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Abstract. This paper proposes a new method to control nonlinear underactuated plants for elim-

inating unmatched parametric uncertainties. The method is based on a model reference adaptive 

control. The controller consists of a basic LQ one and an adaptive compensator reducing the 

uncertainty norm under certain assumptions. The compensator involves a multilayer neural net-

work due to its universal approximation properties. The network is trained online. The equa-

tions to tune the compensator’s neural network parameters are derived using Lyapunov’s second 

method and the backpropagation algorithm. The asymptotic convergence of the tracking error 

(the difference between the plant’s and reference model’s outputs) to a given domain is proved. 

The theoretical results are validated by numerical experiments with the developed control sys-

tem for the mathematical model of a balancing LEGO EV3 robot in MATLAB. 
 

Keywords: model reference adaptive control, balancing robot, suppression of unmatched parametric un-

certainties, neural networks, online training, stability. 
 

 

 

INTRODUCTION  

In modern automatic control practice, the problems 

of controlling technical systems (plants) with a signifi-

cant effect of parametric uncertainties are becoming 

increasingly important. Classical examples include 

manipulators [1, 2], unmanned and manned aerial ve-

hicles in special operating modes [3, 4], industrial 

electric drives [5], and technological processes in 

chemical [6] and metallurgical [7, 8] industries. 

Most modern methods for constructing control sys-

tems for plants with parametric uncertainties can be 

divided into robust approaches and model reference 

adaptive control methods. Robust systems are designed 

so that the performance criteria of the closed-loop con-

trol  system  (usually the phase and gain margins)  satis- 
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fy a priori requirements in the worst operating condi-

tions of the plant. On the other hand, adaptive systems 

estimate the uncertainty online and then form a control 

action to minimize the plant’s deviation from a refer-

ence [3]. Compared to robust approaches, model refer-

ence adaptive systems need no a priori knowledge of 

the range of variations in the plant’s parameters (the 

maximum value of parametric uncertainty); with a suf-

ficient power margin for the control action, they yield 

a reference performance instead of a compromise one. 

All methods of constructing model reference adap-

tive control systems can be divided into direct, indi-

rect, and composite ones; see [3, 10, 11]. In the first 

case, the parameters of a preselected-structure control-

ler are directly tuned; in the second case, the parame-

ters of the plant and (or) parametric uncertainty are 

estimated, and this information is used to calculate the 

controller’s parameters. Composite adaptive control 

systems combine direct and indirect adaptive control 

approaches to improve the adaptation process. 

http://doi.org/10.25728/cs.2021.5.3
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The main problems of all three groups of model 

reference adaptive control methods are as follows [3, 

10]: 

– The tuned parameters converge to the ideal val-

ues only when satisfying the regressor’s persistent ex-

citation requirement, which is rather restrictive. 

– From the practice viewpoint, the standard tuning 

loop yields an unsatisfactory quality of transients for 

tunable parameters, control, and tracking error (espe-

cially when the number of tunable parameters increases). 

– The gain matrix of the adaptation loop is selected 

experimentally (manually). 

– It is necessary to know the sign of the plant’s 

gain matrix. 

In recent years, much effort has been applied by 

domestic and foreign researchers to solve these prob-

lems. Among the last significant results, we mention 

the publications [12–15]. 

However, there is a fifth (more fundamental and 

less developed) problem in the model reference adap-

tive control theory: the assumption about the plant’s 

adaptability [3, 10]. According to this assumption, 

model reference adaptive control methods in the gen-

eral statement can be applied only if the plant’s para-

metric uncertainty is matched with the control signal. 

It means the theoretical possibility of fully compensat-

ing the uncertainty by direct subtraction of the generat-

ed control. If the adaptability condition does not hold, 

direct compensation becomes impossible: the uncer-

tainty is unmatched, and special methods are required 

for designing the control law and its tuning. 

Generally speaking, there are two main classes of 

uncertainties unmatched with the control signal. The 

first class includes disturbances in the plant’s descrip-

tion by autonomous differential equations. The second 

class includes disturbances arising in the plant’s non-

autonomous equations with a deficit of control chan-

nels (the so-called underactuated systems with un-

matched uncertainties). 

For a long time, unmatched uncertainties of the 

first class have been compensated using adaptive back-

stepping methods [16] and indirect methods based on 

tuning functions [17]. The disadvantages of these ap-

proaches include a high dynamic order of the control 

law and its tuning and higher complexity of the design 

process when increasing the plant’s order. New meth-

ods have recently been proposed [18–20] to solve the-

se problems––consider and compensate the effect of 

unmatched parametric uncertainties––in a different 

way. These solutions directly combine the theory of 

adaptive [10] and robust [9] control. In particular, the 

following procedure was proposed in [18, 20]. First, 

indirect model reference adaptive control methods 

were used to estimate the unmatched uncertainties. 

Then the resulting information was adopted to recalcu-

late the parameters of the controller and the reference 

model using LMIs synthesis. With such an approach, 

the robustness of the closed loop system to arbitrary 

unmatched uncertainties is adaptively maintained, and 

the effect of matched uncertainties is compensated. 

The literature suggests few model reference adap-

tive control methods to compensate the effect of un-

matched uncertainties from the second group. The 

main difficulty here is that the deficit of control chan-

nels leads to the presence of one control signal in sev-

eral equations. In the general case, this leads to a non-

trivial problem of compensating control design. Vari-

ous methods of changing coordinates [21–25] are well 

known [21] in geometric and nonlinear control theory 

to solve this problem. These methods allow passing 

from a plant’s model with a deficit of control actions 

to an equivalent normal-form model. As a result, an 

appropriate control law can be chosen by the feedback 

linearization method [21]. The disadvantages of such 

methods are the complexity (or even impossibility) of 

calculating the exact transformation for nonlinear high-

dimensional plants and the dependence of the trans-

formation itself on the plant’s parameters. (Hence, it 

should have adaptation.) Therefore, the problem under 

consideration is still not completely solved. 

This paper proposes a new approach to compensate 

an unmatched parametric uncertainty for an underactu-

ated plant. It rests on the assumed existence of an ideal 

compensating control for reducing the unmatched un-

certainty by a norm. With this assumption, we obtain 

compensating control by solving an optimization prob-

lem. Most real underactuated plants are described by 

nonlinear differential equations. Hence, the unmatched 

uncertainty is nonlinear, and the optimization problem 

turns out to be nonlinearly parameterized and, in the 

general statement, rather difficult to solve. To solve it 

in the general statement, we use artificial neural net-

works with universal approximating properties to form 

a compensating control action [26]. In this case, the 

parameter tuning laws of the compensator’s neural 

network are designed by combining Lyapunov’s se-

cond method and the backpropagation method. 

The main result is a new neural-network-based 

compensating control law and an online algorithm to 

tune its parameters, which ensure the asymptotic con-
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vergence of the tracking error of a nonlinear underac-

tuated plant to a given domain with a chosen reference 

model. 

A two-wheeled balancing robot is a classical ex-

ample of a nonlinear underactuated plant. Therefore, 

we construct an adaptive neural-network-based control 

for such a robot without loss of generality as an illus-

trative example. 

This paper uses the following notations:   . ,i j  or 

 
,

.
i j

 is an element standing at the junction of the ith 

row and jth column of a given matrix;  det .  is the 

matrix determinant;  tr .  is the matrix trace (the sum 

of all elements on the principal diagonal of a given 

matrix);  vec .  is the matrix vectorization (stacking 

the columns of a given matrix);  diag a b c  is 

a diagonal matrix with elements a,b,…,c on the princi-

pal diagonal; .


 is the L  norm of a given matrix; .  

is the Euclidean vector norm or Frobenius matrix 

norm, depending on the context;  .
n n

 is a matrix of 

dimensions n n . 

1. THE MATHEMATICAL MODEL                                        

OF A TWO-WHEELED BALANCING ROBOT 

The differential equations describing the dynamics 

of a two-wheeled balancing robot are derived using the 

Euler–Lagrange second method [27]. After reducing to 

the Cauchy form, they are given by 
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The model (1.1) is obtained by assuming the struc-

tural and parametric identity of the actuating motors. 

The parameters of the model (1.1) have the following 

physical interpretation: Jw is the wheel’s moment of 

inertia; mw is the wheel’s mass; M is the robot’s mass; 

R is the wheel’s radius; n is the gear ratio of the gear-

box; Jm is the motor’s moment of inertia; L is the dis-

tance between the center of mass and the wheel axis; 

Kt is the motor torque constant; Rm is the resistance of 

the motor’s armature circuit; Kb is the back emf con-

stant; fm is the coefficient of friction between the ro-

bot’s body (further called the body) and the motor 

shaft; fw is the coefficient of friction between the wheel 

and the motion surface; J is the body’s moment of in-

ertia; g is the acceleration of gravity. The robot’s state 

variables are the average angle of rotation of the 

wheels (x1), the body’s angle of deflection from the 

normal (x2), the wheel turning rate (x3), and the body’s 

rate of deflection from the normal (x4). The voltages u1 

and u2 applied to the left and right motors, respective-

ly, are the control action. 

For convenience, let us introduce the following ad-

ditional notations for the model (1.1): 
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2. PROBLEM STATEMENT 

Using the notations (1.2), we write the model (1.1) 

in the state space: 
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(2.1) 

Here x ∈ R4
 is the measured state vector of the robot;  

u = [u1; u2] ∈ R2
 is the vector of voltages applied to the 

left and right motors; f3(x2, x3, x4), f4(x2, x3, x4), and 

g(x2) are the nonlinear functions given by (1.2), which 

satisfy the Lipschitz smoothness conditions. 

Assumption 1. The control action u is such that  

u1 = u2. 

This assumption is classical when the robot’s rota-

tion about the center of mass in the horizontal plane is 

not required to control. 

Due to Assumption 1, the model (1.1) with two 

control actions can be reduced to an equivalent model 

with one control action v = u1: 
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(2.2) 

In addition, we will consider an auxiliary linear 

model obtained from (2.2) by linearizing the functions 

f3(x2, x3, x4) and f4(x2, x3, x4) and the nonlinear elements 

of the vector B in the neighborhood of the unstable 

equilibrium x2 = 0: 
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Remark 1. To derive the model (2.3) from the 

model (1.1), we set some values of the physical and 

geometric parameters of the robot model (1.1) and use 

the equalities    
2 2

2 2 2
0 0

lim sin , lim cos 1,
x x

x x x
 

   and

2
4 0x   holding in the neighborhood of the lineariza-

tion point x2 = 0. When constructing the linearized 

model (2.3), the robot’s parameters can be uncertain. 

Based on the linear model (2.3), the LQ-optimal 

control law can be calculated by 

 LQ LQ LQ ,v K r x K e  

           

(2.4) 
where r ∈ R4

 is the vector of reference signals for the 

robot’s state variables, and the matrix KLQ is found by 

minimizing the criterion 

T 2
LQ LQ

0

1
 

2
J x Q x R v d



  
              

(2.5) 

with positive definite diagonal matrices QLQ ∈ R
4x4

 and 

RLQ ∈ R. 

The desired control performance for the nonlinear 

plant (2.2) is given by the system (2.3) with the con-

troller (2.4): 

LQ LQ

,

; .

ref ref ref ref

ref ref

x A x B r
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(2.6) 

To obtain an error equation between the nonlinear 

plant equations (2.2) and its linear reference model 

(2.6), we introduce the relations: 
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where Δf3, Δf4, and ΔB are unknown Lipschitz smooth 

functions due to the parametric uncertainties and the 

nonlinearities for x2 ≫ 0. 

Substituting the relations (2.7) into the model (2.2), 

we have 
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Considering the expression (2.8), we choose the 

control law v in the form 

.LQ adv v v                        (2.9) 

Due to the expressions (2.3), (2.6), (2.7), and (2.9), 

equation (2.8) reduces to 

 

3 3 4 4 ,
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where Λ(z) is an unknown Lipschitz smooth function 

that describes the effect of parametric uncertainties and 

nonlinearities on the control performance of the bal-

ancing robot, and   4
2 3 4z x x x v D R  

 
is the 



 

 
 

 

 
 

33 CONTROL SCIENCES   No. 5 ● 2021  

ANALYSIS AND DESIGN OF CONTROL SYSTEMS 
 

variable of the function Λ(z) defined in a compact do-

main D of the space R
4
. 

The error equation between (2.10) and (2.6) has the 

form 

  ,ref ref ref ade A e z Bv         

 

(2.11) 

where ref refe x x   is the tracking error of the plant 

(2.10) with the reference model (2.6). 

As is easily checked, the vector B  has no Moore–

Penrose pseudoinverse matrix such that †B B I . 

Hence, Λ(z) is a disturbance unmatched with the con-

trol signal. To design the control law vad in the adap-

tive problem statement, we accept the following as-

sumption regarding compensation. 

Assumption 2. There exists a compensating signal 
*
adv  of the variable z such that 
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           (2.12) 

where  max sup
z L

z
 

   , and  is the approxima-

tion error of  z  with the compensating signal 
*
adv . 

Remark 2. If Assumption 2 is not satisfied, then 

the adaptive compensation of the disturbance Λ(z) is a 

fundamentally unsolvable problem in the class of 

smooth functions. 

For clarity, we provide an illustrative example of 

when Assumption 2 holds. Let the difference 
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In this case, Assumption 2 is satisfied under at least 

one of the following relations: 

32 3 33 3 34 3
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; ; .
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The part of the uncertainty Λ(z) unmatched with the 

control signal can be compensated. 

Thus, without any information about the structure 

of the function Λ(z) and the impossibility to compen-

sate it fully, we pose the following problem: minimize 

the error (2.12) and ensure the asymptotic convergence 

of the tracking error (2.11) to a bounded set: 

 lim ,
refref e

t
e t


 

                   

(2.13) 

where 
refe  

is the limit tracking error. 

Before presenting the main result, we introduce and 

justify a constraint on 
refe . For this purpose, we esti-

mate the minorant and majorant of the tracking error 

refe . Letting 
*

ad adv v  and 0adv   in equation (2.11) 

yields lower and upper bounds on the derivative :refe  

   * .ref ref ad ref ref refA e z Bv e A e z    
  

(2.14) 

For calculating the minorant and majorant of the 

error refe , consider the quadratic form 

   

T

2 2

min max

,

,

ref ref

ref ref

L e Pe

P e L P e



   
     (2.15) 

where P is the solution of the Lyapunov equation 
T ,  0.ref refA P PA Q Q     

Due to (2.14), the derivative of the quadratic form 

(2.15) satisfies the two-sided inequality 
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According to Assumption 2, from (2.16) we obtain: 
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For any a > 0 and b > 0, 
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Hence, the relations (2.17) imply 
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Considering (2.15), we have the following mino-

rant and majorant of the tracking error: 

 

 

   

 

   

 

 

   
 

   

min

max

min

max

22

min

2 3
2max

2
min min

3 2
22 max max

2
min min min

1
0

4

41
0 .

Q
t

P

ref

ref

Q
t

P

ref

e e
P

P
e

P Q

P
e e

P P Q
















 
 

 

 


  

(2.19) 



 

 
 

 

 
 

34 CONTROL SCIENCES   No. 5 ● 2021  

ANALYSIS AND DESIGN OF CONTROL SYSTEMS 

 

Letting t   in (2.19), we finally estimate the 

limit tracking error as 
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Well, according to the expressions (2.13) and 

(2.20), it is required to construct a compensating law 

adv  that ensures the asymptotic convergence of the 

tracking error refe
 
to a given set with the boundary 

refe . 

3. AUXILIARY RESULTS FROM THE THEORY                   

OF NEURAL-NETWORK-BASED CONTROL 

To achieve this goal under an unknown structure of 

the nonlinear function Λ(z) and a nonlinear parametri-

zation of the optimization problem (2.12), we will con-

struct the compensating control vad using neural net-

works with their universal approximation properties 

[26]. This section provides auxiliary results from the 

theory of neural-network-based control necessary for 

further considerations. 

Proposition 1 [26]. Any continuous function f(z): 

R
n
→R can be uniformly approximated in a compact 

domain D⊂R
n
 using a neural network with one hidden 

layer with a sigmoidal activation function: for all 

0NN 
 
and z ∈ D, there exist matrices V and W and 

values b
1
 and b

2
 such that  

       T T ,NN NNf z f z f z W V z
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The matrices V ∈ 1 2N NR  and W∈ 2 3N N
R

  are the weight 

matrices of the hidden and output layers, respectively; 

b
1
 and b

2 
are the biases of the hidden and output lay-

ers, respectively; σ is the sigmoidal activation function 

of the hidden layer. 

In other words, a neural network with a sigmoidal 

activation function approximates any continuous func-

tion of the variable z in a compact domain D ∈ Rn
 with 

the error NN    sup
z D

z


  : 

     T T .f z W V z z                   (3.1) 

In this case, the error NN  
can be made arbitrarily 

small by increasing the number of neurons N2 in the 

hidden layer. 

Proposition 1 establishes the existence of ideal pa-

rameters of a neural network, not determining their 

values. Therefore, equation (3.1) is interpreted as de-

scribing the ideal output of a neural network. It is used 

to introduce the concept of a neural network with the 

parameters tuned by training: 

 T Tˆ ˆ ˆ .f W V z                       (3.2) 

The error between the current (3.2) and ideal (3.1) 

outputs of the neural network has the form 

     T T T Tˆ ˆ .e W V z W V z z               (3.3) 

Hence, the ideal parameters V and W of the neural 

network can be found by optimizing the error function 

(3.3) with respect to the tuned parameters: 

 
  

,
, min sup

ˆ ˆV W z D

V W arg e .
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Assumption 3. The ideal weights of the neural 

network are bounded in a compact domain D: 

, .M MV V W W   

The optimization problem (3.4) is nonlinearly pa-

rameterized due to the nonlinear activation function of 

the hidden layer. The error (3.3) is therefore rewritten 

in an approximate linearly parameterized form by ex-

panding the activation function of the hidden layer into 

the Taylor series. 

Proposition 2 [28]. The linearly parameterized er-

ror elin of the neural-network-based approximation is 

given by 
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where    
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T
1 2

ˆ diag 0 NV z         denotes 

the derivative of the activation function of the hidden 

layer; ˆV V V   is the parametric error of the hidden 

layer of the neural network; ˆW W W   is the para-

metric error of the output layer of the neural network; 
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d is the residual term. The difference (ε(z) – d) in 

equation (3.5) is bounded [28, 29] due to the condition 

  1 2

1 2
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0
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z d Z
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             (3.6) 

Then problem (3.4) is equivalent to the linearly pa-

rameterized problem 

 
  

,
, arg min sup .lin

V W z D

V W e


 
  

 
            (3.7) 

The laws to tune the current parameters of the neu-

ral network [28] are obtained by solving (3.7): 

    
 

   

2 3

1 2

T T T

T T

ˆ ˆ ˆ ˆ ,  

ˆ 0 0 ,

ˆ ˆ ˆ ˆ,  0 0 .

W

N N

V N N

W V z V z V z e

W

V zeW V z V





    






    


     (3.8) 

These auxiliary results from the theory of neural-

network-based control will be used below to obtain the 

compensating control adv . 

4. THE MAIN RESULT 

Under Assumption 2, adding and subtracting the 

value
*
adBv  from equation (2.11) yield 

 
 

 

*

* * .

ref ref ref ad ad

ref ref ad ad ad

e A e z Bv Bv

A e B v v z Bv

     

      

 (4.1) 

By the problem statement, z∈D⊂R
4
, and 

*
adv

 

is a 

function of the variable z (Assumption 2). According 

to Proposition 1, the function 
*
adv  can be approximated 

using an artificial neural network: 

 
   * T T

T T
1 1

2 3 4

,

.

adv W V z z

z b z b x x x v

   

       

 (4.2) 

Therefore, we choose vad in the form 

 T Tˆ ˆ .adv W V z                         (4.3) 

Due to the expressions (4.3), (4.2), and (3.5), equa-

tion (4.1) reduces to 

    

     

T T T T

T T T *

ˆ ˆ ˆ

ˆ ˆ .

ref ref ref

ad

e A e B W V z V z V z

W V z V z z d z Bv

     


      


(4.4) 

Based on the laws (3.8), we introduce the following 

tuning laws for the weights of the hidden and output 

layers of the compensating neural network (4.3): 

    
 

 

 

2 3

1 2

T T T

T

T T T

ˆ ˆ ˆ ˆ

ˆ ˆ, 0 0 ,

ˆ ˆ ˆ ˆ ,  

ˆ 0 0 ,

W

ref W N N

V ref V

N N

W V z V z V z

e PB W W

V ze PBW V z V

V





      
 


   


     

 
 

       (4.5) 

where σW > 0 and σV > 0 are the coefficients of the 

sigma modifications [10].  

Remark 3. Contrary to popular belief, the compen-

sating neural network (4.3) needs no preliminary au-

tonomous training: it can be tuned by formulas (4.5), 

starting from the zero parameters of the layers, directly 

during the plant’s operation. 

Based on equation (4.4), we introduce the general-

ized error vector    
T

T T Tvec vecrefe W V  
 

 and 

study its properties.  

Theorem 1. Let the compensating law vad be given 

by (4.3), and let its parameters be tuned by formulas 

(4.5). Then the generalized error   is uniformly and 

ultimately bounded. Moreover, the steady-state track-

ing error refe  can be reduced to satisfy inequalities 

(2.13) and (2.20) by increasing the number of neurons 

N2 in the hidden layer and decreasing the values of the 

coefficients σV and σW. 

The proof of Theorem 1 is postponed to the Ap-

pendix. 

Thus, we ensure the asymptotic convergence of the 

tracking error refe  to a given domain using the neural-

network-based compensating law (4.3) and tuning its 

parameters by formulas (4.5). 

Remark 4. These recommendations for increasing 

the number of neurons N2 in the hidden layer and de-

creasing the values of the coefficients σV and σW have 

rather simple interpretations: 

– Increasing the number of neurons N2 in equation 

(4.4) allows satisfying the inequality 

     *
max .adz B v z d B z d

                

In other words, the uncertainty  B z d     
intro-

duced by the neural network into the closed loop does 

not increase the system uncertainty after compensating 

  
compared to the initial value max . 
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– Choosing small values of the coefficients σV and 

σW allows the tunable neural network to better approx-

imate the ideal compensating signal  T TW V z , 

thereby reducing more the error 

      T T T T T T Tˆ ˆ ˆ ˆ ˆ .W V z V z V z W V z V z    
 
How-

ever, decreasing the values of the coefficients σW and 

σV also reduces the robustness of the tuning laws (4.5) 

to the uncompensated uncertainty  B z d       

(under σV and σW close to 0, the value 1  
in (A.7) can 

be negative). Hence, the values σV and σW should be 

assigned by the classical tradeoff between the quality 

of tracking the ideal trajectory refx and system robust-

ness to the uncompensated uncertainty 

 B z d      . 

5. EXPERIMENTAL VALIDATION OF THE RESULTS 

The developed control system was applied during 

experiments to the mathematical model of a LEGO 

EV3 balancing robot in Matlab/Simulink. The nominal 

values of the robot’s parameters in the model (1.1) are 

given below.  

 

Nominal values of robot’s parameters 

Parameter Value Parameter Value 

Jw, kg·m
2
 8.75·10

-6 
Kb, V·s/rad 0.468 

mw, kg 0.024 Rm,  Ω 6.69 

R, m 0.027 fm 0.0022 

n 1 fw 0 

Jm, kg·m
2
 10

-5 
g, m/s

2
 9.81 

L, m 0.105 M, kg 0.8 

Kt, N·m/A 0.317   

 

The body’s moment of inertia J was calculated by 

the formula J = ML
2
/3 = 0.0029 kg · m

2
. The gain ma-

trix KLQ of the LQ controller was obtained using the 

robot’s linearized model (2.3) with the nominal pa-

rameter values (see the table) by optimizing the criteri-

on (2.5) with the matrices Q = I and R = 1: 

 LQ 0.7071 77.0619 1.5816 9.3949 .K       

The experiments involved a neural network with a 

sigmoidal activation function with four neurons on the 

input layer (N1 = 5), forty neurons on the hidden layer 

(N2 = 40), and one neuron on the output layer (N3 = 1). 

In all experiments, the variable parameters of the neu-

ral network’s tuning loop were as follows: 

2 2 2 2

5 310 , 10 , 0.1,  0.001. W N N V N N W VI I
        

For switching from the control v back to control u, the 

relation v = u1 = u2 was used in the experiments (see 

Assumption 1). 

Two experiments were carried out in total. The first 

experiment was intended to check the compensator 

(4.3) when approximating the uncertainties caused by 

changes in the robot’s parameters during operation in 

the neighborhood of the linearization point x2 = 0. The 

second experiment was intended to check the compen-

sator (4.3) when approximating the uncertainties 

caused by changes in the robot’s parameters and non-

linearities during operation in a domain out of the 

neighborhood mentioned. The initial conditions of the 

plant (2.1) and the reference model (2.6) were the 

same in all experiments, and the zero vector was used 

as the reference signal r (the stabilization mode of the 

balancing robot). 

In the first experiment, the models (2.1) and (2.6) 

began to move from the state-space point 

   
T

0 0 0.01 0 0x  , and the function Λ(z) was 

caused by doubling the robot’s nominal mass M. Fig-

ure 1 shows the elements of the vector vad and function 

Λ(z) in this experiment.  

The transients in Fig. 1 demonstrate the high accu-

racy and sufficiently fast approximation of the disturb-

ance Λ(z) using the neural network. 

Figures 2a and 2b show the norms of the tracking 

errors eref and the control actions v, respectively, ob-

tained in the first experiment using the control system 

with the neural network (LQ-NN) and without it (LQ).  

The upper bound on the target set (2.13), (2.20) is 

given by the upper bound on the trajectory of the 

closed loop system with the LQ controller (for vad = 0). 

Hence, Fig. 2a confirms the uniform and ultimate 

boundedness of the tracking error refe  by the target set 

(2.20). This result validates the conclusions of Theo-

rem 1. According to Fig. 2b, the costs of the total con-

trol action v to compensate the uncertainty Λ(z) are not 

significant. 
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(a) 

   

 

(b) 
 

Fig. 1. The results of neural-network-based approximation: (a) Λ13(z) and (b) Λ14(z). 

 

  

       

(a) 

         

(b) 
 

Fig. 2. (a) Norms of the tracking errors eref  in systems LQ-NN and LQ, (b) control actions v in systems LQ-NN and LQ. 

Figure 3a shows the uncertainty  z
 
in the con-

trol system with the LQ controller and the uncertainty 

  adz Bv 
 
after compensation in the control sys-

tem with the neural-network-based compensator LQ-

NN. 

According to Fig. 3a, during the entire experiment, 

the area under the system uncertainty curve after com-

pensation,   adz Bv  , is smaller than the area un-

der the system uncertainty curve without compensa-

tion,  z . Hence, the following inequality holds:  

   0: .ref ref ref ad ref reft e A e z Bv A e z          

Using this result and considerations similar to

(2.15)–(2.20), we validate the convergence of the 

tracking error eref to the domain specified by inequality 

(2.20); see Theorem 1. Figure 3b confirms the possi-

bility of further reducing the tracking error eref by in-

creasing the number of neurons N2 in the hidden layer. 

In the second experiment, the robot’s mass was al-

so doubled, but the robot (2.1) started moving from the 

initial state  (0) 0 0.8 0 0x 
T

. Therefore, the un-

certainty  z
 
was caused by the robot’s nonstation-

ary parameters and the nonlinearities. Figure 4 shows 

the norm of the error   adz Bv   and the norms of 

the error eref and control actions obtained in the second 

experiment using the control system with the neural 

network (LQ-NN) and without it (LQ). 
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(a) 

         

           (b) 
 

Fig. 3. (a) Uncertainties  z   and   adz Bv  , (b) norms of the tracking errors eref  under different values N2.  

 

 

 

(a) 

          

                             (b) 

 

(c) 
 

Fig. 4. (a) Norms of the tracking errors eref in systems LQ-NN and LQ, (b) uncertainties  z   and   adz Bv  , (c) control actions v in systems LQ-NN 

and LQ.   

 

 

According to Fig. 4, the developed system can 

compensate the disturbance Λ(z) caused by parametric 

uncertainty and robot’s nonlinearities. Moreover, since 

the upper bound on the target set (2.13), (2.20) is given 

by the trajectories of the closed loop system with the 

LQ controller (for vad = 0), Fig. 4a confirms the con-

vergence of the tracking error eref to the given domain 

in the case of nonlinear uncertainty Λ(z). Comparing 

the costs of the control action v for compensating the 

linear (Fig. 2b) and nonlinear uncertainties (Fig. 4b), 

we arrive at the following result: the costs of the con-

trol action v grow proportionally with increasing the 

complexity of the function Λ(z). 

 

CONCLUSIONS 

This paper has proposed an adaptive neural-

network-based control system for a two-wheeled bal-

ancing robot with a rigorously proved stability of a 

closed control loop and a neural network compensator 

trained online. 

The new procedure for designing an adaptive neu-

ral-network-based control system can be applied not 

only to a two-wheeled balancing robot but also to other 

nonlinear underactuated plants (e.g., industrial cranes 

[30, 31], manipulators [32], underwater vehicles [33], 

 vertical and/or short take-off and landing 

(V/STOL) aircrafts [34, 35], and other mechanical sys-

tems [35, 36]). 
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APPENDIX 

P r o o f of Theorem 1.  

 

Consider the bounded quadratic form 

 

   

 

             

T T 1 T 1

2 2

1 1 1 1
m min min min max max max

tr tr ,

,

min , , ,  max , , .

ref ref W V

m M

W V M W V

V e Pe W Г W V Г V

V

P Г Г P Г Г

 

   

  

      

         

                           (A.1) 

 

We calculate the derivative of (A.1) taking into account (4.4) and (4.5): 

 

        

       
  

 

T T T T T T T T T

T * T 1 T T T T

T 1 T T T

T T

ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ2 2tr

ˆ ˆ ˆ2tr

2

ref ref ref

ref ad W W ref W

V V ref V

ref ref ref

V e Qe e PB W V z V z V z W V z V z z d

e P z Bv W V z V z V z e PB W

V ze PBW V z V

e Qe e PB z d





            
  

           
    

     
 

         T * T Tˆ ˆ2 2tr 2tr .ref ad W Ve P z Bv W W V V         

                      (A.2) 

 

Due to the expression (2.12) и (3.6), an upper bound on the derivative (А.2) is given by 

 

       

     

2

min max 1 2 max

2

min max 1 2 3

2 2

ˆ ˆ2 2

ˆ ˆ2 2 2 ,

ref ref ref

W V

ref ref W V

V Q e e P B Z e P

W W V V

Q e e P B Z W W V V

         

   

         

                             (А.3) 

 

where 3 .
B

   

 

According to inequality (2.18), the terms in (А.3) satisfy the following upper bounds: 
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4 2
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2 2 21 1

.
2 2

MV V V V V   

                (А.4) 

 

Considering (А.4), the upper bound (А.3) takes the form 

 

   

 
 

2 22
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Since 

 
2 2 2

min , ,

Z

W V W VW V Z



      

the expression (А.5) reduces to 

   

 
   

   

 

 

 
    

2 22
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1 1 2 3 2 3
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2 22
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22
max 2 2 2
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               (А.6) 

 

By analogy with (А.4), completing the square for the terms containing Z  in (А.6), we write 
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1
min , .

2 M
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                     (А.7) 

 

Here 1  and 2  are special notations for the compact form of (А.7); see above. 

 

Applying the comparison lemma [21], we obtain a solution of inequality (А.7): 

 

    20 .tM

m m

t e
 

   
 

                                                                  (A.8) 

 

Hence, the error   is uniformly and ultimately bounded [3, 10, 21]. 

 

Let us prove the asymptotic convergence of the tracking error refe  to a given domain from inequality (А.8). Letting t   

and using the value 2 , we arrive at the following limit estimate of the tracking error: 
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         (A.9) 

 

Substituting this expression into (2.20), we check the inequality 
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Inequality (А.10) holds if and only if the value α4 is suf-

ficiently small: 

 
 

 

 

 
max max

4
min min

0 2 .
P P

z
Q P



 
        

 

By the definition (A.9), the value of the coefficient 4  

depends on those of the coefficients , ,V W   1,  and 2 . 

In turn, the coefficients 1  and 2  (see formulas (3.1) and 

(3.6)) are inversely proportional to the number of neurons N2 

in the hidden layer. Therefore, the value of the coefficient 

4  can be reduced (thereby, ensuring inequality (A.10) and 

the asymptotic convergence of the tracking error refe
 
to the 

given domain (2.13)) by increasing the number N2 and de-

creasing the values of the coefficients σW and σV. The proof 

of Theorem 1 is complete. 
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