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Abstract. This paper considers the mathematical modeling problem of traffic transmission in 

mobile networks under high user mobility and spatially heterogeneous coverage, including signal 

degradation (“dead”) zones. Traffic aggregation at the channel level is applied to increase the 

reliability and stability of data transmission. A Markov model of a communication channel is 

proposed to study the effectiveness of aggregation algorithms and adapt them to network operat-

ing parameters and user velocity. The model is based on a periodic affine motion of a mobile de-

vice between base stations (BSs) uniformly distributed along a straight line. Within this model, 

the concepts of stable coverage zones and transition zones are introduced in terms of the distances 

to the nearest and next BSs. The channel state is described by a Markov chain with states corre-

sponding to signal quality sampling: stable connection, degraded connection, and disconnection. 

Transitions between states are governed by a continuous-time Markov process with constant 

rates, and the parameters of this process are determined from empirical network data. An exten-

sion of the model to incorporate the time dependence of channel states is also considered, leading 

to a semi-Markov framework. For both cases (Markov and semi-Markov chains), explicit expres-

sions are derived for the stationary probabilities of states, and system stability conditions are for-

mulated to ensure bounded traffic queues. In addition, an adaptive control model of the channel 

throughput is proposed; this model optimizes transmission parameters depending on the current 

channel state, request queue length, and user velocity. The effectiveness of the approach is 

demonstrated by numerical simulations: the network has stable performance across a wide range 

of mobility levels and coverage parameters. The model can be applied to the reliability analysis 

and optimization of network protocols in highly mobile environments, including high-speed rail-

way transport, vehicle networks, and mobile platforms. 
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INTRODUCTION  

Modern communication systems providing stable 

data transmission from mobile objects (high-speed 
trains, unmanned vehicles, drones, and cars) actively 

use the infrastructure of public cellular networks. 

However, the quality of communication is significant-
ly reduced outside of densely built-up areas due to the 

sparsity of base stations (BSs), incomplete coverage, 
and radio channel instability. This effect is manifested 

by signal attenuation, disconnections, and significant 
delays in data transmission. 

At the same time, the quality of service (QoS) re-
quirements of users in a highly mobile environment 

are not lower than the demands of users in stable cov-
erage conditions, namely, the stable transmission of 

heavy multimedia traffic, video streaming support, and 
real-time data transmission from mobile platforms. 

Such scenarios are particularly relevant, e.g., in video 
surveillance, telemetry, or automated control of mo-

bile objects. 
Traffic aggregation is an effective way to solve 

these problems [1, 2]. The existing traffic aggregation 

techniques, e.g., Link Aggregation Control Protocol 
(LACP) and Multilink Point-to-Point Protocol (Mul-

tilink PPP), are used in LTE and LTE Advanced 
(LTE-A) architectures. This paper is oriented toward 

common scenarios in LTE and LTE-A, where aggre-
gation is implemented at the Packet Data Convergence 

Protocol (PDCP) level via Carrier Aggregation (CA) 
mechanisms. The model can also be adapted for 5G 

scenarios, but the features of the New Radio (NR) ar-
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chitecture (New Radio) are not considered in detail. 

Note that these methods demonstrate high efficiency 
in networks with stable or moderate coverage but be-

come significantly worse under abrupt changes in sig-
nal quality and high user velocity, which requires fre-

quent switching between BSs [2].  
The analysis of typical network operation scenarios 

under high mobility of users allows identifying several 
fundamental problems: 

 Incomplete network coverage. There are signifi-
cant dead zones outside urban areas, where the signal 
level is insufficient for a stable connection; as a result, 

the overall network throughput is reduced, and packet 

losses are increased. 

 Signal dynamics. The quality of the communica-
tion channel essentially depends on the path and ve-

locity of the user. The Doppler shift, multipath propa-
gation, and heterogeneous coverage lead to channel 

instability and frequent disconnections. 

 Nonoptimal behavior when losing communica-
tion. In case of a disconnection or signal attenuation, 

multiple packet retransmission attempts are initiated, 
making both the channel and network infrastructure 

overloaded, reducing overall transmission efficiency, 

and increasing power consumption. 
The existing methods for mobile traffic aggregation 

and control are not effective enough to cope with the 
above problems. They suffer from the following main 

drawbacks: 

 No time correlation. Most models assume inde-
pendent transitions between network states, thereby 

ignoring equipment inertia and the physical regulari-
ties of signal propagation. 

 No adaptation to network topology and user ve-
locity. Several approaches suppose a stationary or 

quasi-stationary environment, therefore being inappli-
cable in the case of high velocities and dynamically 

changing (variable) channel quality. 

 High switching latency. Switching algorithms be-
tween BSs can lead to long pauses in traffic transmis-

sion, especially in unstable signal conditions. 
An obvious solution is to improve the existing ag-

gregation methods. However, appropriate mathemati-
cal models should be developed to optimize network 

performance and find the best solution. As a rule, the 
existing models are either simplified or neglect key 

parameters of real systems, such as the changing spa-
tial position of servers and users [3, 4], time correla-

tions in the change of network state, dynamic load re-
distribution, and adaptive data buffering; or they con-

sider the spatial geometry of network elements but not 

the complex dynamics of queues [5–7]; or they ana-
lyze only the connectivity problems of network com-

ponents using graph theory [8] or percolation theory 
[9–12], adding time-varying node states [13] and 

adapting classical methods of statistical physics to 

wireless network analysis problems [14, 15]. 
The objective of this paper is to develop a new traf-

fic control model for mobile networks with stochastic 
variability in communication channel throughputs, the 

time correlation of network states, and adaptive load 
balancing to improve connection stability and reduce 

delays. We present a stochastic aggregate traffic 
transmission model in which the channel characteris-

tics are described by a finite Markov chain obtained 
via signal level sampling [16]. The Markov model is 

justified due to the exponential nature of the statistics 
of transitions between states in real measurements 

(e.g., in the analysis of switching scenarios between 
BSs in LTE) [17]. 

In contrast to the existing models assuming either a 

stationary channel state or the independent transitions 

between states, we propose a stochastic model incor-

porating time correlation and spatial coverage struc-

ture with the user’s motion between BSs along an af-

fine path. The main contribution of this paper consists 

in: 

– the construction of Markov and semi-Markov 

models of a communication channel based on signal 

level sampling,  

– the analytical derivation of stationary state distri-

butions and queue stability conditions,  

– the development of an adaptive traffic control 

model that optimizes channel throughput considering 

the current channel state, user velocity, and queue 

length. 

This paper is organized as follows. In Section 1, we 

build a channel model, present a mathematical model 

of adaptive traffic control with the main equations, 

describe a Markov process of transitions between 

states, and analyze stability conditions of the system. 

The formulations and proofs of the main results are 

given in Section 2, including explicit analytical formu-

las for the stationary distribution and a stability condi-

tion of the model. Section 3 provides numerical simu-

lation results for the model in different network opera-

tion scenarios; also, the model is compared with the 

existing traffic aggregation methods. In the Conclu-

sions, we summarize the key findings of the study, 

assess the effectiveness of the model, and outline di-

rections for further research. 

This study is focused on the LTE and LTE-A archi-

tectures, where traffic aggregation is performed at the 

PDCP level via Carrier Aggregation (CA) mecha-

nisms. The model considered is applicable to high-

speed travel scenarios (e.g., railways) that are typical 

of these technologies. Although more sophisticated 

aggregation schemes (including Dual Connectivity and 

Service Data Adaptation Protocol (SDAP)) are used in 

5G NR, they go beyond the scope of this paper and 
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may be the subject of a later generalization. The main 

attention is paid to the formalized description of the 

stochastic structure of a radio channel and its adaptive 

throughput control in the LTE/LTE-A framework. 

1. BUILDING THE MATHEMATICAL MODEL 

We will consider a mobile network as a set of BSs 

and mobile users traveling along routes with different 

signal coverage levels. In this case, a mobile user will 

be understood as a single aggregator or server that col-

lects and forwards traffic from multiple devices aboard 

a high-speed train or car. In practice, such a scheme is 

widespread in modern 4G/5G networks (an example is 

multi-relay systems, where a train or bus has a single 

access point to a cellular network) [1]. This allows 

aggregating the traffic of multiple devices into a single 

channel and simplifying the process of switching be-

tween BSs while individual devices within the coach 

connect to this “server” [1, 18, 19]. In the context of 

LTE- and LTE-A architectures, the aggregator is real-

ized as a user terminal or a multi-relay platform that 

unites onboard traffic of a vehicle and interacts with 

multiple component carriers (CA). 

Assume that the network coverage is not dense (the 

distances between BSs are considerable enough for 

coverage breaks) and user velocity is sufficiently high 

(several BSs should be involved sequentially to trans-

mit the required traffic). 

 

1.1. Model Assumptions 

The network topology is naturally modeled as a di-

rected graph  ,G V E  [3, 5, 8], where V  stands for 

a set of network nodes (e.g., BSs) and E V V   is a 

set of its oriented edges (possible data transmission 

routes between nodes). 

We make several assumptions regarding the model, 

which simplify the analysis significantly without limit-

ing the generality of the approach and the main quali-

tative conclusions. 

 The graph of BSs is linear: they are located 

along a straight line at points 

, ,jx j x j     

where x  is a fixed distance between neighbor BSs. 

In other words, the BSs are uniformly distributed at 

the nodes of the one-dimensional grid  . This as-

sumption reflects the typical coverage on main lines 

(highways or railways). 

Remark. Note that the linear uniform arrangement 

of BSs along a straight line is an idealized assumption, 

characteristic primarily of main lines (highways, rail-

ways, etc.). In real systems, there may be variations in 

the mutual location of BSs, curved route segments, 

inhomogeneous relief zones (tunnels, bridges, etc.). 

Nevertheless, the linear model provides a convenient 

basic framework for analyzing the key regularities, 

especially when moving along relatively straight route 

segments. This simplification does not affect the over-

all logic of the methods and conclusions but can be 

refined if necessary. 

 The aggregator’s motion is uniform: the aggre-

gator moves along the above straight line with a con-

stant velocity: 

0 0( ) , 0.v t v v   

This assumption is justified to model standard sce-

narios (e.g., high-speed trains or cars on highways) 

where velocity changes are relatively small and the 

aggregator is moving steadily. 

Remark. We suppose a constant aggregator veloc-

ity 0( )v t v  (or the normalized unit velocity) due to 

stationary high-speed transportation conditions on 

long main lines. At the same time, real scenarios may 

include segments of acceleration (braking) as well as 

velocity fluctuations. If such effects are significant, the 

model can be extended. This study is focused on the 

basic scenario with a constant (or nearly constant) ve-

locity, which ensures periodic traffic and simplifies 

further analytical considerations without loss of gener-

ality. 

 The impact of BSs is local: the quality of com-

munication at each point of the aggregator’s path is 

determined only by the two nearest BSs, namely, the 

current one (behind the aggregator) and the next one 

(in front of the aggregator). This simplification is justi-

fied due to the rate of signal attenuation with increas-

ing distance and allows neglecting the impact of far 

BSs without significant loss of accuracy. 

Thus, under the uniform arrangement of BSs and 

uniform motion of the aggregator, the latter’s move-

ments can be modeled as a periodic motion of a point 

along the half-interval [0, 1); when the aggregator 

reaches the position 1 , the current and next BSs 

change, and the aggregator starts moving again from 

the point 0. This interpretation significantly simplifies 

the mathematical analysis and numerical simulation of 

network dynamics. 

Under these assumptions, the aggregator’s state at 

any time instant can be fully parameterized by its posi-

tion on the affine half-interval [0, 1); the model can be 

investigated only on the period of traversing this dis-

tance (further called the transit time). 

Thus, given the uniform arrangement of BSs and 

uniform motion of the aggregator, the latter’s motion 

can be formally described as follows. 
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Let 
0

x
T

v


  denote the aggregator’s transit time be-

tween two neighbor BSs. 

Then the aggregator’s position at any time instant t  

is modeled by a periodic affine parameter    0,1s t   

given by the formula 

mod
( ) ,

t T
s t

T
  

where ( ) 0s t   corresponds to the aggregator’s posi-

tion exactly at the current BS point and ( ) 1s t   to 

reaching the next BS. 

When the aggregator reaches the position ( ) 1s t  , 

it instantly starts moving on a new segment where the 

next BS becomes the current one, and the new neigh-

bor BS becomes the next one. 

Thus, the aggregator’s motion through the network 

is a periodic process represented by this model as a 

repetitive motion of a point along the half-interval 

[0, 1): 

   .x t s t  

An important special case is the unit velocity 

0 1v   of the aggregator and the unit distance 1x   
between BSs, which simplifies the model and subse-

quent analysis as much as possible.  

In this case, the transit time between neighbor BSs 

becomes 1T  , and the aggregator’s position  x t  on 

the half-interval [0, 1) is given by the simple periodic 

dependence 

( ) mod 1.x t t  

Thus, the aggregator moves along the half-interval 

[0, 1) with constant unit velocity and, having reached 

the point 1 , instantly moves to the next half-interval, 

starting again from the position 0. Graphically, this 

function represents a periodic sawtooth dependence 

with unit period. 

Thus, the aggregator’s position on the half-interval 

[0, 1] completely determines its distance to two neigh-

bor BSs. 

In view of the model periodicity, the properties of 

this system can be analyzed by considering its behav-

ior only on one fixed period  0, 1t . The results for 

the other time intervals will be similar due to periodic-

ity. 

 

1.2. Dynamics of Distances to BSs  

and Signal Quality Given the Network Topology 

At a position  ( ) 0, 1x t  , the distances between 

the aggregator and the current (behind it) and next (in 

front of it) BSs are given by 

       current next, 1 ,d t x t d t x t     0 0.5;x t   

       current next1 , ,d t x t d t x t    0.5 1.x t   

These formulas imply that: 

 At the beginning of the period (   0x t  ), the ag-

gregator is exactly at the current BS (the distance to it 

equals 0), and the distance to the next station is maxi-

mal (equals 1). 

 In the middle of the period ( 0( .) 5x t  ), the ag-

gregator is equidistant (0.5) to the two neighbor BSs.  

 At the end of the period ( ( ) 1x t  ), the aggregator 

reaches the next BS and performs an instantaneous 

transition to a new segment, where the next BS be-

comes the current one and the aggregator’s position 

again becomes 0. 

Thus, in one period, the aggregator first moves 

away from the current BS (when passing from 0 to 

0.5) and then approaches the next station (when pass-

ing from 0.5 to 1). As a result, the distance to the near-

est BS in one period first monotonically increases 

from 0 to 0.5 and then monotonically decreases back 

to 0. 

In addition, assume that each BS has a finite range 

R  of a stable signal received by the aggregator (the 

state 1S ). Beyond the range R , there exists a small 

transition zone of a width  , where the signal is de-

graded (the state 2S ). 

Thus, there are three coverage zones for each BS: 

– a stable signal zone (the state 1S ), described by 

0 d R  , 

– a degraded signal (transition) zone (the state 2 )S , 

described by R d R   , and 

– a dead zone (the state 3S ), described by 

d R  , where d  is the current distance to the BS: 

      current nextmin , .d d t d t d t   

By assumption, the following natural condition 

holds: 

 2 1.R     

In other words, the total diameter of the coverage 

zones of one BS (the stable signal zone plus the transi-

tion zone on both sides) is significantly smaller than 

the distance between neighbor BSs. This ensures the 

presence of dead zones between the coverage zones of 

neighbor BSs, where the signal completely vanishes. 

When the aggregator moves along the half-interval 

[0, 1), the aggregator sequentially passes: 

– the stable signal zone of the current station, 

– the transition zone of the current station, 

– the dead zone, 
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– the transition zone of the next station, and 

– the stable signal zone of the next station. 

In general, the impact of the aggregator’s velocity 

and distance to the nearest BS on the quality of com-

munication is modeled by a special loss function com-

bining linear and nonlinear effects [20]: 

 

 

0 1

2 3

( ) ( ) ( ) ( )

(

,

log 1 ) ( ) ,

tL d v L ad k v

k v k v

t t t

t t





  

  
 

where 0L  is the basic loss in the ideal case (zero dis-

tance and zero velocity);  ad t

 is the signal attenua-

tion component depending on the distance ( )d t  to the 

BS (the power signal propagation model, usually with 

 2, 4 ;  1k v t  is the linear component due to the 

Doppler frequency shift;   2log 1k v t  is the loga-

rithmic attenuation component caused by multipath 

fading;  3k v t


 is the nonlinear effects arising due to 

switching between BSs and high velocities ( 1  ). 

Thus, the above model simultaneously considers 

both key factors, i.e., the aggregator’s distance to the 

BS and velocity, therefore being physically adequate 

and practically useful for further analysis. 

The linear model      0 1L v L ad t k v t


    is a 

special case ( 2 3 0k k  ) to simplify the basic analy-

sis [20]; this model will be investigated below. 

 

1.3.  The Process of Transitions between Discrete Signal 

Levels in the General Case  

Within the model proposed, the aggregator sequen-

tially passes three zones with different signal quality 

(stable signal, weak signal, and dead zone). In real 

communication networks, transitions between channel 

states 1 2 3)( , ,S S S  occur not instantaneously but with 

some delay. The main causes of such effects are [20]: 

 constant external conditions: the parameters of 

the communication channel remain relatively stable 

for some time, so transitions between states occur 

gradually rather than abruptly; 

 communication equipment inertia: switching be-

tween BSs requires additional time for coordination 

and signal processing; 

 physical path: along a certain path, transitions be-

tween states are related to the network topology and 

the regularity of BS locations. 

These effects create a time correlation between 

channel states: the probabilities of transitions depend 

not only on the current state but also on its dwell time. 

A strict mathematical description of such situations 

leads to a more general class of processes called semi-

Markov processes (SMPs) [21, 22]. 

Consider a random process  X t  modeling the 

change of signal level in a mobile network. This pro-

cess is a semi-Markov model with three states: 1S  

(stable connection), 2S  (degraded connection), and 3S  

(disconnection). The instants of transitions form an 

increasing sequence  n  of random variables, with 

 X t  keeping the current state between transitions 

[23]. 

The semi-Markov model of signal levels is de-

scribed by the following system of integral and differ-

ential equations for the probabilities of states 

 , 1, 2, 3( ) ( )i ip P X St it   : 

   

   

0

0

,

( )
t

i
j ji

j i

t

i ik

k i

dp
p t d

dt

p

t

t d





     

     





              (1) 

with the transition rate 

0

exp ( ) ,

, 1, 2, 3,

( ) ( )

( ) ( )

t

ij ij i

i ik

k i

dt t

t

u

it

u



 
     

 
 

   




 

Let the initial conditions be fixed: 

     1 2 30 1, 0 0 0p p p   . 

The Laplace transform [24] can be conveniently 

applied to solve system (1). In this case, we obtain the 

following system of algebraic equations in the Laplace 

space: 

( ) ( ) ( )

( ) (0

( .

)

)

i i

j ji i ik

j i k i

sp ps

p ss s p s
 



    
 

Generally, the dwell times can have arbitrary dis-

tributions  iF t :  .i iT F t  Then the system of equa-

tions (1) becomes rather complicated for analytical 

treatment. In such a situation, one can apply numerical 

schemes on a time grid  nt , e.g., 

       

   

1 1

0

1

0

.

n

i n i n j m ji n m

j i m

n

i m ik n m

k i m

p t p t t p t t t

p t t t

 

 



 


    




   







 

This direct numerical approach is effective for 

more complex distributions (gamma, Weibull, etc.). 
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In practice, the gamma (Erlang), Weibull, and uni-

form distributions of dwell times are often used. Be-

low, we present the expressions for the transition rates 

     
0

exp

t

ij ij it t u du
 

     
 
 
  and their Laplace 

transforms     ij ijs t    under these 

distributions of dwell times: 

 the gamma distribution (the Erlang distribution): 

 

 
 

     
 

1

1

0

,

1 !
!

, ;

itk k
i

i mk
i

m

k
i

ij ij i ij ij k

i

t e
t

t
k

m

t p t s p
s








 


 


    

 


 

 the Weibull distribution: 

1 1

, ( ) exp ,( )i ij ij

t t t
t pt

         
          

           

 

  1

0

exp ;ij ij

t
s p t st dt

 





   
     

    
  

 the uniform distribution on the segment  , :a b  

 

0, ,

1
, ,

, ,

i

t a

t a t b
b t

t b





   


 

 

 

0, ,

, ,

0, ,

ij

ij

t a

p
t a t b

b a

t b





   





 

 
 

.
as bs

ij ij

e e
s p

b a s

 
 


 

By substituting the above parameters into the sys-

tem of equations (1), we can derive explicit expres-

sions for the probabilistic characteristics of the model 

with different distributions of dwell times and the 

most important quality metrics of the system. 

However, the analytical study of such models gen-

erally leads to cumbersome expressions complicating 

their interpretation and application. Therefore, we will 

consider the Markov case with the exponential distri-

bution of dwell times: 

  .it
iT t e


   

This case corresponds to the absence of memory and 

considerably simplifies the analysis. Here, time corre-

lations and channel inertia are assumed to be averaged 

and approximated by constant transition rates of states. 

This simplification allows obtaining strictly analyt-

ical and easily interpretable results (see Section 2) as 

the main analytical implications of the model. 

2. THE MAIN RESULTS 

2.1. An Optimal Control Mechanism 

To adaptively adjust the traffic transmission pa-

rameters, we formally introduce a function  u t  de-

pending on the current state of the network: 

 

 

   

 

norm 1

slow 2 2

3

if 

, if 

0 if  ,

X t S

u t g X t S

X t S

 


    
 

 

where  2 ,g    is an adaptive function depending on 

the dwell time in the state 2S  and the parameters   to 

be optimized. 

To optimize the system’s operation, we define an 

objective function of the form 

       1 pack 2

0

,

T

J u L u t D u t dt          (2) 

where   packL u t  is a function reflecting packet loss-

es depending on the chosen control strategy  u t ; 

  D u t  is a function reflecting data transmission 

delays; 1  and 2  are significance coefficients of the 

corresponding criteria; T  is a time interval under con-

sideration (the control horizon). 

An optimal strategy  *u t  is achieved by minimiz-

ing the objective function (2). For optimization, one 

can employ, e.g., gradient descent or dynamic pro-

gramming methods [25, 26]. With gradient descent 

applied to the parameters  , the correction is per-

formed using the well-known algorithm [25, 27] 

 1 ,n n J u       

where   is the algorithm parameter and  J u  de-

notes the gradient of the objective function with re-

spect to the parameters  . Such approaches are widely 
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used in the calibration of communication systems and 

flow control in networks. 

In addition to controlling the transmission rate, the 

function  u t  can also affect the transition rates be-

tween network states. For example, one can modify 

these rates to reduce the probability of disconnection 

or accelerate recovery: 

    ( )0λ , ( ) λ ( ) ,vk v t

ij ijv u t h u t e



 
           (3) 

where 0
ij  are the baseline transition rates; the function 

  h u t  describes the corrective control impact, and 

 vk v t
e


 reflects the impact of the aggregator’s velocity 

 v t  (if necessary). Such corrections model physical 

and protocol mechanisms where, e.g., more aggressive 

resource utilization (higher transmission power) in-

creases the value of   h u t , thereby reducing the 

probability of passing to a dead zone. 

In this study, we use the exponential control func-

tion (3). It reflects well the intuitively implied expo-

nential deterioration of the channel parameters when 

staying long in the degraded connection state [28]. The 

choice of an exponential function is justified by its 

analytical simplicity and application in known models 

of channels with fading, as well as by the possibility of 

calibrating the parameter   within an optimization 

procedure [29]. 

However, other types of functions (logistic, linear, 

etc.) are possible, depending on physical or protocol 

constraints. Such a choice of the function  2 ,g    

can be justified by available data or when approximat-

ing mechanisms implemented, e.g., in the adaptive 

modulation of modern communication protocols (LTE 

and 5G [30]). 

In this paper, the objective function (2) is consid-

ered in a general form. For numerical simulation, it 

can be specified as follows: 

 pack loss

0

1
,

T

L t dt
T

    

where   packL u t  is the share of lost packets; 

 loss 1t   if a packet at a time instant t  was discard-

ed and  loss 0t   otherwise. 

The average packet transmission delay   D u t  

can be estimated, e.g., as 

  
1

1
,

N

i

i

D u t W
N



   

where iW  is the total dwell time of the i th packet in 

the system. 

Thus, introducing the control  u t  and objective 

functions yields a comprehensive approach to optimi-

zation in mobile networks [31]: one can adapt the 

transmission rate (or other channel parameters) and 

control the probability of disconnections and recover-

ies by changing the transition rates ij . In practice, a 

suitable control function  u t  and an appropriate op-

timization method are chosen depending on quality 

requirements (reduction of delays and losses) and 

available hardware (protocol) solutions [32]. 

Such control can be realized via an additional 

module (board) with program control, e.g., using neu-

ral networks to predict the channel state and adapt the 

parameters dynamically. In this way, it is possible to 

respond, in due time, to connection degradations and 

adapt, in real time, the transmission rate and the prob-

ability of disconnections in advance. 

Depending on particular service requirements (e.g., 

delay constraints, loss probability thresholds, or 

transmission power limits), the objective function (2) 

can be refined by adding other criteria or penalties for 

exceeding quality standards. Thus, in particular engi-

neering problems, the form of  packL   and  D   can 

be chosen by considering the practical significance of 

partial network quality metrics (packet losses, down-

time, etc.). In this paper, the function  J u  remains in 

a general form; in the section devoted to partial as-

sumptions and simplifications, we will demonstrate 

the choice of the objective function in special cases. 

 

2.2. Basic Properties of the System 

Consider now the basic properties of the system. 

For the simplicity and transparency of further analysis, 

let the transition rates between channel states be con-

stant within each zone and depend only on the current 

state of the aggregator. This means that the transitions 

between signal quality levels can be described using 

fixed parameters reflecting the physical characteristics 

of the medium and the motion dynamics. 

Thus, the model has a finite number of constant 

transition rates, each characterizing a typical transition 

regime between the coverage zones of a BS. Under the 

assumed exponential distribution of dwell times in 

each state, the model turns into a continuous Markov 

process with a finite number of states given by the sys-

tem of Kolmogorov equations. Therefore, from system 
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(1) we proceed to the consideration of the infinitesimal 

transition matrix 

 
12 12

21 21 23 23

32 32

0

,

0

Q

  
 

       
   

 

and the vector of state probabilities 

        1 2 3, ,p t p t p t p t  satisfies the system of 

Kolmogorov equations 

 
  .

dp t
p t Q

dt
  

Here, the coefficients ij  have the following physical 

interpretation: 

 12  is the transition rate from the state 1S  (stable 

connection) to the state 2S  (degraded connection), 

which corresponds to passing from the stable signal 

zone d R  to the transition zone R d R   . 

 21  is the signal recovery rate from the state 2S  

to 1S  during the reverse transition to the stable signal 

zone. 

 23  is the signal loss rate (transition from the 

state 2S  to the state 3S  (disconnection)), which corre-

sponds to reaching the dead zone. 

 32  is the signal recovery rate when returning 

from the state 3S  to 2S  (i.e., when passing from the 

dead zone to the transition zone). 

Remark. The network structure is not explicitly 

included in this model. However, it can be indirectly 

considered by parameterizing the matrix Q  based on 

the adjacency matrix of the coverage graph or other 

structural characteristics of the network. Such an ap-

proach allows generalizing the model to the case of 

spatially heterogeneous networks or real telecommu-

nication infrastructures. 

Theorem 1 (on the existence of a piecewise 

smooth control function). For the communication 

channel in one of the three states: 1S  (stable connec-

tion), 2S  (degraded connection), and 3S  (disconnec-

tion), there exists a piecewise smooth control function 

of the general form  u t  depending only on the cur-

rent channel state  X t  such that 

 

 

 

 

1 1

2 2

3 3

, ,

, ,

, ,

u X t S

u t u X t S

u X t S

 


 
 

 

where iu  is the control parameters in the state iS

( 1, 2, 3)i  . In addition, the service rates   i u t  in 

each channel state and the transition rates   ij u t  

between channel states are well-defined and control-

lable on each state constancy interval. 

This control function determines the service rate 

  i u t  in each channel state and can also impact the 

transition rates   ij u t  between the states (e.g., by a 

controllable acceleration/deceleration of channel re-

covery/degradation). In other words, when the channel 

is in the state iS , the system applies the control action 

iu , which sets the current service rate  i iu  and can 

change the transition rates  ij iu  to other states. 

P r o o f. Rationale behind choosing this form of  u t . 

Control depending only on the current state  X t  is natural 

in the context of adaptive communication systems. Such a 

piecewise function  u t  allows instantaneously responding 

to changes in channel quality: in the event of passing from 

stable to degraded connection or disconnection, the control 

jumps to a new value corresponding to the degraded com-

munication conditions. This provides adaptive service con-

trol: e.g., in case of channel degradation ( 2S ), it is possible 

to reduce the service rate or activate a more reliable trans-

mission regime; in case of disconnection ( 3S ), initiate 

communication restoration procedures (which is equivalent 

to increasing the transition rate back to the state 1S  or 2S ). 

In the stable connection state 1S , control can return to the 

maximum throughput regime. With this control function 

 u t , the system is dynamically adapted depending on the 

current channel state, improving service stability during 

channel degradation and reducing downtimes during dis-

connections. ♦ 

Theorem 2 (a stability criterion for the queueing 

system). Consider a Markov process  X t  with three 

states  1 2 3, , ,S S S  where 1S  and 2S  have service 

rates 1  and 2 , respectively, and no transmission is 

possible in 3S  ( 3 0  ). Let in  be the rate of an in-

coming (Poisson) flow of requests. We denote by

1 2,   ,   and 3  the stationary probabilities of chan-

nel’s dwelling in the states 1,S  2 ,S  and 3S , 

respectively (if they exist). 

The queueing system with unlimited buffer and var-

iable signal quality is stable if and only if 

in 1 1 2 2.                               (4) 
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According to condition (4), the average input load 

must be less than the average channel throughput 

1 1 2 2     . If condition (4) is violated, the queue 

(with unlimited buffer) grows infinitely; see [3, 24]. 

P r o o f. In the M/M/1 model, the stability condition 

in    is necessary and sufficient [2]. For the case with the 

channel state-dependent variable  , the average service rate 

is 
3

1

i i

i

  . Since 3 0  , the state 
3S  has zero contribution 

to the throughput. Hence, the criterion turns into inequality 

(4). If condition (4) holds, there is a unique stationary dis-

tribution of the queue length; otherwise, no stationary dis-

tribution exists. 

The stationary probabilities 1 2,   ,   and 3  are deter-

mined from the Kolmogorov equations (1). The stationary 

vector  1 2 3, ,      satisfies the system 

 
12 1 21 2

12 1 21 23 2 32 3

1 2 3

0

0

1.

     

          
     

 

Resolving this system gives 

23 12 2312
2 1 3 2 1

21 32 21 32

.,
  

       
   

 

Substituting these expressions into the normalization condi-

tion, we obtain 

12 2312
1 2 3 1

21 21 32

1 1 
  

          
   

 

1

12 2312
1

21 21 32

1 .


  

     
   

 

Finally, with 1 2 3, ,    substituted into inequality (4), the 

explicit numerical condition takes the form 

21 32 12 32
in 1 2 ,

      
       

    
 

where 

21 32 12 32 12 23.           ♦ 

Corollary (a stability condition for the system 

with control). In the stationary regime, the stability 

condition for the system with optimal control is given 

by 

   * *
in 1 norm 2 slow ,u u        

where the stationary probabilities  *
i u  depend on 

the optimal strategy  *u t . 

2.3. Performance Characteristics of the System  

in the Stationary Mode 

The previous sections have been focused on the de-

scription of the channel (the states 1 2 3, ,S S S ) and its 

transition rates. In a real queueing system, however, 

the full state at a time instant t  is given by the “chan-

nel state–queue length” pair. 

With the channel evolution estimated in terms of 

the states  1 2 3, ,S S S  and the control function  u t , 

we can assess the quality of the system considering 

traffic in real systems. For this purpose, let the Markov 

model of the channel be combined with the queueing 

model of the M/M/1 type (or M/M/1/N with a finite 

buffer), where the service rate depends on the current 

channel state and, if necessary, on the control function 

 u t . 

This approach is based on the classical results of 

queueing theory [3, 4], applied to the situation where 

service parameters (and even channel transitions be-

tween states) may vary depending on the control strat-

egy. As shown below, in the stationary regime, the key 

stochastic performance characteristics––the probabil-

ity of packet loss, the average number of requests in 

the system, and throughput––are expressed through 

the standard Erlang and Little formulas considering 

the average (effective) speeds given by the channel 

states. 

Consider a queueing system served by a controlla-

ble Markov channel with the three states  1 2 3, , ,S S S  

where the control action  u t  can affect both the ser-

vice rate  i u  in the state iS  and the transition rates 

 ij u . Assume that: 

 The queue has a finite buffer: at most N  packets 

waiting (hence, a total of 1N   packets along with the 

one being served). 

 In the stationary regime, the channel spends a 

fraction of time  *
i u  in the state iS  (under optimal 

or fixed control 
*u ). 

 If  3 0u   (the dead zone), then 

       * * * *
1 1 2 2u u u u        is the effective (av-

erage) service rate. 

 The rate of the incoming flow of requests is in . 

Under the above assumptions, we can find the per-

formance characteristics of the system. 
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 The load factor. The relative load is given by 

       
in in

* * * *
1 1 2 2

.
u u u u

 
  

     
 

If 1  for a given value *u , the system can operate 

without collapse in an unlimited buffer; if 1 , the 

queue grows or large losses occur. 

 The loss probability. For a finite number N , sim-

ilar to Erlang’s formula, the probability of packet loss 

in an overloaded queue is given by 

 
1

loss 1

0

queue ,
N

N
k

k

P P N







  


 

where   is defined through  *
i u  and  *

i u . As 

N  , we have loss 0P   if 1  and loss 1P   if 

1  . 

 The average number of packets and delay. We 

denote by  L E n  the expectation of the number of 

packets in the queue and service. For 1  , the fol-

lowing formula is valid: 

   2

2

2 1
.

1 1

N

N

N
L





  
 

 
 

The average number of packets in the queue, qL , is 

obtained by subtracting the average busy service posi-

tion; similarly, for the average dwell time  W  and 

waiting time  qW , we apply Little’s law: 

eff eff, ,q qL W L W     

where  eff in loss1 P     is the rate of the actual flow 

of incoming and served packets. 

 The average throughput. In the stationary regime, 

the system serves the flow with the rate 

 out eff in loss1 .P       

If 1 , out in    as N   (no losses). If 1  , 

the queue is full and out   . 

 

2.4. Implications and Remarks 

 Boundary cases (reducibility to classical mod-

els). If the communication channel is almost always in 

the stable connection (good) state 1S  (i.e., 1 1  , 

2 3 0    , and 1 ),    then the entire system re-

duces to the classical M/M/1. In this case, the stability 

criterion takes the form in   , and the above formu-

las for the probability of packet loss, the average num-

ber of packets, and the waiting time are simplified to 

well-known results (Erlang’s formula, Little’s formu-

las, etc.). In contrast, if the aggregator stays in the 

dead zone (the disconnection state 3S , in which 3  is 

large and 3 0  ) for a large share of time, the effec-

tive rate   will drop dramatically and the system will 

behave like a slow server with a high load  . 

 An example of the dead zone’s impact on packet 

losses. Let 1 1  , 2 0.5  , and 3 0  , and let the frac-

tions of time in the corresponding states be 1 0.8  , 

2 0.15  , and 3 0.05  . Then 0.8 1 0.15 0.5    

0.875 . For an incoming flow with in 0.7  , we have 

0.8 1   , and the system operates without significant 

packet losses. However, for in 1.0  ( 1.14 1)   , the 

queue starts growing infinitely (an arbitrarily large buffer) 

or reaches the maximum N  (a bounded buffer); an appre-

ciable probability of packet loss arises loss( 0.2)P  , and the 

resulting throughput saturates at out 0.875    . 

 The physical meaning of controlling transi-

tions and service rate. If one can control the rates 

  ij u t  (accelerating recovery from the state 3S  or 

decelerating withdrawal from the state 1S ) and/or 

modify   i u t  (selecting more aggressive or safer 

regimes), then it is actually possible to control the 

share of time 3  (staying in the disconnection state) 

and the effective rate  . Thereby, the load  , the 

probability of packet loss, and the average delay can 

be significantly reduced. However, in practice, in-

creasing i  or reducing the dwell time in the state 3S  

may require additional resources (power, redundant 

channels, etc.), so a trade-off between cost and gain in 

the quality of service should be found. 

 The scope of application and prospects. The 

above assumptions (exponential distributions, Markov 

or semi-Markov transitions) simplify the analysis and 

provide elegant formulas but can only approximate 

real channels with correlated traffic and complex sig-

nal propagation dynamics in a heterogeneous medium. 

Nevertheless, the main conclusion (the need to satisfy 

the stability condition in   ) and the optimization 
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principles of the control function  u t  remain valid. 

The model allows estimating the marginal network 

performance and adapting the service and transition 

strategy in modern mobile networks, where important 

criteria include network throughput, power consump-

tion, connection recovery time, etc.. 

 Relation to M/G/1 systems with interruptions. 

As a generalization of the system with 3n   states 

[33–35], the three-state channel model with variable 

service rate and periods of complete unavailability 

(disconnections) considered in this paper is conceptu-

ally close to M/G/1 systems with interruptions; for 

example, see [36, 37]. However, unlike typical M/G/1 

models with interruptions, we use an additional con-

trol function  u t  to impact the transition rates and 

the service rate. As a result, the parameters are adapted 

to the current conditions of the communication chan-

nel, which extends the classical approaches and opens 

up the possibility of adaptive optimization. 

 Thus, there is a similarity with M/G/1 with inter-

ruptions, and the results of this paper (particularly the 

criterion in i i

i

    ) repeat the logic of classical 

models. However, owing to the dynamic control, the 

physical interpretation of the states (radio channel), 

and the objective function  J u , the model presented 

has a more flexible structure, opening new possibili-

ties of adaptation in engineering applications. 

3. THE STABILITY AND PERFORMANCE OF THE 

ADAPTIVE MODEL: NUMERICAL ANALYSIS 

In this section, we provide simulation results con-

firming the above theoretical conclusions. Consider a 

stochastic channel with the three states  1 2 3, ,S S S  

and an incoming flow of requests with a rate in . The 

throughput of the system depends on the current chan-

nel state and the control function ( )u t . 

The simulation was carried out using the discrete 

event method on a horizon max .T  The key characteris-

tics investigated include system stability, queue 

length, the probability of packet loss, and the impact 

of the network parameters and control strategy on the 

network quality. The experiment parameters, metrics, 

and visualization of the system behavior in different 

regimes are given below. 

3.1. Model Parameters 

The flow of requests is modeled by a Poisson pro-

cess with the rate in . All requests are processed ac-

cording to the FIFO (first in, first out) principle with a 

finite buffer. 

The channel can be in three states: 

–  1S  (stable connection), the corresponding  

throughput is norm , 

–  2S  (degraded connection), the corresponding 

throughput is slow  (or 2

slowe ), and 

–  3S  (disconnection), the service is unavailable 

( 0)  . 

All transitions between the states are described ei-

ther by a fixed matrix of transition rates (the Markov 

case) or by functions  ij t  in the semi-Markov mod-

el. A request is served if the communication channel 

has the state 1S  or 2S  and the queue is non-empty. In 

the state 3S , requests are still received, but their ser-

vice is suspended. 

The main quality metrics of the network are queue 

length dynamics and the impact of the rate in  and 

velocity on stability. 
 

3.2. Simulation Results 

The graphs below demonstrate the behavior of the 

model in two regimes: 

– stable (subcritical, in 1 norm 2 slow       ) and  

– unstable (supercritical, in 1 norm 2 slow       ). 

In the subcritical regime (Fig. 1), the queue (the 

aggregator’s buffer level) is stabilized and does not 

grow infinitely. However, there is a positive drift dur-

ing overload (Fig. 2). 

 
 

 

 
Fig. 1. Queue length dynamics in the stable regime. 
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Fig. 2. Queue length dynamics in the unstable regime. 

 

According to Fig. 3, in the subcritical regime, the 

communication is restored quite quickly even in case 

of disconnections. Under overload, even short service 

interruptions cause an avalanche-like growth of the 

aggregator’s buffer. 

Figure 4 shows the impact of exponential fading in 

the state 2S : under a high load, the dwell time in the 

state 3S  increases, which drastically deteriorates sta-

bility. 

 

 

(a) 

 

(b) 

 
Fig. 3. Queue: (a) in the stable regime ( 3.0 reqs/s, 30 m/s)p    and (b) 

in the unstable regime ( 7.0 reqs/s, 30 m/s).p    The red zones indicate 

disconnection periods. 

 
 

 
(a) 

 
(b) 

 

Fig. 4. Decaying throughput in the state 2S : (a) stable regime ( 3.0)   and (b) unstable regime ( 7.0)  . 
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The advantage of adaptive control is demonstrated 

in Fig. 5: in the neighborhood of the critical load, this 

control effectively stabilizes the queue length. 

 
 

 

 
Fig. 5. Queue length dynamics: with adaptive control vs. without 

control. 

 

Figure 6 shows the stability margin. The adaptive 

model demonstrates a shift in the overload threshold, 

allowing the system to operate closer to the critical 

values. 

 
 

 

(a) 

 

(b) 

  

Fig. 6. Phase transition: average queue length as a function of inλ . 

 

The impact of semi-Markov effects is illustrated in 

Fig. 7: under the gamma distribution and distributions, 

the system becomes more inertial, which increases its 

sensitivity to overload. 

 

 

 
Fig. 7. Queue length dynamics under different distributions of service 

times. 

 

CONCLUSIONS AND PROSPECTS 

The model proposed in this paper describes an 

adaptive control system under stochastically varying 

characteristics of the communication channel, which is 

in one of three states: stable connection, degraded 

connection, and disconnection. As has been shown, 

introducing a control function ( )u t  (an impact on both 

the service rate and the transition rates between states) 

allows one to adapt the system behavior dynamically 

to the current conditions. Unlike classical models with 

fixed parameters, this approach involves parameters as 

functions of the strategy to consider the impact of con-

trol actions on network performance. 

According to the numerical analysis results, the 

system is stable for in   : the queue remains bound-

ed. In the case of overload ( in   ), an avalanche-

like growth of queue length occurs. However, adaptive 

control decelerates this growth and actually shifts the 

stability margin. The effects of temporal correlation 

have also been demonstrated: when passing to semi-

Markov models, the system becomes inertial, but the 

general stability criteria are preserved. This feature 

emphasizes the universality of the model and its ap-

plicability in both classical and more complex tele-

communication scenarios. 

In practice, this model can be implemented in the 

form of a programmable unit embedded in the aggre-

gation device. Such a module can utilize neural net-

work schemes to estimate the current channel state and 

control transmission parameters. In addition, the mod-

el can be generalized towards Markov control (when 

solutions depend not only on the current state but also 

on the dwell time in it). This is naturally realized 

through systems with memory or logic with the history 

of states. It is also possible to realize intermediate 

communication states using multi-valued logic to de-
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scribe not only abrupt but also smooth degradations of 

the channel. 

Thus, the model combines stochastic dynamics, 

control, and queues into a single system and can be 

applied in theoretical stability analysis of such systems 

and in the development of new stacks of data trans-

mission protocols, especially in the context of new-

generation mobile networks. Prospects for further re-

search include multiuser scenarios, the investigation of 

control strategies on data, and the construction of en-

ergy-efficient algorithms for devices with limited 

computational resources based on intelligent control. 

As an independent theoretical challenge, we note the 

study of phase transition; an open question is to elimi-

nate the exponential nature of queue growth and de-

celerate adaptive control. 
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