

random occurrence of emergencies, and slow calcula-

tions of the system of high-order algebraic and differ-

ential equations for complex objects.  

Topological analysis methods are preferable for 

systems represented by a graph [3–6]. This approach is 

convenient to implement since only the description of 

the graph structure (vertices and connections between 

them) is required. The disadvantages of the topological 

model are redundant solutions due to neglecting the 

system’s modes and parameters. These disadvantages 

are partially eliminated when passing to weighted 

graphs, in which the edges and vertices are assigned 

network characteristics such as capacity, power, etc.  

Topological methods yield acceptable results for 

small-dimension networks (tens of vertices). However, 

the computation time grows significantly with increas-

ing the network scale. For example, during the exhaus-

tive search of multiple failures, the number of possible 
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alternatives is determined by the number of k-

combinations of n elements. (Here, k is the number of 

damaged elements, and n denotes the total number of 

system elements.) As a result, the computation time 

has exponential growth. The well-known methods for 

constructing minimal cross-sections, such as Petrick’s 

method or the method of disjoint sets [7, 8], do not 

eliminate this drawback. 

The genetic algorithm reduces computational prob-

lems when searching key elements. It finds the mini-

mum (or maximum) of a certain function (fitness func-

tion) characterizing the infrastructure state. The main 

advantages of the algorithm include the following: 

– The fitness function can be represented by an al-

gorithm. 

– The implementation is simple. 

– The discontinuities in the fitness function do not 

affect the solution search. 

The main drawback of genetic algorithms is asso-

ciated with the uncertainty of finding the global opti-

mum. However, when searching key elements using 

the method proposed below, this disadvantage can be 

overcome.  

The evolutionary approach has various applications 

in network analysis. For example, a genetic algorithm 

was used in [9, 10] to assess the vulnerability of a 

power system (and the system operator’s response) 

when disconnecting its elements. 

In the report [11], a genetic algorithm was used to 

analyze the vulnerability of electrical networks for two 

optimization levels. When optimizing the upper level, 

the maximum damage to the power system was deter-

mined in terms of the load-off. When optimizing the 

lower level, this damage was minimized by choosing 

the optimal operating mode of the power system. A 

peculiarity of the model [11] is that the system opera-

tor can change the network topology among various 

corrections available. 

The paper [12] considered optimal solutions for the 

maintenance of infrastructure objects. Optimal solu-

tions were those minimizing the network life cycle 

cost under the reliability and functionality require-

ments. A Markov chain model was used to predict the 

efficiency of infrastructure objects. 

The report [13] presented an approach to finding 

the best ways of protecting infrastructure assets (add-

ing or changing infrastructure in response to an emer-

gency, etc.) for complex national and international 

network structures such as transport, telecommunica-

tions, finance, energy, etc. Also, their interconnections 

were investigated. 

The genetic algorithm proposed in the paper [14] 

allows organizing the joint work of the system opera-

tor and the power system. The algorithm calculates 

control corrections to minimize the power system load-

off. As a result, the network elements with the most 

severe consequences in case of failures were identified. 

Potential vulnerabilities in a power system [15] can 

be identified by determining the power transmission 

lines causing maximum network disruption in case of 

failures. The AC power equations were adopted in the 

network infrastructure model. The failures were initi-

ated by increasing the resistance of the transmission 

lines. As a result, the authors identified those transmis-

sion lines for which minor conductivity disturbances 

lead to serious network disruptions, voltage drops, and 

disconnection of consumers. 

The genetic algorithm was applied to find vulnera-

ble sections of power transmission lines [16]. Vulnera-

bility assessment of lines allows identifying problem-

atic areas of such infrastructure by modeling and, se-

cond, assessing the possibility of cascade failures. 

The paper [17] proposed two approaches based on 

genetic algorithms to improve the system voltage sta-

bility under various operating conditions. Within the 

first approach, a correction is used to optimize the 

voltage stability index during abnormal control. The 

second approach involves finding an optimal arrange-

ment of compensators and generator control to mini-

mize the voltage stability index. 

An optimal location of energy storage systems to 

reduce the power system’s vulnerability was consid-

ered in [18]. The authors analyzed the impacts on bus-

bars and searched the most vulnerable ones. An opti-

mal location was chosen using a genetic algorithm. 

The paper [19] was devoted to genetic algorithm-

based optimal solutions for protecting and restoring 

infrastructure in case of accidents or disasters and 

identifying the assets necessary to maintain the net-

work’s operating mode. 

Genetic algorithms are often used to tune neural 

networks [20–22]. 

The publications cited differ in the field of re-

search, particular problems solved, and the fitness 

function chosen. Below, we consider the problem of 

finding key elements in engineering networks based on 

a specially constructed fitness function. 

 

The technical systems under consideration have a 

network organization that can be represented by a non-

directed or partially directed graph G = {V, R}, where 

V and R denote the sets of vertices and edges, respec-

tively [23]. 

The set of vertices V is described by a triple {S, C, 

U}, where S and C are the sets of power sources and 



 

 
 

 

 
 

consumers, respectively, and U denotes the set of net-

work vertices in which power transformation (trans-

formative stations), power distribution (power distribu-

tion plants, taps), and power transmission (power 

lines) are implemented: 

.V S C U  

Also, we denote by Cz a given subset of the most 

important consumer-vertices and by Vα the subset of 

key vertices to be found.   

The problem statement is as follows: for the graph 

G = {V, R}, it is required to determine the minimum 

subset of key vertices V U   such that their removal 

from the graph G will violate the reachability of all 

vertices Cz from the vertices S.  

Genetic algorithms involve such concepts as indi-

viduals, populations, chromosomes, and fitness func-

tions. For the problem under consideration, these con-

cepts are defined below. 

An individual θd = {Vα} is a set of key vertices Vα 

whose failure will disconnect important consumers. 

The subscript d is the individual’s number in a popula-

tion, and α is the number of graph vertices of an indi-

vidual. The number of graph vertices contained in one 

individual, α, is advisable to choose according to the 

number of simultaneously occurring failures (single, 

double, triple, etc.) assessed in terms of their impact on 

the system: V U  . 

The population is P = (θ1, θ2,…,θk), where k denotes  

the size of a subset from the set of individuals used to 

select the best ones. The value k is fixed and related to 

the graph dimension n (the total number of graph ver-

tices). Usually, the number k is chosen in the percent-

age of the graph dimension  , ranging from 5% to 

15% (k/n = 0.05–0.15). For high-dimensional prob-

lems, the range of k can be smaller, e.g., k/n = 0.03–

0.10. 

A chromosome is a numerical vector (or string) 

representing a particular individual as a binary string 

of bits (genomes). For instance, the chromosome of the 

individual θ5 = (v3, v2, v15, v50), containing four vertices 

(a quadruple failure), is shown in Fig. 1. 

 
θ5 

000011 000010 001111 110010 

v3 v2 v15 v50 

 
Fig. 1. An individual represented by a chromosome. 

 
The fitness function F(θd) allows finding an indi-

vidual with the greatest effect on the total number of 

routes for supplying resources to consumers. We esti-

mate this value algorithmically [24], counting the 

number of limited-length paths (3–5 steps) between the 

graph vertices after isolating the elements that make up 

the individual. We calculate the number of paths by 

raising the adjacency matrix to a power. When raising 

an adjacency matrix E to the power m by ordinary 

arithmetic operations (instead of Boolean algebra 

rules), its element ,i je  will equal the number of paths 

of length m from vertex i to vertex j; see [25]. 

A small number of steps m (hence, a small expo-

nent) is dictated by the need to reduce the algorithm’s 

running time when raising the matrix to a power. We 

make the following assumption: if isolating the verti-

ces that make up an individual reduces the total num-

ber of paths in the graph for small exponents m, it will 

also decrease the number of paths for supplying re-

sources from sources to consumers. The availability of 

resource supply paths is tested in three stages: 

1. A genetic algorithm finds an individual (a set of 

vertices) whose isolation will reduce to the greatest 

extent the total number of paths of length m in the 

graph. 

2. The availability of paths for supplying resources 

from sources to consumers is tested. 

3. If there are no paths from sources to consumers, 

the vertices are key, and the calculations finish; other-

wise, the calculations are repeated. 

The flow chart of the genetic algorithm is presented 

in Fig. 2. 

 
 

 
 

 
Fig. 2. Block-scheme of a genetic algorithm for finding network key 

vertices. 
 



 

 
 

 

 
 

2.1. Preparing initial data for calculation 

The initial information on the graphs is usually 

given by tables of paired relations or adjacency lists. 

The initial information is arranged by assigning serial 

numbers from 1 to n to all network vertices, V = (v1, 

v2,…, vn). Then the adjacency matrix E of the graph is 

formed: 

 ,i jE e , 

, 1i je   if  ,i jv v V , 

, 0i je   if  ,i jv v  , 

where the subscripts i and j correspond to the rows and 

columns of the adjacency matrix, respectively.   

 

2.2. Initialization: choosing initial population 

Populations have the following main features: 

 The initial population is formed as a set of in-

dividuals with randomly chosen vertices. 

 The individual’s size θ is fixed. (The number 

of graph vertices α in an individual is constant.) 

 The population size P remains invariable dur-

ing the algorithm. (The number of individuals in the 

population P = (θ1, θ2,…,θk) is constant.) 

 Each individual θd = {Vα} is initialized by the 

vertex serial numbers randomly chosen using a uni-

form distribution on the set of nodes V. 

 

2.3. Fitness estimation 

The network is designed to supply resources to 

consumers. When choosing an individual and as-

sessing its impact on the infrastructure, it is therefore 

reasonable to calculate the number of graph paths after 

isolating certain individuals. 

The total number of paths between the vertices 

 ,i jv v V  with a length not exceeding m is calculat-

ed from the reachability matrix  * *
, i jE e . (Below 

such paths will be called paths of length m.) This ma-

trix is the sum of adjacency matrices E raised to pow-

ers from 1 to m: 

* 2 3 .mE E E E E     

We denote by S the total number of paths of length 

m in the graph: 

 *

1 1

, ,
n n

i j

S e i j
 


 

where n is the total number of graph vertices.  

We test the susceptibility of the infrastructure to 

the impact of a particular individual θd by isolating its 

vertices. For this purpose, the elements corresponding 

to these vertices in the adjacency matrix are set to 0. 

Then a new reachability matrix is calculated, and a 

new number of graph paths is calculated: 

 *

1 1

, ,
n n

i j

S e i j
 

  

where S  denotes the number of paths of length m in 

the graph after isolating all vertices of the individual 

θd.  

Dividing the number of all graph paths by the 

number of all graph vertices, we obtain the average 

number of paths per one vertex: 

avg .
S

S
n

  

Then the fitness function can be written as 

   avgmin .θdF S  

Therefore, using the fitness function, we determine 

an individual θd with the following property: the aver-

age number of paths Savg achieves minimum after iso-

lating its vertices. 

The operation of this algorithm can be demonstrat-

ed by an example. Consider the graph G of a resource 

supply network containing ten vertices, two sources 

 1 2v v G , and one consumer v10 (Fig. 3). For testing 

the individual’s impact on the number of paths, we 

isolated the vertices  5 8v v G . For this purpose, we 

set to 0 the corresponding rows and columns of the 

adjacency matrix (Table 1) and calculated the number 

of paths in the reachability matrix. 
 

 
Fig. 3. Graph of a resource supply network.  

 

 

 



 

 
 

 

 
 

The path length m was set to 3. Table 2 presents the 

total and average numbers of such paths (S and Savg) in 

the original graph G and the modified graph after re-

moving different pairs of vertices. 

Clearly, the minimum average number of paths per 

vertex is obtained by isolating vertices v6 and v7. In this 

case, all paths between sources and the consumer are 

interrupted. 

Table 1 

Adjacency matrix after isolating vertices v5 and v8 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

v1 0 0 0 1 0 0 0 0 0 0 

v2 0 0 1 0 0 0 0 0 0 0 

v3 0 0 0 0 0 1 1 0 0 0 

v4 0 0 0 0 0 0 1 0 0 0 

v5 0 0 0 0 0 0 0 0 0 0 

v6 0 0 0 0 0 1 0 0 0 0 

v7 0 0 0 0 0 0 0 0 1 0 

v8 0 0 0 0 0 0 0 0 0 0 

v9 0 0 0 0 0 0 0 0 0 1 

v10 0 0 0 0 0 0 0 0 0 0 

 

 
Table 2 

Number of paths of length 3 in graph G 

Numbers 

of removed 

vertices 

S 
avgS

 

Number of 

paths from 

sources to a 

consumer 

Paths from 

sources to a 

consumer 

– 45 4.5 6 1,4,7,9,10 

1,4,7,8,10 

1,4,5,6,8,10 

2,3,6,8,10 

2,3,7,8,10 

2,3,7,9,10 

5, 8 23 2.3 2 2,3,7,9,10 

1,4,7,9,10 

6, 7 11 1.1 0 – 

3, 9 26 2.6 2 1,4,7,8,10 

1,4,5,6,8,10 

2.4. Selection, crossover, and mutation 

The algorithm involves rank selection. With this 

method, after calculating the fitness values for crosso-

ver, (l × k) best individuals are selected, where l de-

notes the relative number of the best individuals in the  

population, and k is the population size. The parameter 

l describes the influence of selection on the survival of 

individuals in the population. In this paper, the value l 

ranges from 0.3 to 0.5.  

Individuals selected with a given probability un-

dergo single-point crossover (shuffling of binary 

strings). As a result, the offsprings receive half of the 

randomly determined characters from each parent. The 

offsprings form a new population of a given size k.  

Mutation is necessary to prevent convergence to a 

local optimum. Since individuals are binary strings, 

mutation consists in inverting a randomly chosen gene 

for one randomly chosen individual. (Inverting means 

replacing 1 for 0 and vice versa.) The mutation fre-

quency is set at the beginning of calculations, without 

any changes at subsequent stages.  

For one generation, the search procedure stops ac-

cording to the following criterion: the fitness function 

has the same value after selection and mutation. The 

resulting individual should be checked for the isolation 

of important consumer vertices from sources. For this 

purpose, the paths from sources to consumers are cal-

culated using the Floyd–Warshall algorithm. If such 

paths exist, the genetic algorithm should be restarted to 

find a new solution for a new generation. 

 

2.5. Application of genetic algorithm: example 

The algorithm was tested on a graph of a real net-

work segment; see Fig. 4.  

The power system graph under consideration con-

sists of 47 elements, including 15 sources and 5 con-

sumers. We studied sextuple failures of elements. 

Table 3 shows the cross-sections (sets of discon-

nected vertices) and the number of disconnected con-

sumers. Clearly, the global optimum (disconnection of 

all consumers from the network) was achieved only in 

one case out of six. The time required to obtain one 

solution was approximately 3 s. 
The sources and consumers were not analyzed (dis-

connected in the software implementation): such solu-

tions are trivial and can be seen directly on the graph. 

This approach can be extended to high-dimensional 

networks after representing in the form of graphs. 
 



 

 
 

 

 
 

 
  

Fig. 4. Graph of a power system segment. 

 
Table 3 

Cross-sections in the graph of a power system segment: Calculation results   

Disconnected 

vertices 

PS 7, PS 10, 

PS 24, PS 18, 

PS 13, PS 9 

PS 7, PS 15, 

PS 10, PS 13, 

PS 24, PS 18 

PS 51, PS 22, 

PS 18, PS 10, 

PS 9, PS 24 

PS 40, PS 15, 

PS 9, PS 7, PS 

24, PS 13 

PS 7, PS 9, PS 

10, PS 18, PS 

17, PS 24 

PS 29, PS 9, 

PS 10, PS 18, 

PS 7, PS 24 

Number of discon-

nected consumers 
5 4 4 4 4 4 

 

 

 

According to an analysis of publications on the 

subject, genetic algorithms are not applied to block the 

supply of resources to important consumers, despite 

their widespread use. At the same time, the disad-

vantages of traditional methods make it relevant to 

apply genetic algorithms for solving such problems. 

The genetic algorithm proposed in this paper calcu-

lates the fitness function by estimating the average 

number of paths per one vertex after isolating individ-

uals. Implementing the genetic algorithm to find cross-

sections in infrastructures is not very difficult. 

The proposed genetic algorithm needs significantly 

less computation time than the exhaustive search to 

determine multiple failures in high-dimensional net-

works. 
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