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Abstract. This paper considers the possibilities and examples of using a general learning model 

with fatigue and rest effects to describe experimental data. A classification of iterative learning 

models is provided, and the existing datasets on learning from various fields are overviewed. A 

general algorithm for selecting an appropriate iterative learning model based on available experi-

mental data is proposed. Examples of processing experimental and modeling data are presented 

for motor and cognitive skills, visual-motor adaptation, and tasks with long breaks. The following 

hypothesis is formulated and tested: learning models describe the data with deviations represent-

ing independent and identically distributed realizations of Gaussian random variables with zero 

mean. According to the values of statistical criteria, there are no grounds to reject this hypothesis. 

Based on the modeling results, recommendations on the optimization and management of the 

learning process are given. 
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INTRODUCTION  

This paper is part II of the study devoted to extend-

ing the general learning model [1, 2] by including the 

processes of fatigue and rest. In part I of the study, we 

reviewed the main approaches to describing the learn-

ing process as well as supplemented classical mathe-

matical models of experience acquisition [3]. Let us 

recall the key concepts and definitions discussed in 

detail in [3]. 

Learning, the process and result of acquiring indi-

vidual experience [1], underlies the adaptation of liv-

ing and nonliving systems to changing conditions. In 

the context of mathematical modeling, learning is un-

derstood as a process during which a (biological, tech-

nical, or abstract-logical) system optimizes its actions 

to achieve a given goal. Of particular interest is itera-

tive learning (IL), a type of learning based on the sys-

tem’s repetition of actions (trials and errors) to achieve 

a fixed goal under constant external conditions [4]. 

This process is the foundation for developing skills in 

humans, conditioned reflexes in animals, and adapta-

tion algorithms in robotics and artificial intelligence. 

Mathematical models of IL describe a sequence of 

learning levels (the so-called learning curves, LCs) 

through systems of equations, graphs, or algorithms to 

reveal universal regularities. For example, an LC is the 

probability of mastering an activity component de-

pending on time or the number of repetitions (itera-

tions). 

The classical exponential LC has the form 

   max max min ,t
q t q q q e

    

where q(t) is the current learning level; qmax is the 

highest learning level observed; qmin is the initial learn-

ing level; t ≥ 0 is time; finally, γ > 0 is the learning 
rate. 

Based on experimental data, it can be concluded 

that these curves have a slowly asymptotic nature: the 

rate of performance improvement decreases with time, 

and the curve tends to some limit [4, 5]. Such LCs are 

often approximated by exponential functions [2, 4]. 

Part I of the study considered approaches to learn-

ing modeling and presented extended versions of the 

models from [1, 4]. In this paper, we apply the extend-

ed models to the processing of real data and provide 

an algorithm for processing such data (see Section 2). 
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1. A REVIEW OF EXPERIMENTAL DATA  

AND CLASSIFICATION OF MODELS 

To model the learning process, one needs data re-

flecting experience (skill) acquisition dynamics with 

the influence of fatigue, the role of rest, and the indi-

vidual characteristics of learners. This paper considers 

11 datasets covering various fields, ranging from edu-

cational platforms to sports training. These data allow 

identifying the key processes (mastering, forgetting, 

fatigue, and rest) and parameters (time, history, and 

fatigue rate) necessary for building learning models. 

Each dataset is unique in its structure and context, 

but all datasets have a common objective: to collect 

information on how people learn, fatigue, rest, and 

forget, and to make this information available to a 

wide range of researchers. Some datasets, such as Du-

olingo Spaced Repetition Data [6] and ASSISTments 

[7], focus on cognitive aspects, while others, such as 

Motor Learning Experiments [8] and Injury Prediction 

in Competitive Runners [9], explore motor skills and 

physical fatigue. 

The information about the processes and parame-

ters of each dataset is systematized in the table below 

(see the Appendix), including common regularities 

that may be useful for building learning models. Based 

on the analysis of the 11 datasets, we identify the key 

processes and parameters that should be considered 

when modeling learning. 

These processes include: 

 Mastering is the central process present in all da-

tasets. This process manifests itself in improved re-

sults over time: in fewer errors (ASSISTments, Junyi 

Academy Online Learning Activity [10]), increased 

accuracy (Motor Learning Experiments), or reduced 

task completion time [11]. 

 Forgetting is observed in most datasets, especial-

ly in educational (Duolingo Spaced Repetition Data, 

ASSISTments) and motor (Motor Learning Experi-

ments) datasets. This process manifests itself in de-

creased accuracy or increased errors after periods of 

inactivity. 

 Fatigue is an important factor affecting perfor-

mance in long sessions. This process manifests itself 

through an increase in errors (ASSISTments), an in-

crease in task completion time (Codeforces Users 

Submissions [12]), or subjective assessments of fa-

tigue (Injury Prediction in Competitive Runners). 

 Rest plays a key role in skill recovery. In da-

tasets, it is represented as periods of inactivity (Duo-

lingo Spaced Repetition Data, Junyi Academy Online 

Learning Activity) or days without training (Injury 

Prediction in Competitive Runners). 

 The choice of skill acquired is less explicitly rep-

resented; however, it can be traced in datasets where 

tasks vary in difficulty (Codeforces Users Submis-

sions) or require adaptation to changing conditions 

(GradualTwoRate [13]). 

The parameters and factors considered when calcu-

lating the current learning level are: 

 Time is a universal parameter present in all da-

tasets. It allows one to track the dynamics of learning, 

forgetting, and fatigue. 

 The history of actions (correct and incorrect re-

sponses, movement trajectories) helps to understand 

how past experiences influence current results. 

 The number of skills acquired. 

 Fatigue rate is measured through objective met-

rics (errors, completion time) or subjective assess-

ments (participant surveys). 

These conclusions bring us to the next step in the 

development of learning models: using data from dif-

ferent sources to create unified approaches to model-

ing learning processes in various fields of human ac-

tivity. 

2. PROCESSING PRINCIPLES FOR EXPERIMENTAL DATA 

Various characteristics are used as criteria for the 

learning level to describe the learning process of real 

agents and systems. According to [4], they are divided 

into the following categories: 

– temporal (the time to perform/complete an ac-

tion, operation, or task; reaction time; error correction 

time); 

– speed-related (the quantities inverse to time, such 

as reaction speed, movement speed, or labor produc-

tivity, e.g., the number or share of correctly performed 

actions, the volume of production (output) per unit of 

time); 

– accuracy-related (the error measured in physical 

quantities, the number of errors, or their probability); 

– informational (the amount of information pro-

cessed in a given time; the amount of material per-

ceived or memorized). 

In this paper, we analyze experimental data with 

accuracy-related and temporal characteristics used as 

criteria for the learning level. As shown in [5], regard-

less of the characteristic selected (temporal, speed- 

and accuracy-related, or informational), the LC has a 

slowly asymptotic nature. For speed-related character-

istics, this type of curve will be achieved under a 
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transformation replacing the inverse dependence on 

time with a direct one. 

Another classification is also possible, based on the 

units of measurement of the learning level: 

 absolute: 

– units (the number of correctly or incorrectly 

performed actions), 

 – time (in s), 

 – speed (in 1/s), 

 – angle (in rad), 

 – length (in m), 

 – mass (in kg), 

 – information volume (in bits), etc.; 

 relative: 

– the share of correctly or incorrectly per-

formed actions,  

– the probability of a correct answer,  

– the normalized values of absolute units. 

Note that the vast majority of mathematical learn-

ing models operate relative (usually probabilistic [1]) 

characteristics of the learning level; see the reviews in 

[2, 4]. It is possible to pass from absolute values to 

relative ones by normalizing the range of learning lev-

els ensuring the required nature (increase or decrease) 

of the LC: 

       min max

max min max min

or ,
q t q q q t

q t    ˆ q t  
q q

ˆ
q q

 
 

 
      (1) 

where  q̂ t  is the normalized estimate of the learning 

level.  

The transformation (1) is linear; therefore, in con-

trast to threshold transformations [5], it preserves the 

qualitative properties of LCs. Also, if the initial LC 

contains some additive random noise, i.e., 

    ,tq t q t                             (2) 

where  q t  is the “noisy” learning level and  t  are 

independent and identically distributed (i.i.d.) realiza-

tions of a random variable with zero mean, the trans-

formation (1) will not change the mathematical expec-

tation of the noise, and the linear (normalizing) trans-

formation will preserve the properties of both the LC 

and the additive “noise.” 

The experience acquisition models considered in 

[1, 2] are “binary”: the learner’s state with respect to 

an uncertainty factor (the component of the activity 

technology) takes two possible values, “1” (acquired) 

or “0” (not acquired, forgotten). Therefore, they use 

mathematical expectations (for the number of acquired 

technology components, uncertainty factor values, 

etc.) as the learning level (the experience criterion), 

leading to “continuous” LCs of type 0. Such LCs de-

scribe almost any practically interpretable situations 

and/or experimental data. 

The LC of type 0 has many useful properties. For 

simplicity, let qmax = 1 and qmin = 0: 

  γ .1 t
q t e

   

Based on available experimental results, an appro-

priate IL model is selected by the following algo-

rithm:  

1. Verify that the learning process in the experi-

ment is iterative, i.e., the learning system, the goal of 

learning, and the learning conditions are invariable.  

2. Analyze the experimental data, identify the cri-

terion for the learning level, and find its place in the 

above classification system (see the beginning of Sec-

tion 2). 

3. If necessary, perform the normalization (1).  

4. Analyze, from a practical point of view, which 

of the IL models considered in [1–4] best matches the 

experiment. 

5. Analyze which of the IL models best approxi-

mates the experimental data (using the least squares 

method or another method, particularly under the rep-

resentation (2) with zero mean of the additive noise 

obeying the Gaussian or other symmetric distribution). 

6. Analyze the practical interpretations of the iden-

tified parameters; in the case of several learners and/or 

series of experiments, compare them. 

7. Compare the results of the selected model with 

the corresponding “optimal” learning conditions, e.g., 

with the optimal duration of a break in terms of max-

imizing the terminal learning level (see Part I of the 

study [3]). Formulate recommendations for optimizing 

the learning process. 

Let us illustrate the application of this algorithm. 

3. EXAMPLES OF EXPERIMENTAL DATA PROCESSING  

Various statistical criteria are used to check wheth-

er the model deviations from the experimental data 

obey the Gaussian (normal) distribution. In this paper, 

we select the Shapiro–Wilk, Epps–Pulley [14], and 

Kolmogorov–Smirnov [15] tests for normality. 

The scipy.stats module of Python was used to cal-

culate the values of the Shapiro–Wilk and Kolmogo-

rov–Smirnov test statistics. An extended version of the 

Shapiro–Wilk test for samples of up to 5000 elements 

was taken. The values of the Epps–Pulley test statistics 

were calculated by the software implementation [16] 

based on the test proposed in [17]. The tabulated val-

ues were borrowed from [18] and [19] (the Shapiro–
Wilk test), [20] (the Kolmogorov–Smirnov test), and 
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[14] and [21] (the Epps–Pulley test). The curve_fit 

method from the scipy.optimize module was applied to 

estimate the model parameters, with the Levenberg–
Marquardt minimization algorithm. 

 

3.1. The Ball-Tossing Experiment 

Consider the data of the experiment described in 

[22]: throwing balls into a box. The ultimate objective 

of the experiment was to study the learning capability 

by trial and error when learning is spread over a sig-

nificant period of time. 

A total of 200 ball-throwing attempts were made in 

one training day. The balls that fell into the box were 

scored. Daily training sessions were held at 9:00 a.m. 

Sunday was a day of rest. The experiment lasted 100 

days. The results are shown in Fig. 1. 

 

 

 
Fig. 1. The experimental data [22]. 

 

During the first 20–30 iterations, a marked im-

provement in the results can be observed, indicating 

rapid skill formation. Further on, the curve stabilizes, 

which demonstrates saturation of the learning process. 

This regularity is common for individual experience 

acquisition processes. 

In the case of the single skill under consideration, 

the value q(t) of the individual experience criterion 

(the so-called learning level) of an agent (trainee) is 

the probability that his/her experience will be formed 

in period t and not forgotten [3]. Let the criterion for 

the learning level q(t) be the average frequency of 

scoring a ball on day t, which corresponds to the ap-

plication of the transformation (1). According to the 

above classification, this is a relative accuracy charac-

teristic (a quantity “inverse” to the probability of error, 

i.e., missing the box when throwing the ball). Let us 

construct an LC based on the experimental data 

(Fig. 2). 

This curve has an asymptote, slightly deviating 

from the latter over time. We take two simple models 

from part I of the study [3] to reflect such dynamics. 

 

 
Fig. 2. The empirical LC based on the experimental data [22]. 

 

Within Model 3, mastering and forgetting occur 

independently of time [3]: 

         1 1 1 , q t q t q t w q t u            (3) 

     
0 ,

w u tw w
q t q e

w u w u

       
         (4) 

where w is the probability of acquiring a skill on itera-

tion t; u is the probability of forgetting a learned skill 

on iteration t; finally, q(0) is the initial skill level. 

Under the condition q(0) < 
w

w u
, the curve (4) is 

nondecreasing and asymptotically tends to 
w

w u
. We 

approximate the data in Fig. 2 by the curve (4), select-

ing the values of w , u , and  0q  so as to minimize 

the sum of squared deviations. Numerical estimation 

gives the following values of the model parameters: 

 0 0 187q . , 0 022w . , and 0 025u . .  The theoret-

ical asymptote is    0.468y . With the above parame-

ters substituted into the model, the graph of the learn-

ing level is shown in Fig. 3. 

 

 

 
Fig. 3. The approximation of the experimental data [22] using model 

(4). 

 

The LC in Fig. 3 has a slowly asymptotic nature 

and tends to the asymptote    0.468y . With a known 

asymptote, one can predict the achievable skill level 
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and optimize the duration of the learning process, i.e., 

terminate it when reaching a value sufficiently close to 

this level. 

Suppose that Model (4) matches the experimental 

data with an additive random error due to data “noise” 

or some independent random factors in the course of 

the experiment: 

    ,tq t q t     

where  t are i.i.d. random variables obeying the 

Gaussian distribution with zero mean. 

Figure 4 provides the histogram of the deviations 

between the predictions of model (4) and the experi-

mental data qθ(t). 

 

 

 
Fig. 4. The histogram of deviations of model (4) from the experimental 

data [22]. 

 

According to Fig. 4, the largest number of the de-

viations   q t  is near zero, and the distribution visu-

ally resembles a Gaussian (normal) one. We hypothe-

size that the distribution of the deviations is Gaussian: 

 2 ~  , .N                               (5) 

Let us verify this hypothesis using the  

Shapiro–Wilk test. The test statistic value is 0.972, and 

the p-value is 0.029 (with a significance level of 0.05). 

This means that the distribution is not Gaussian. At the 

same time, the Epps–Pulley and  

Kolmogorov–Smirnov tests have values of 0.298 and 

0.059, respectively, and when compared with the criti-

cal values, they give no grounds to reject the normality 

hypothesis with the same significance level. 

Now we repeat similar operations for Model 4 [3]: 

        1 1 ,q t q t w t q t                  (6) 

      
1 1 0 ,

W t
q t q e

                     (7) 

with the following estimate for the probability of mas-

tering: 

  0e ,t
w t w

                            (8) 

   0 1 .tw
W t e

 


                      (9) 

Let us approximate the curve in Fig. 2 by selecting 

the values of the parameters  0q , 0w , and   for 

model (7)–(9):  0 0 1828q . , 0 0 0179w . ,  and 

0 0407. . The graph of the learning level is pre-

sented in Fig. 5. 

  

 

 
Fig. 5. The approximation of the experimental data [22] using model 

(7)–(9). 

 

The experimental data demonstrate a rapid im-

provement in the results until approximately the 30th 

day, after which growth decelerates and gradually 

plateaus (reaches a plateau) at a learning level of ap-

proximately 0.5. Model (7)–(9) accurately describes 

these dynamics: the initial growth is ensured by a high 

probability of learning, and the subsequent slowdown 

is ensured by its exponential decrease. 

Figure 6 shows the probability of experience ac-

quisition w(t) depending on time. 

 
 

 
 

 
Fig. 6. The probability of experience acquisition depending on time in 

model (7)–(9) for the experimental data [22]. 

 

At the beginning of learning, w(0) ≈ 0.018, but the 
probability of experience acquisition falls below 0.01 

by the 20th day and below 0.005 by the 50th day; and 

it approaches zero by the end of the experiment. This 

exponential decrease describes the phenomenon of 

reduced learning level growth over time. 

To assess the approximation quality of model (4), 

we analyze the distribution of the deviations between 

its predictions and the factual values of the learning 

level. The corresponding histogram can be found in 

Fig. 7. 
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Fig. 7. The histogram of deviations of model (7)–(9) from the 

experimental data [22]. 

 

Most of the deviations range from –0.02 to 0.02, 

the distribution is visually symmetrical and centered 

around zero. This gives reason to assume that the 

model has no significant bias and matches the experi-

mental data. 

Let us verify hypothesis (5) using the  

Shapiro–Wilk test. The test statistic value is 0.977: for 

the distribution of the deviations with the parameters 

0   and 0.02 , the normality hypothesis with a 

significance level of 0.05 cannot be rejected. Accord-

ing to the Epps–Pulley and Kolmogorov–Smirnov 

tests, this hypothesis is also not rejected. Therefore, 

we consider the data to be normally distributed. 

Hence, the deviations of the model predictions from 

the factual data can be supposed random without sys-

tematic errors. 

Thus, model (7)–(9) matches the experimental data 

[22]. In addition, the deviations obey the Gaussian 

distribution with zero mean. As a result, two of the 

three tests confirm the normality of the deviations for 

model (4); for model (7)–(9), normality is confirmed 

by all three tests. 

The above experiment on acquiring a motor skill 

(ball-tossing) reflects the iterative process of experi-

ence acquisition. The empirical curve demonstrates a 

smooth growth with an asymptote, typical behavior for 

slowly asymptotic LCs. According to the approxima-

tion results of the experimental data, the models from 

part I of the study [3] reproduce both the initial phase 

of active learning and the saturation phase. The devia-

tions from the empirical data have the Gaussian distri-

bution with an almost zero mean. The dynamics of the 

learning level confirm the need to control the duration 

of the learning process. For instance, at the phase of 

decelerated efficiency growth, it may be advisable to 

change the learning strategy or even terminate this 

process when reaching a learning level sufficiently 

close to the horizontal asymptote of the LC. 

3.2. The Mental Multiplication Experiment 

In this subsection, we consider the following ex-

periment from the paper [11]: a participant solved a 

module of 63 exercises on a daily basis, multiplying 

two two-digit numbers in the brain. The time taken to 

complete the module was recorded in minutes. Figure 

8 shows the time taken to complete the task depending 

on the number of modules solved (days). 

  

 

 
Fig. 8. The experimental data [11]. 

 

At the beginning of the experiment, the time fluc-

tuates between 15 and 20 mins, then gradually de-

creases and, after the 15th iteration, stabilizes at 9–10 

mins. A plateau is visible: the subsequent training 

leads to an insignificant acceleration. In other words, 

by the 15th–17th iteration, skill acquisition almost 

reaches its maximum, and continuing training in the 

previous conditions becomes inefficient. 

To describe the processes of experience acquisition 

based on these experimental data, the models from 

part I of the study [3] have to be transformed into an 

increasing slowly asymptotic nature, with the values 

of the learning level belonging to the range [0, 1]. We 

convert the temporal absolute values of the learning 

level criterion into relative ones characterizing the 

proximity to the minimum possible time for complet-

ing the task: 

   max

max min

,ˆ
 

t
q t

  

  

                      (10) 

where min  and maxτ  are the minimum and maximum 

task completion times, respectively;  t  is the task 

completion time on iteration t. (Also, see the more 

general transformation (1).) 

For min  = 5 mins and max  = 25 mins, let us con-

struct an LC based on the obtained data (Fig. 9). 

By the 3rd or 4th iteration, the degree of proximity 

exceeds  0.6,  and  starting  from  the  10th  iteration,  it  
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Fig. 9. The empirical LC based on the experimental data [11]. 

 

stabilizes in the range [0.75, 0.8]. This indicates rapid 

skill acquisition at the beginning and reaching a stable 

performance level after the 10th iteration. 

Now we approximate the data using models (4) 

and (7)–(9) by selecting the values of the parameters 

 0q , w, and u  for model (4): q0 = 0.136, w = 0.490, 

and u = 0.170. The approximation results are demon-

strated in Fig. 10. 

 
 

 
 

 
Fig. 10. The approximation of the experimental data [11] using model 

(4). 

 

Model (4) describes a sharp increase in the learn-

ing level up to the 6th–7th iteration and an approach to 

the asymptote at a level of 0.75. The subsequent itera-

tions do not lead to significant growth, and the factual 

values fluctuate around the model curve. This con-

firms that model (4) is capable of reflecting the pro-

cess of rapid initial learning and further saturation. 

The histogram of the deviations of model (4) can 

be found in Fig. 11. 

The distribution is asymmetrical: most of the posi-

tive deviations are concentrated on the right-hand side 

(from 0.02 to 0.06), while the negative ones are more 

scattered. This may indicate a slight systematic error 

of the learning level on late iterations: the model “un-

derestimates” the results compared to the factual plat-

eau. Varying the value of min  preserves these regular-

ities: the model’s predictions are lower than the factual 

values, and the distribution of the deviations (see 

Fig. 11) has the same shape. 

 

 

 
Fig. 11. The histogram of deviations of model (4) from the 

experimental data [11]. 

 

The Shapiro–Wilk statistic value is 0.929,  

and the p-value is 0.075. The normality hypothesis for 

the distribution is not rejected with a significance level 

of 0.05. (This statistical significance will be used be-

low by default.) Similarly, the Epps–Pulley and Kol-

mogorov–Smirnov tests give no grounds for rejecting 

the hypothesis. The parameters of the distribution are 

0   and 0 05. . 

For the sake of comparison, we approximate the 

same data using model (7)–(9), in which the probabil-

ity of mastering decreases over time. The resulting LC 

is demonstrated in Fig. 12.  

 

 

 

 
Fig. 12. The approximation of the experimental data [11] using model 

(7)–(9). 

 

The curve reproduces the rapid growth of the 

learning level in the first 5–7 iterations and its satura-

tion near 0.75. Unlike model (4), this approximation 

better reflects the smoothed dynamics of plateauing 

due to the time-varying probability of mastering. 

The deviations from the empirical points are 

smaller, especially in the middle and late phases, indi-

cating greater flexibility of the model in the case of a 

gradual decrease in the rate of mastering. 

Numerical estimation yields the following values 

of the model parameters: q0 = 0.132, w0 = 0.517, and  

α = 0.417. The histogram of the model deviations is 

provided in Fig. 13. 
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Fig. 13. The histogram of deviations of model (7)–(9) from the 

experimental data [11]. 

 

Most of the deviations are in the range from –0.05 

to 0.05, with the maximum frequency occurring in 

regions close to zero. Unlike the previous model, the 

distribution here is more symmetrical. 

The Shapiro–Wilk statistic value is 0.956, and the 

p-value is 0.311. The normality hypothesis for the dis-

tribution is not rejected with a significance level of 

0.05. According to the Epps–Pulley and  

Kolmogorov–Smirnov tests, the normality hypothesis 

is not rejected as well. The parameters of the distribu-

tion are 0   and 0 05. . (In this example, the 

nonzero mean is more pronounced, i.e., already in the 

fourth decimal place: –0.000332 vs. 0.000000). 

The data of the mental multiplication experiment 

reflect the process of gradually mastering a cognitive 

skill with a typical reduction in the task completion 

time. The empirical curve shows a rapid improvement 

phase followed by saturation, which corresponds to 

the classical shape of the iterative LC. The models 

from part I of the study [3] match the obtained data 

after their normalization by the transformation (10). 

Based on the analysis of deviations, there are no 

grounds to reject the normality hypothesis for their 

distribution with a mean close to zero. Therefore, the 

learning models from [3] are applicable to describe the 

formation of cognitive skills with regular and routine 

training. 

 

3.3. The Visual-Motor Adaptation Experiment 

Consider the data of the experiment from the paper 

[13]. The experiment consisted of four parts, each with 

three blocks of 20 trials. In each block, participants 

performed hand movements toward a target displayed 

on a screen. The key element of the experiment was 

the manipulation of the visual feedback of hand 

movement and the target’s position. In the first version 

of the experiment, the visual feedback in the basic 

block was rotated 10º clockwise relative to the real 

hand movement. In the interference block, the feed-

back was rotated another 20º counterclockwise relative 

to the basic condition, while the target’s position on 

the screen remained unchanged. The third block re-

peated the basic condition. The error value was rec-

orded. Figure 14 shows the error value (averaged 

across all participants) as a function of the number of 

exercises. 

 
 

 
 

 
Fig. 14. The experimental data [13]. 

 

By the fifth iteration, the error decreases from ap-

proximately 15 to 2º and then stabilizes. The subse-

quent fluctuations range from 1.5 to 3º and demon-

strate no clear trend. Consequently, the necessary mo-

tor pattern of actions is rapidly mastered at the begin-

ning of the experiment, and a stable adaptation level is 

achieved with the minimum error. 

Let us apply a transformation similar to formulas 

(1) and (10). For 0º and 20º as the minimum and max-

imum errors, respectively, we construct the LC based 

on the obtained data (Fig. 15). 

 
 

 
 

 
Fig. 15. The empirical LC based on the experimental data [13].  

 

In the first three iterations, the curve rises from 0.4 

to 0.85; then it reaches a level above 0.9, remaining 

there with slight fluctuations until the end of the ex-

periment. The empirical curve demonstrates a smooth 

transition to the asymptote without significant dips; 

therefore, it can be described by standard saturation 

models. 
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We approximate the data using models (4) and (7)–
(9). The result for model (4) is shown in Fig. 16.  

 
 

 
 

 
Fig. 16. The approximation of the experimental data [13] using model 

(4). 

 

The LC for model (7)–(9) with the parameter val-

ues q0 = 0.319, w = 0.729, and u = 0.075 reproduces a 

sharp increase in the first 3–5 iterations and then stabi-

lizes at a level of about 0.9 (the model asymptote). 

The empirical data lie close to the model curve 

throughout the entire interval, but the deviations are 

observed in the central part (iterations 6–12): the mod-

el overestimates the predictions. Thus, despite the 

overall correspondence, model (4) may not fully re-

flect the peculiarities of the learning trajectory in the 

middle and late phases. 

The histogram of the deviations between the pre-

dictions of model (4) and the experimental data can be 

found in Fig. 17. 

 
 

 
 

 
Fig. 17. The histogram of deviations of model (4) from the 

experimental data [13].  

 

The distribution is asymmetrical: note a bias to the 

left, as most of the deviations lie in the negative region 

(from –0.03 to –0.01), and a pronounced peak on the 

right-hand side at a value of 0.04. This observation 

may indicate that the model underestimates the learn-

ing level in one region, overestimating it in another. 

The Shapiro–Wilk statistic value is 0.943. There 

are no grounds to reject the normality hypothesis for 

the distribution of the deviations at a significance level 

of 0.05. The Epps–Pulley and Kolmogorov–Smirnov 

tests also give no reason to reject this hypothesis. The 

parameters of the distribution are 0   and 

0 028. .  

To refine the approximation, we employ model 

(7)–(9), in which the probability of mastering decreas-

es over time. With this feature, it is possible to consid-

er the effect of fatigue on the LC shape. The corre-

sponding approximation of the experimental data is 

presented in Fig. 18. 

 

 

 
Fig. 18. The approximation of the experimental data [13] using model 

(7)–(9). 

 

The model reproduces a sharp increase in the 

learning level in the first three iterations (from 0.2 to 

0.85) and then accurately reaches a saturation level of 

about 0.93. Unlike model (4), here the curve describes 

the process more smoothly: the slope decreases gradu-

ally rather than abruptly. Numerical estimation yields 

the following values of the model parameters:  

q0 = 0.317, w0 = 0.876, and α = 0.432. Figure 19 shows 

the histogram of the deviations between the predic-

tions of model (7)–(9) and the experimental data.  

 
 

 

 

 
Fig. 19. The histogram of deviations of model (7)–(9) from the 

experimental data [13].  

 

Most of the deviations are concentrated in the 

range from –0.03 to 0.05. Visually, the distribution 
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looks more symmetrical compared to a similar histo-

gram (Fig. 17) for model (4), but there is a slight bias 

to the negative side. This may indicate a partial over-

estimation of the model predictions at certain phases. 

The Shapiro–Wilk statistic value is 0.968. The 

normality hypothesis of the distribution is not rejected 

with a significance level of 0.05. The Epps–Pulley and 

Kolmogorov–Smirnov tests also give no grounds for 

rejecting this hypothesis. The parameters of the distri-

bution are 0   (but the mean has a nonzero value of 

0.000267) and 0 032. . 

The visual-motor adaptation experiment shows the 

rapid mastery of motor patterns when changing the 

visual feedback, with subsequent maintenance of the 

achieved level. The empirical curve is characterized 

by a sharp increase in the learning level and a smooth 

transition to saturation. The distributions of the devia-

tions of the models under consideration are close to 

normal and have a nearly zero mean, which confirms 

the applicability of exponential laws to describe this 

type of motor tasks. 

 

3.4. Breaks in the Ball-Tossing Experiment 

The original experiment in [22] consisted of sever-

al periods; the first period has been discussed in sub-

section 3.1. The periods of active experimentation 

were interspersed with breaks: 22 months between the 

first and second stages, and 6 months between the se-

cond and third stages. Applying the transformation (1), 

we describe the data using models (3), (4), and (6)–
(11) during the learning periods. The process of for-

getting during the rest periods can be described by 

Model 2: 

   0 ,ut
q t q e

                         (11) 

where  0q  is the learning level achieved by the end 

of the active experimentation period [3]. 

In the latter case, we calculate the probability of 

forgetting using the known values of the learning lev-

els at the beginning and end of the break. The corre-

sponding results are presented in Figs. 20–25. 

In particular, Fig. 20 shows three periods of the 

experiment with long breaks between them. For each 

period separately, an approximation is constructed 

using model (4), and the period of forgetting between 

them is described by an exponential decrease in the 

learning level according to model (11). Clearly, after 

each rest period (between 100 and 657 days, and be-

tween 675 and 881 days), the level of mastering de-

creases, followed by a new growth. 

To track the learning level dynamics, points A1–A3 

and B1–B3 in Fig. 20 mark the starting and end points, 

respectively, the three active learning periods. The 

drop from B1 to A2, and then from B2 to A3, shows the 

effect of forgetting after long breaks. At the same 

time, the decrease between B2 and A3 is less pro-

nounced, which agrees with the shorter second break 

compared to the first (6 vs. 22 months). The value at 

A2 is not smaller than at A1, and the value at A3 is not 

smaller than at A2; in other words, complete forgetting 

does not occur during the break. Also, the values at B2 

and B3 are greater than at B1, which may indicate the 

gradual accumulation of a stable skill or the formation 

of a more effective strategy during re-learning. 

In general, with several periods of active learning 

or productive activity interspersed with breaks, the 

values in the sequences A1–A2–… and/or B1–B2–… 
may demonstrate the formation of a stable skill, com-

plete forgetting, the effectiveness of subsequent repeti-

tions, etc. 

Consider an approximation approach where the da-

ta for each period are processed independently, with-

out the intervals between them, since the data for as-

sessing gradual forgetting were absent in the paper 

[22]. Figure 21 shows the approximation of each sec-

tion using model (4) with the parameters selected sep-

arately for each active skill acquisition stage. 

According to Fig. 21, the shape of the LC differs 

between periods: a smooth saturation in the first, a 

rapid growth, followed by a sharp plateau, in the se-

cond, and an almost linear curve in the third. This may 

indicate different regularities for the initial and repeat-

ed acquisition (consolidation) of skills. 

The estimates of the curve parameters are:  

q0 = 0.188, w = 0.022, and u = 0.025 (the first section);  

q0 = 0.186, w = 0.079, and u = 0.059 (the second sec-

tion); and q0 = 0.301, w = 0.070, and u = 0.049 (the 

third section). The value of the parameter u during 

breaks is estimated as 0.00166 and 0.00281, respec-

tively. 

The histograms of the deviations between the pre-

dictions of model (4) and the experimental data in dif-

ferent periods are shown in Fig. 22. 

In the first period, the distribution is close to 

Gaussian and centered near zero, which means a good 

approximation. In the second and third periods, the 

samples are small, but the deviations have no system-

atic bias. According to the Shapiro–Wilk, Epps–
Pulley, and Kolmogorov–Smirnov tests, the normality 

hypothesis is not rejected for the deviations of model 

(4) from the experimental data.  
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Fig. 20. The approximation of the experimental data [22] with breaks using models (4) and (11).  

 

   

(a) (b) (c) 

 
Fig. 21. The approximation of the experimental data [22] without breaks using model (4): (a) period 1, (b) period 2, and (c) period 3. 

  

   

(a) (b) (c) 

 
Fig. 22. The histogram of deviations of model (4) from the experimental data [22] without breaks: (a) period 1, (b) period 2, and (c) period 3. 

 

To improve the approximation accuracy, we apply 

model (7)–(9), in which the probability of mastering a 

skill decreases over time. (Therefore, the effect of fa-

tigue can be considered appropriately.) The corre-

sponding results are presented in Fig. 23. 

The model with fatigue more flexibly describes 

skill growth within the training period and, moreover, 

the decline in the rate of mastering over time. Unlike 

the model with constant parameters, where skill 

growth attenuates when approaching the asymptote, 

the model with the decreasing probability of mastery 

describes the slowdown due to the exhaustion of the 

mastery resource. This is especially important for 

tasks with long training periods, where the rate of skill 

growth may decrease due to the effect of fatigue rather 

than reaching the limit. In addition, plateauing is mod-

eled not as “stopping” at a predetermined level but as 

continuing growth with a decreasing rate. This makes 

the approximation more realistic in the long term. 

Due to the long intervals between the phases and 

no forgetting data during these periods, the construct-

ed curve is not very informative in terms of dynamics. 

Therefore, further analysis employs only the periods 

of active skill acquisition (Fig. 24). The model reflects 
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growth within each period, as well as the transition to 

a plateau and decelerated progress. 

According to Fig. 24, similar to model (4), the LC 

shape changes depending on the period: smooth satu-

ration in the first, and rapid growth and plateauing in 

the others. 

The estimates of the curve parameters are:  

q0 = 0.183, w0 = 0.018, and α = 0.041 (the first sec-

tion); q0 = 0.185, w0 = 0.069, and α = 0.099 (the se-

cond section); and q0 = 0.301, w0 = 0.051, and  

α = 0.089 (the third section). The value of the parame-

ter u during breaks is estimated as 0.00167 and 

0.00284, respectively. 

The histograms of the model deviations can be 

found in Fig. 25. 

According to the deviation histograms, model (7)–
(9) generally provides a more symmetrical distribution 

of errors compared to model (4) (see Fig. 22). In the

 

 
Fig. 23. The approximation of the experimental data [22] with breaks using models (7)–(9) and (11).  

 

 
  

(a) (b) (c) 

 
Fig. 24. The approximation of the experimental data [22] with breaks using models (7)–(9): (a) period 1, (b) period 2, and (c) period 3.

 

   

(a) (b) (c) 

 
Fig. 25. The histogram of deviations of models (7)–(9) from the experimental data [22] without breaks: (a) period 1, (b) period 2, and (c) period 3. 
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first and third periods, the deviations are grouped clos-

er to zero, and their amplitude is lower (a more accu-

rate approximation). In the second period, there is a 

slight asymmetry, albeit less pronounced than under 

the approximation by the constant-parameter model. 

Thus, the model with a decreasing probability of mas-

tering better considers the characteristics of the learn-

ing rate in different periods. 

Based on the Shapiro–Wilk, Epps–Pulley, and 

Kolmogorov–Smirnov tests, the normality hypothesis 

of the deviations of models (4) and (7)–(9) from the 

factual data is not rejected. However, the parameters 

have to be selected separately for each period: the 

model with the parameter values obtained in the first 

stage does not match the data in the subsequent stages. 

In addition, it is impossible to analyze the devia-

tions of the model from the experimental data during 

the rest stages for the values from the paper [22]: the 

experiment does not include measurements during 

breaks. Moreover, such measurements would be a 

training themselves (i.e., part of the learning process) 

and could affect the final result. 

Note also that with such a long break between the 

experiment stages, it is necessary to select “new” 

model parameters, since the parameter estimates ob-

tained in the previous stages do not match the availa-

ble data. The forgetting parameter during rest is not 

comparable to its analog during training, partly due to 

the significant difference in the length of the stages. 

The ball-tossing experiment with long breaks 

shows the differences between the initial and repeated 

acquisition of the skill. According to the step-by-step 

approximation of empirical data, the models from part 

I of the study [3] describe the learning level dynamics, 

and the deviations from the empirical data are normal-

ly distributed with a nearly zero mean. There are sev-

eral controllable factors in the design of experiments 

with breaks. It is generally possible to control the du-

ration of training periods and breaks in order to mini-

mize skill loss due to forgetting and, at the same time, 

provide an opportunity to “restart” training. This can 

relieve systematic fatigue and lead to new strategies 

for achieving the learner’s goals. 

4. A COMPARISON OF MODELS BASED ON  

THE RESULTS OBTAINED 

The approximation quality of Models 1, 3, 4, and 5 

from part I of the study [3] with constant and decreas-

ing probability of mastering (without and with fatigue, 

respectively) is compared in the table below. For each 

approximation, the model parameters were selected 

using the least squares method. Next, the coefficient of 

determination R
2
 was calculated to assess the model’s 

correspondence to the experimental data. 

According to the comparison results, in most cases, 

the model with fatigue or forgetting better matches the 

data compared to the ones without these processes. In 

the absence of fatigue or forgetting, the model repro-

duces the general slowly asymptotic nature of the 

curve, but worse reflects a gradual decline in the learn-

ing rate in the later stages. 

At the same time, the difference in the values of 

the coefficient of determination R
2 

between models is 

often small; see Models 4 and 5. A particularly notice-

able improvement is observed in the description of 

cognitive skills (mental multiplication), which may be 

associated with a more pronounced decline in the rate 

of mastering. 

The exception is the visual-motor adaptation ex-

periment, where the constant-parameter model has a 

slightly higher coefficient of determination. This may 

be due to the task specifics: unlike the other experi-

ments, here the participant was clearly given a final 

goal (hit the right spot), and it was achieved via con-

stant feedback. Such experiments reduce cognitive 

load: there is neither constant strategy revision nor 

striving for an abstract maximum. As a result, fatigue 

either disappears or has little effect on the skill acqui-

sition dynamics. In other tasks, participants acted 

without a clear endpoint, which increases uncertainty, 

complicates focus, and may contribute to fatigue.  

In the final analysis, the models with three or more 

parameters (Models 3–5) demonstrate significantly 

greater accuracy compared to the two-parameter coun-

terpart (Model 1). In two out of the three cases, the 

model with a decreasing probability of mastering 

(Model 4) better approximates the data compared to 

the constant-parameter one (Model 3). The advantage 

of Model 5 over Model 4 is minimal: taking fatigue 

into account mainly contributes to accuracy improve-

ment, whereas the additional consideration of forget-

ting during training does not significantly affect the 

value of R² in the experiments presented.  

Based on these outcomes, fatigue consideration 

seems reasonable when modeling tasks with prolonged 

load or a pronounced decrease in the rate of mastering; 

for short and intensive experiments, constant-

parameter models may be sufficient.  
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The quality of models: a comparison 

Experiment 

Model 

Model 1 

w = const 

Model 3 

w = const, 

u = const 

Model 4 

w = w (t) = w0e
–αt

 

Model 5 

w (t) = w0e
–αt

, 

u = const
 

Ball tossing (stage 1) 0.76076 0.93025 0.93200 0.93473 

Mental multiplication 0.56702 0.87209 0.89110 0.94287 

Visual-motor adapta-

tion 
0.65981 0.96134 0.94981 0.96137 

 

 

CONCLUSIONS 

According to the review of experimental datasets 

on the acquisition of motor and cognitive skills, the 

processes of mastering, forgetting, fatigue, and rest 

can manifest themselves in different forms depending 

on the experiment type. Mastering is present in all da-

tasets, which confirms the applicability of general iter-

ative learning models. Forgetting and fatigue manifest 

themselves in different ways, i.e., through an increase 

in errors and execution time or a decrease in accuracy 

after pauses (rest). The parameters (time, the history of 

actions, the number of components, and fatigue rate) 

serve to tune the model to a particular experiment; the 

resulting model can be used for comparison, predic-

tion, and control of the learning process. 

The unified experimental data processing princi-

ples (see the discussion above) demonstrate that vari-

ous criteria for the learning level (temporal, speed- and 

accuracy-related, and informational) can be reduced to 

the accuracy-related criterion under which the LC has 

a slowly asymptotic nature. In addition, absolute units 

of measurement of the learning level can be converted 

into relative (probabilistic) ones; therefore, general 

mathematical models can be used to describe the expe-

rience acquisition process based on a wider range of 

experiments. 

The above examples of processing experimental 

results show that the learning models match the avail-

able data—the statistical tests give no grounds to re-

ject the hypothesis that the model deviations are inde-

pendent and identically distributed realizations of a 

Gaussian random variable with zero mean. 

According to the ball-tossing experiment with a 

break after a long interval, the initial learning level 

drops, but after several days of training, the result is 

higher than in the first period. This means a positive 

effect of the break on the terminal learning level; but it 

is impossible to determine its optimal duration to con-

firm the conclusions from part I of the study [3] based 

on the available evidence. 

In the examples considered, the models can be 

used to recommend an appropriate organization of the 

learning process. For instance, when describing the 

experience acquisition processes in the mental multi-

plication and visual-motor adaptation experiments by 

model (4), the LC almost reaches the asymptote much 

earlier than the last iteration. Hence, given the experi-

ment setup and the confirmed achievement of the 

maximum learning level, it is advisable to terminate 

the learning process or change the learning strategy. 

By considering fatigue, one can describe the de-

crease in the skill acquisition rate during training: the 

model shows a gradual transition from fast progress to 

a slowdown, without interrupting growth at a fixed 

level. This approach to learning modeling may be par-

ticularly important for long-term skill acquisition. For 

three of the four experiments presented, the coefficient 

of determination of the model with a decreasing prob-

ability of mastery has been higher. A noticeable im-

provement has been observed in the description of the 

cognitive skill (mental multiplication), where the ac-

quisition rate slows down the most. However, in the 

visual-motor adaptation experiment, model (4) has 

shown the best value of the coefficient of determina-

tion R
2
. 
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Open datasets for building and testing learning models 

Reference 

2009 data: 

https://sites.google.com/site/assi

stmentsdata/home/2009-2010-

assistment-data/skill-builder-

data-2009-2010 (Accessed April 

28, 2025.) 

 

2012 data: 

https://sites.google.com/site/assi

stmentsdata/datasets/2012-13-

school-data-with-affect (Ac-

cessed April 28, 2025.) 

 

2015 data: 

https://drive.google.com/file/d/0

B_hO8cnpcIMgUGZzRnh3bHJr

SjQ/view?resourcekey=0-dGtan-

IMFc3IjQ749-FgQA (Accessed 

April 28, 2025.) 

https://www.kaggle.com/dataset

s/aravinii/duolingo-spaced-

repetition-data (Accessed Febru-

ary 7, 2025.) 

Components of learning 

Parameters 

Time: time stamps. 

History: the cor-

rectness of task 

completion. 

The number of 

skills acquired: 1 or 

more, training to 

complete tasks for 

different skills. 

 

Time: time stamps. 

History: the cor-

rectness of task 

completion. 

The number of 

skills acquired: 1 or 

more, training to 

translate different 

words. 

Processes 

Mastering: a decrease in the 

use of hints for tasks within a 

skill; an increase in the num-

ber of correct answers to tasks 

within a skill. 

Forgetting: an increase in the 

use of hints for tasks within a 

skill; a decrease in the num-

ber of correct answers to tasks 

within a skill. 

Fatigue: with the course of 

time, more hints are used, and 

the number of incorrect an-

swers to tasks within different 

skills increases. 

Rest: a break in interaction 

with the system between ses-

sions on the same day. 

Mastering: maintaining the 

accuracy of answers to word 

translations over time. 

Forgetting: an incorrect an-

swer after a series of correct 

answers to word translations. 

Fatigue: an increase in the 

number of incorrect answers 

to all word translations. 

Rest: a break in interaction 

with the application on the 

same day. 

Selection of the skill ac-

quired: by the system. For 

example, the system more 

frequently generates words 

that are commonly forgotten 

by the user. 

Data 

User tag, task tag, cor-

rect answer, user an-

swer, the number of at-

tempts, the number of 

hints used, and skills 

acquired. 

 

The number of partici-

pants: over 60 000 per-

sons. 

User tag, language 

learned, lexeme tag, the 

number of lexeme 

demonstrations to the 

user before the lesson, 

the number of correct 

word definitions before 

the lesson, the number 

of lexeme demonstra-

tions during the lesson, 

and the number of cor-

rect word definitions 

during the lesson.  

 

The number of partici-

pants: over 150 000 per-

sons. 

The field 

of activity 

Education. 

Solving 

math tasks 

Education. 

Learning  of 

foreign lan-

guages 

Description 

Contains data on 

solving math 

tasks. One ques-

tion may have 

several skill tags. 

Hints are provid-

ed in the tasks. 

Contains data on 

memorizing 

words and their 

use in different 

contexts on the 

Duolingo plat-

form. 

Dataset 

or  

publication 

ASSISTments 

Duolingo 

Spaced Repe-

tition Data 

 

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/datasets/2012-13-school-data-with-affect
https://drive.google.com/file/d/0B_hO8cnpcIMgUGZzRnh3bHJrSjQ/view?resourcekey=0-dGtan-IMFc3IjQ749-FgQA
https://drive.google.com/file/d/0B_hO8cnpcIMgUGZzRnh3bHJrSjQ/view?resourcekey=0-dGtan-IMFc3IjQ749-FgQA
https://drive.google.com/file/d/0B_hO8cnpcIMgUGZzRnh3bHJrSjQ/view?resourcekey=0-dGtan-IMFc3IjQ749-FgQA
https://drive.google.com/file/d/0B_hO8cnpcIMgUGZzRnh3bHJrSjQ/view?resourcekey=0-dGtan-IMFc3IjQ749-FgQA
https://drive.google.com/file/d/0B_hO8cnpcIMgUGZzRnh3bHJrSjQ/view?resourcekey=0-dGtan-IMFc3IjQ749-FgQA
https://drive.google.com/file/d/0B_hO8cnpcIMgUGZzRnh3bHJrSjQ/view?resourcekey=0-dGtan-IMFc3IjQ749-FgQA
https://www.kaggle.com/datasets/aravinii/duolingo-spaced-repetition-data
https://www.kaggle.com/datasets/aravinii/duolingo-spaced-repetition-data
https://www.kaggle.com/datasets/aravinii/duolingo-spaced-repetition-data
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Table (continued) 

Reference 

https://www.kaggle.com/datasets/

junyiacademy/learning-activity-

public-dataset-by-junyi-

acade-

my/data?select=Log_Problem.csv 

(Accessed February 24, 2025.) 

https://pslcdatashop.web.cmu.edu

/DatasetInfo?datasetId=1275 

(Accessed February 24, 2025.) 

https://github.com/riiid/ednet 

(Accessed May 26, 2025.) 

Components of learning 

Parameters 

Time: time stamps. 

History: the history 

of answers and inter-

actions. 

The number of ac-

tivity components: 

1 or more, training to 

complete different 

tasks. 

 

Time: time stamps. 

History: the history 

of answers and inter-

actions. 

The number of 

skills acquired: 1 or 

more, training to 

complete different 

tasks. 

 

Time: time stamps. 

History: the history 

of answers and inter-

actions. 

The number of 

skills acquired: 1 or 

more, training to 

complete different 

tasks. 

Processes 

Mastering: a decrease in errors 

in repeated attempts to solve a 

task. 

Forgetting: return to errors after 

a progression of correct answers 

to the task. 

Fatigue: with the course of time, 

more hints are used, and the 

number of incorrect answers to 

different tasks increases. 

Rest: a break in interaction with 

the system between sessions on 

the same day. 

Mastering: a decrease in errors 

when retrying to solve a task. 

Forgetting: return to errors after 

a progression of correct answers 

to the task. 

Fatigue: with the course of time, 

more hints are used, and the 

number of incorrect answers to 

different tasks increases. 

Rest: a break in interaction with 

the system between sessions on 

the same day.  

Mastering: an increase in the 

number of correct answers to the 

task. 

Forgetting: a decrease in the 

accuracy of answers after a pro-

gression of correct answers with-

in the task. 

Fatigue: a decrease in activity or 

an increase in errors on different 

tasks. 

Rest: periods of inactivity be-

tween sessions during the day. 

Data 

Three tables with 

metadata of students 

and exercises, attempts 

to solve tasks, time 

stamps, and the num-

ber of hints used. 

 

The number of partici-

pants: over 72 000 per-

sons. 

Metadata of students 

and exercises, attempts 

to solve tasks, time 

stamps, and the num-

ber of hints used. 

 

The number of partici-

pants: over 2000 per-

sons. 

Four types of datasets 

with user tags, time 

stamps, question tags 

and correct answers, 

user answers, as well as 

user actions on the plat-

form, such as viewing 

video lectures and mate-

rials. 

 

The number of partici-

pants: over 780 000 

persons. 

The field 

of activity 

Education 

Education. 

Solving math 

tasks 

Education 

Description 

Contains data on 

user activity on 

the platform de-

signed for solving 

tasks in various 

disciplines. 

Contains data on 

user activity on 

the platform 

when solving 

math tasks. 

Contains user da-

ta on learning on 

the multi-profile 

platform. In-

cludes answers to 

questions and in-

teractions with 

the system. 

Dataset 

or publication 

Junyi Academy 

Online Learn-

ing Activity 

Dataset 

Junyi Academy 

Math Practicing 

Log 

EdNet 

 

https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy/data?select=Log_Problem.csv
https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy/data?select=Log_Problem.csv
https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy/data?select=Log_Problem.csv
https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy/data?select=Log_Problem.csv
https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy/data?select=Log_Problem.csv
https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy/data?select=Log_Problem.csv
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
https://github.com/riiid/ednet
https://github.com/riiid/ednet
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Table (continued) 

Reference 

https://huggingface.co/datasets/de
nkCF/UsersCodeforcesSubmissio
nsEnd2024 (Accessed May 20, 
2025.) 

https://www.semanticscholar.org/
paper/A-learning-curve-equation-
as-fitted-to-learning-
Bar-
low/1eb32cea20d374129b85069c
93feeeb75330882c  

https://dataverse.nl/dataset.xhtml?
persisten-
tId=doi:10.34894/UWU9PV (Ac-
cessed February 28, 2025.) 

https://www.semanticscholar.org/
paper/An-Extensive-Experiment-
in-Motor-Learning-and-
Braden/0f288c34ce089188926abf
dbe87e40ba7399b499 

Components of learning 

Parameters 

Time: time stamps. 
History: the com-
plexity of previously 
solved tasks. 
The number of skills 
acquired: 1 or more, 
training to complete 
different tasks. 

 
Time: iterations. 
History: the results 
of previous days. 
The number of skills 
acquired: 1, the 
same skill is trained. 

Time: dates of train-
ing sessions. 
History: previous 
training sessions. 
The number of skills 
acquired: 1 or more, 
training to run differ-
ent distances. 

Time: iterations by 
day. 
History: the results 
of previous days. 
 

Processes 

Mastering: an increase in suc-
cessful task solutions. 
Forgetting: a decrease in answer 
accuracy after a progression of 
correct answers within the task. 
Fatigue: an increase in the time 
taken to solve tasks within the 
competition. 

Mastering: a decrease in the 
time spent on completing the ex-
ercises. 
Forgetting: an increase in the 
time spent on completing the ex-
ercises. 

Fatigue: runners’ subjective as-
sessments of fatigue after train-
ing sessions, the influence of the 
number of different training ses-
sions and distances. 

Mastering: an increase in the 
number of balls scored. 
Forgetting: a decrease in the 
number of balls scored, especial-
ly after a break. 
Rest: breaks in the experiment. 

Data 

User tag, task tag, task 
difficulty, user answer, 
and response time. 
 
The number of partici-
pants: over 15 000 per-
sons. 

Module completion 
time. 
 
The number of partici-
pants: 1 person. 

Runner number, run-
ning distance, the 
number of trials, the 
presence of strength 
training, the hours of 
alternative activities, 
and the subjective as-
sessments of the run-
ner’s condition before 
and after training ses-
sions. 

 
The number of partici-
pants: 74 persons. 

The number of balls 
scored. 

 
The number of partici-
pants: 1 person. 
 
 
 
 
 

The field 

of activity 

Education. 
Solving pro-
gramming 
tasks 

Education. 
Solving math 
tasks 

Sports 

Movement 

Description 

Contains data on 
user activity on 
the platform de-
signed for solving 
programming 
tasks. 

Contains data on 
solving a set of 63 
exercises (the 
mental multiplica-
tion of two two-
digit numbers) by 
a participant. 

Contains a de-
tailed training log 
of high-level run-
ners over seven 
years (2012–
2019). Includes 
data on runners 
competing in dis-
tances from 800 
m to the mara-
thon. 

Contains data on 
attempts to throw 
a ball into a box. 
The ultimate ob-
jective of the ex-
periment was to 
study the learning 
capability by trial 
and error when 

Dataset 

or publication 

Codeforces  
Users Submis-
sions 

A Learning 
Curve Equation 
as Fitted to 
Learning Rec-
ords [11] 

Injury Predic-
tion in Compet-
itive Runners  

An Extensive 
Experiment in 
Motor Learning 
and Re-
Learning [22] 

 

https://huggingface.co/datasets/denkCF/UsersCodeforcesSubmissionsEnd2024
https://huggingface.co/datasets/denkCF/UsersCodeforcesSubmissionsEnd2024
https://huggingface.co/datasets/denkCF/UsersCodeforcesSubmissionsEnd2024
https://huggingface.co/datasets/denkCF/UsersCodeforcesSubmissionsEnd2024
https://www.semanticscholar.org/paper/A-learning-curve-equation-as-fitted-to-learning-Barlow/1eb32cea20d374129b85069c93feeeb75330882c
https://www.semanticscholar.org/paper/A-learning-curve-equation-as-fitted-to-learning-Barlow/1eb32cea20d374129b85069c93feeeb75330882c
https://www.semanticscholar.org/paper/A-learning-curve-equation-as-fitted-to-learning-Barlow/1eb32cea20d374129b85069c93feeeb75330882c
https://www.semanticscholar.org/paper/A-learning-curve-equation-as-fitted-to-learning-Barlow/1eb32cea20d374129b85069c93feeeb75330882c
https://www.semanticscholar.org/paper/A-learning-curve-equation-as-fitted-to-learning-Barlow/1eb32cea20d374129b85069c93feeeb75330882c
https://www.semanticscholar.org/paper/A-learning-curve-equation-as-fitted-to-learning-Barlow/1eb32cea20d374129b85069c93feeeb75330882c
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/UWU9PV
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/UWU9PV
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/UWU9PV
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/UWU9PV
https://www.semanticscholar.org/paper/An-Extensive-Experiment-in-Motor-Learning-and-Braden/0f288c34ce089188926abfdbe87e40ba7399b499
https://www.semanticscholar.org/paper/An-Extensive-Experiment-in-Motor-Learning-and-Braden/0f288c34ce089188926abfdbe87e40ba7399b499
https://www.semanticscholar.org/paper/An-Extensive-Experiment-in-Motor-Learning-and-Braden/0f288c34ce089188926abfdbe87e40ba7399b499
https://www.semanticscholar.org/paper/An-Extensive-Experiment-in-Motor-Learning-and-Braden/0f288c34ce089188926abfdbe87e40ba7399b499
https://www.semanticscholar.org/paper/An-Extensive-Experiment-in-Motor-Learning-and-Braden/0f288c34ce089188926abfdbe87e40ba7399b499
https://www.semanticscholar.org/paper/An-Extensive-Experiment-in-Motor-Learning-and-Braden/0f288c34ce089188926abfdbe87e40ba7399b499
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Table (continued) 

Reference 

 

https://osf.io/c5ezv/ (Accessed 

March 13, 2025.) 

https://figshare.com/articles/datas

et/Data_from_motor_learning_ex

periments/957526/1 (Accessed 

March 13, 2025.) 

Components of learning 

Parameters 

The number of 

skills acquired: 1, 

the same skill is 

trained. 

Time: iterations. 

History: the angles 

and trajectories in 

iterations prior to the 

current one. 

The number of 

skills acquired: 1 or 

more, different tra-

jectories are trained. 

 

Time: iterations. 

History: the angles 

and trajectories in 

iterations prior to the 

current one. 

The number of 

skills acquired: 1 

or more, different 

trajectories are 

trained. 

Processes 

 

Mastering: adaptation to dis-

turbances. 

Fatigue: gradual deterioration of 

results compared to previous it-

erations. 

Mastering: adaptation to dis-

turbances at a certain angle. 

Forgetting: deterioration of re-

sults in attempts after a break. 

Fatigue: gradual deterioration of 

results compared to previous it-

erations. 

Data 

 

Participant number, 

iteration number, rota-

tion angle, and devia-

tions from the trajecto-

ry. 

 

The number of partici-

pants: 136 persons. 

Participant number, 

attempt number, target 

angle, achieved angle, 

and deviations from the 

trajectory. 

 

The number of partici-

pants: 10 persons. 

The field 

of activity 

 

Movement. 

Adaptation to 

changes in 

virtual feed-

back 

Movement. 

Adaptation to 

changes in 

virtual feed-

back 

Description 

 learning is spread 

out over time, and 

especially to 

study the re-

learning curve. 

Contains data on 

the adaptation of 

different-age per-

sons to sudden 

and gradual dis-

turbances in the 

external environ-

ment. 

The experiment 

was to train a per-

son to coordinate 

his/her move-

ments in accord-

ance with visual 

perception, which 

was changed us-

ing a special in-

stallation. 

Contains data on 

person’s adapta-

tion to environ-

mental disturb-

ances. 

The experiment 

was to train a per-

son to coordinate 

his/her move-

ments in accord-

ance with visual 

perception, which 

was changed us-

ing a special in-

stallation. 

Dataset 

or publication 

 

GradualTwoRate 

Motor Learning 

Experiments 

https://osf.io/c5ezv/
https://osf.io/c5ezv/
https://figshare.com/articles/dataset/Data_from_motor_learning_experiments/957526/1
https://figshare.com/articles/dataset/Data_from_motor_learning_experiments/957526/1
https://figshare.com/articles/dataset/Data_from_motor_learning_experiments/957526/1
https://figshare.com/articles/dataset/Data_from_motor_learning_experiments/957526/1
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