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Abstract. For a group of mobile robots in free space, we consider aggregation under the assump-

tion that each robot has information about the position and course of the nearest neighbors only 

(without any additional information, such as the group target). This problem is the first stage of a 

mission carried out by a group of robots; it can be solved under certain conditions, see below. We 

propose a swarm control algorithm based on the metric-topological approach under maneuvering 

constraints. The sizes and configurations of the arenas are chosen, and initial position require-

ments are specified for robots. The characteristics of robots are selected, and computer simula-

tions are conducted to evaluate the model parameters for the required directional coordination 

level of swarm motion without clustering and with a safe distance between robots during the en-

tire mission. 
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INTRODUCTION  

Aggregation is one of the most fundamental mani-

festations of swarm behavior in nature. In a natural 

swarm, animals need to stick together; otherwise, the 

swarm will split into several parts and shrink in size 

(eventually, its survival may be jeopardized). Aggre-

gation is often needed for many robotic systems as 

well, being a prerequisite for other joint actions. In 

addition, splitting a swarm into separate parts (cluster-

ing or loss of swarm connectivity) may fail the group 

task.  

Aggregation is possible through either a signal or 

self-organization. In the former case, a swarm gathers 

at locations determined by signals from the environ-

ment (e.g., the warmest or brightest place, etc.). Based 

on the behavior of young honeybees, BEECLUST [1] 

is the first and most popular algorithm of this kind for 

robots. 

In the latter case, the well-known examples in na-

ture are flocks of birds, schools of fish, etc. In the 

classical paper [2], C. Reynolds first presented a dis-

tributed behavioral pattern of such a flock for comput-

er simulations. His self-organized coordinated motion 

model of a group of autonomous mobile objects pro-

vides three simple velocity and course control rules 

describing the maneuvering of individual objects 

based on the positions and velocities of their nearest 

neighbors: repulsion (avoiding collisions with neigh-

bors), alignment (moving in the same direction as 

neighbors), and attraction (maintaining the same dis-

tance between neighbors without swarm separation). 

The three rules were used in subsequent works in dif-

ferent combinations and variations. 

Swarm robotics has emerged as an approach to 

perform a task using several robots with limited and 

simple capabilities. Such robots move, make inde-

pendent decisions without external influence, interact 

with their environment, and establish local interaction 

with each other. 

In this paper, aggregation is treated as the first 

stage of a task performed by a group of mobile robots, 

and the control algorithm will be based on the princi-

ples of swarm robotics. 

Many different methods and algorithms implement 

self-organized aggregation behavior in swarm robot-

ics.  

Among probabilistic approaches, probabilistic fi-

nite-state machines (PFSMs) are common. In [3], par-

ticle swarm optimization (PSO) was applied to opti-
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mize the parameters of a PFSM controller. The authors 

[4] studied aggregation when adding a certain share of 

informed robots and analyzed how many of them are 

needed to direct the aggregation process to a given 

domain among the available ones in the environment. 

The paper [5] introduced a microscopic aggrega-

tion behavior model based on the virtual expectation 

of robots concerning cluster size. This model involves 

a communication mechanism that helps robots esti-

mate the cluster size and guides them to the desired 

cluster. Once a robot detects the desired cluster, it tries 

to move closer to it. Note that the direction of move-

ment is determined using the mean wave travel meth-

od. 

Another widespread approach is based on pairwise 

interaction between robots through artificial forces. In 

the publication [6], a virtual attraction/repulsion force 

model was considered to study aggregation based on 

local interaction. In most of such works, the distance 

between robots is the only factor taken into account 

for robot aggregation. At the same time, some re-

searchers include additional factors such as the density 

of robots in a swarm. For example, a self-organizing 

aggregation method based on the Distance-Minkowski 

K-Nearest Neighboring (DM-KNN) metric with densi-

ty estimation was proposed in [7]. The interpolation of 

smoothed particle hydrodynamics (SPH), a method to 

estimate the density of robots in a swarm, was applied 

to compute a distance-weighted function. This func-

tion became a key factor in determining the k nearest 

neighbors considered for robot aggregation. A virtual 

physical connection between neighbors was achieved 

using a viscoelasticity-based proximity model. 

The paper [8] proposed an aggregation method 

based on self-organized swarm motion. Such aggrega-

tion behavior is a decision mechanism that estimates 

both the distances between neighbor robots and the 

courses of robots. The goal of this method is to aggre-

gate a swarm of robots randomly placed in an arena 

bounded by obstacles, forming a single cluster without 

any central control unit. The algorithm was compared 

with that of [9] and demonstrated better timing results 

for different arena sizes, numbers of robots, and their 

detection radii. 

Swarm motion algorithms have been studied in 

many works, starting with the pioneering publication 

of C. Reynolds. In the context of this paper, we note 

the classical work of R. Olfaty-Saber [10] with three 

algorithms: two for free space and one for the case of 

obstacles. The first algorithm implements three Reyn-

olds rules but leads to regular fragmentation. The se-

cond algorithm augments the first one by introducing a 

virtual γ agent that considers the group target. Due to 

this modification, the fragmentation problem was 

completely solved. The algorithms of [10] aim to 

maintain equal distances between nearest neighbors; 

the agents are point-like and have no maneuvering 

constraints. The same approach is characteristic of 

most other works on the subject, although some au-

thors (e.g., [11, 12]) introduce constraints on the turn-

ing velocity of robots. 

Among Russian publications, we mention the work 

[13] focused on the behavior of a group of similar ro-

bots (point agents) in an environment with obstacles. 

Each robot must move toward the target and maintain 

the minimum admissible distance to other robots and 

obstacles. A maximum velocity limit was imposed 

without any constraints on turning velocity (turns were 

supposed instantaneous). Also, each robot was as-

sumed to have full information about its neighbors and 

obstacles within a given circle. 

To summarize, we emphasize the following fea-

tures of research works in this area: 

 Traditionally, the aggregation problem is solved 

within a bounded arena, i.e., with obstacles along its 

boundary. 

 The initial connectivity of robots is not assumed: 

they form many clusters of different sizes at the initial 

step. 

 Robots can stop and get very close to each other. 

 Robots have no maneuvering constraints and are 

often represented by point agents. 

This paper is an attempt to identify the conditions 

necessary to aggregate robots in an unbounded arena 

without obstacles and without using additional means 

such as the group target in [10]. 

1. PROBLEM STATEMENT 

Consider a group of N homogeneous mobile robots 

in the 2D space. The robots are characterized by the 

following parameters: minimum and maximum linear 

velocities, maximum acceleration, maximum angular 

velocity (turning velocity), dimensions (the diameter 

of the circumcircle), and the range of communication 

or sensors. They can be chosen arbitrarily for research 

purposes or specified precisely for particular robots. 

This paper involves a single limiting condition: the 

minimum velocity of each robot is nonzero, i.e., it 

cannot stop and start moving in the opposite (or any 

other) direction without spatial maneuvering. Also, a 

safe distance between robots is introduced, i.e., the 

distance to which they can converge to each other 

without affecting the neighbor’s motion dynamics. Let 

the safe distance be nonzero as well, which is conven-

ient when calculating the distances between robots in 

fractions of the safe distance. The information ex-
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change between robots or the range of their sensors is 

limited by a given maximum distance Rmax. Delays and 

noise are neglected. 

Initially, the robots are placed in an obstacle-free 

rectangular arena without boundaries; the initial veloc-

ity and course of the robots are random, and accelera-

tion and turning velocity are zero. The initial velocity 

is chosen between the minimum and maximum values.  

The control algorithm uses the position and course 

of nearest neighbors within a given maximum distance 

only, without any additional information (such as the 

group target). Therefore, initial swarm connectivity is 

required. 

For this purpose and safety requirements as well, 

two conditions are imposed on the initial position of 

the robots as follows. First, the minimum distance be-

tween any two robots exceeds a given minimum 

threshold; and second, for any robot, there is a neigh-

bor robot located at a distance less than a given maxi-

mum threshold. These conditions are due to maneu-

vering constraints and the range of communication 

(sensors).  

The problem at hand can be formulated as follows: 

given a swarm size and the initial position constraints 

and characteristics of the robots, it is required to select 

the initial arena size and model parameters so that: 

 During the entire mission, the swarm will be 

connected (no clustering). 

 At the end of the mission, the courses of all ro-

bots will be sufficiently aligned, i.e., the directional 

coordination level of swarm motion will exceed a giv-

en threshold close to unity. 

 The safe distance between all robots in the 

swarm will be maintained during the mission. 

Coordinating the courses of all robots in the swarm 

does not completely solve the aggregation problem 

because the distances between robots may differ very 

significantly. However, under free-space motion con-

ditions, the transition from a sufficiently aligned 

swarm to a connected one, while maintaining a safe 

distance and connectivity, is easily implemented by 

varying the model parameters. 

2. MATHEMATICAL MODEL 

2.1. Basic Model  

As has been mentioned, the model involves the 

principles of swarm robotics. The motion of an indi-

vidual robot in the swarm is described by the discrete-

time first-order equation 

( 1) ( ) )  ( i i ik kr r u tk                     (1) 

with the following notations: ri(k) and ui(k) are the 

position vector and control action of robot i at step k, 

respectively; t is the time increment. In the sequel, 

the step number k will be omitted whenever no confu-

sion occurs. The control action can be interpreted as 

the desired velocity vector. 

The desired velocity vector is determined based on 

the pairwise influence of objects on each other. This 

paper considers a motion algorithm in an obstacle-free 

space, so only the mutual influence of mobile robots is 

taken into account. A hybrid metric-topological ap-

proach is adopted to detect neighborhood. The peculi-

arities of identifying neighbors will be discussed be-

low. For the time being, we emphasize that the influ-

ence of robots on each other is limited by the maxi-

mum distance Rmax. 

Traditionally, repulsion, alignment, and attraction 

zones are used according to the three Reynolds rules. 

In most works, these zones do not intersect (Fig. 1a). 

Here, we choose a model with intersecting zones (as in 

the paper [14]; see Fig. 1b). The model parameter D 

specifies the boundary between the repulsion and at-

traction zones and is often interpreted as the desired 

distance between the robots; ||rij|| is the distance be-

tween robots i and j; Rmax is the range of the mutual 

influence of robots; finally, 
alg

minR  and 
alg

max   R  are some 

parameters of the algorithm. 

 

 

 

Fig. 1. (a) Non-intersecting and (b) intersecting zones: repulsion (the 

inner circle of radius D), alignment (the shaded ring with radii alg

minR  

and alg

maxR ), and attraction (the ring with radii D and Rmax). 

 

Robots within the repulsion zone try to move away 

from each other, while robots within the attraction 

zone try to get closer to each other. The alignment 

zone overlaps with other zones in the vicinity of D and 

serves to coordinate the courses of robots. Outside the 

alignment zone, there is only one behavioral pattern: 

either repulsion or attraction. In the alignment zone, 

on the other hand, we have two behavioral patterns 
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with some weight coefficients. In general, this model 

can be written as 

α  /   α ,b b b

ij ij ij ij

b B b B

v v
 

   

arctan  (  α sin  /   α cos  )b b b b
ij ij ij ij ij

b B b B 

     , 

with the following notations:  ij  and  ij  is the mag-

nitude and direction of the desired velocity of robot i 

relative to robot j, respectively; b is the set of the main 

behavioral patterns (rep––repulsion, alg––alignment, 

and attr––attraction); ,,  b b

ij ij   and 
b

ij  are the magni-

tude and direction of the desired velocity of robot i 

relative to robot j and the weight coefficients for these 

behavioral patterns, respectively. The values of the 

coefficients αb

ij  (i ≠ j) are shown in Fig. 2. The robot’s 

self-influence is the reluctance to change its speed: 
algα 1ii   and 

rep attrα α 0ii ii  . 

 

 

 

Fig. 2. The coefficients α
b

ij  for different behavioral patterns. 

 

The mutual influence of robots also depends on 

their dynamic positions, i.e., whether they are ahead of 

or behind each other (as in the paper [14]). For differ-

ent behavioral patterns, the desired velocity of robot i 

relative to robot j is determined in accordance with 

Table 1.  

The coefficients βij specify the degree of influence 

of robot j on robot i (βii = 1) as a function of the dis-

tance between them. In this paper, we take the piece-

wise linear function 

 1
1 1 1

1

4

, 
β( )

0,

m m
m m m m

m m

y y
y x x x x x

x xx

x x


  



 
    

  
  

, 

where x is the distance between robots; xm, ym, m = 0, 

...,3, are some parameters; β(xm) = ym; x0  = 0 < x1 < x2  

< x3 < x4 = Rmax. The parameter x4 can be defined as 

the distance beyond which the influence of robots van-

ishes. 

A separate important issue is the definition of 

neighborhood. According to [15], each bird in a star-

ling flock interacts on average with a fixed number of 

neighbors (from six to seven in 3D and from three to 

five in 2D) instead of all neighbors within a fixed met-

ric distance. Neighborhood is defined not by metric 

but by topological distance, i.e., by the number of in-

termediate individuals separating two birds. This ap-

proach reflects a characteristic feature of swarm be-

havior, namely, local interaction. For robot swarms, 

one possibility is to construct a Delaunay triangulation 

and determine the nearest neighbors along it, which 

was actually implemented. Let us define σi(k) as the 

set of the nearest neighbors of robot i in the triangula-

tion sense (including this robot) at step k. Note that the 

set σi(k) is time-varying.  

Figure 3 provides an example of the nearest neigh-

bors determined by the metric-topological approach 

used here. For robot 1, the nearest neighbors are the 

green robots 3–6. Being nearest in the topological 

sense, robot 2 (green with red border) is nevertheless 

located far away from robot 1 (the distance exceeds 

Rmax); therefore, it is not included in the set σi(k). The 

other robots are not nearest in the topological sense. 

Thus, we have σi(k) = {1, 3, 4, 5, 6}. 
 

Table 1 

The mutual influence of robots 

Behavioral patterns (b) 
The position of robot j 

relative to robot i 

The desired velocity vector of robot i 

Magnitude Course 

Repulsion 
Ahead of Minimum 

From robot j to robot i 
Behind Maximum 

Alignment Any Like robot j Like robot j 

Attraction 
Ahead of Maximum 

From robot i to robot j  
Behind Minimum 
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Fig. 3. Nearest neighbors determined by the metric-topological approach.   

 

Finally, the desired velocity  ( )iu k  is calculated as 

the total influence of all robots in the set σi(k) with the 

coefficients βij: 

cos
   

sin

i

i i

i

u v
 

  
 

, 

( ) ( )

  β  /  β
i i

i ij ij ij

j k j k

v v
 

   , 

( ) ( )

arctan (  β sin /  β cos  )
i i

i ij ij ij ij

j k j k 

     , 

where  ii  and  i  
are the magnitude and direction of 

the desired velocity 
iu ; βij are weight coefficients, 

βii  = 1; σi(k) is the set of the nearest neighbors of robot 

i, including itself, at step k. 
 

2.2. Maneuvering Constraints  

In model (1) with point objects and no maneuver-

ing constraints, the desired velocity ui equals 
iu . In 

this paper, the dimensions of the robots (the diameter 

of the circumcircle) and maneuvering constraints are 

considered when calculating the distances and the de-

sired velocity, respectively. In addition, for many ro-

bots, there is a safe distance to which they can con-

verge without affecting the motion dynamics of a 

neighbor robot. Accordingly, a given safe distance Ds 

is introduced. 

The desired velocity ui in model (1) will be deter-

mined under these constraints. For this purpose, we 

adopt the general expression 

 min max max max  ,  ,  , ω ,  i iu f u V V W ,            (2) 

where a function f transforms the desired control ac-

tion into an admissible one; Vmin and Vmax are the min-

imum and maximum linear velocities; Wmax is the 

maximum acceleration; finally, ωmax is the maximum 

turning velocity. 

Since the desired control action is interpreted as 

the desired velocity, the function f can be implemented 

by calculating the value  

* *

max

*

max

*

max

( ), | ( ) |

sign( ( ) ) , ,

| ( )

( )

( 1)

( 1) ( 1)

( 1) |
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i i i
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v

v k v k v W t
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v k
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k
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W

k

k t

   
 

    
 

 



 

   

 

where 
*

max min( ) max(min( ( ), ), ),i iv k v k V V  

and the direction of the desired velocity 

* *

max max

*

max max

*

max max

(

, ω ω

ω , ω

ω , ω

) ( 1)i i

i i

i

i

t t

t t

t t
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, 

where 
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2π, π ,

2π

( ) ( 1)
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π

( ) ( 1)
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and Δt is the modeling step. 

 

2.3. Swarm Behavior Assessment  

Safety is assessed by calculating the minimum dis-

tance between robots in the swarm:  

min min ||( ||) ( ( ) ( ) )i j
i j

k kR r kr S


    

(at step k) and  

min min (mi )n   s
k

kR R D  

(since the beginning of the mission), where S is the 

dimensions of the robot (the diameter of the circum-

circle). 

The directional coordination level of swarm mo-

tion is calculated as follows:  

1

( ) ( )1
ψ( )

( 1) | ( ) || ( ) |

N
i j

i j i i j

v k v k
t

N N v k v k 



 , 

where vi(k)vj(k) is the inner product of the velocity 

vectors of robots i and j at step k. In the ideal state, we 

have ψ ≈ 1; in the disordered state, ψ ≈ 0. 
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3. SIMULATION MODELING 

3.1. Initial Position Requirements and Arena Size  

The minimum and maximum distances between 

any two robots at the initial step are chosen in view of 

maneuvering constraints. According to experimental 

results, swarm robotics algorithms can lead to situa-

tions necessitating a convergence maneuver between 

two robots while maintaining a safe distance between 

them (Fig. 4a). Therefore, the minimum initial dis-

tance between the centers of robots is given by  

max
min

max

  4 4 ,s t s

V
D D R S D S     


 

where Rt denotes the robot’s turning radius under the 

maximum turning and linear velocities.  

 

 

 
Fig. 4. Maneuvers: (a) convergence and (b) divergence. 

 

Similarly, a divergence maneuver of two robots is 

possible, during which connectivity must be preserved 

(Fig. 4b). The maximum initial distance between the 

centers of the robots is given by 

max
max max max

max

  4 4 .t

V
D R R S R S     


 

The size of the arena is chosen depending on the 

number of robots in the swarm (N) and the maximum 

initial distance between their centers (Dmax). For com-

puter simulations, we take a swarm of 20 robots and 

an arena composed of 20 square boxes with a diagonal 

of Dmax. Three possible arena configurations are con-

sidered: 5 × 4, 10 × 2, and 20 × 1 square boxes. Two 

variants are also considered: the robots are placed at 

given locations, and only their initial velocity vector is 

varied.  

3.2. The Characteristics of Mobile Robots  

We select arbitrary test characteristics without 

binding to particular robots and investigate the solva-

bility of the problem within the model. Table 2 shows 

the list of parameters, as well as their values, which 

were used in computer simulations. The value Rmax is 

large enough to ensure maneuvering with preserving 

connectivity (on the one hand) and not to cover the 

entire arena (on the other hand). The visualization of 

transients is required to understand the operation of 

the model, so the units of measurement for robots’ 

characteristics were specified in on-screen coordi-

nates. Of course, when building the model for particu-

lar robots, the units of measurement must be chosen 

accordingly. 

 
Table 2 

The characteristics of mobile robots 

Parameter Notation Value 
The unit of 

measurement* 

Minimum velocity Vmin 1 c.u./s 

Maximum velocity Vmax 4 c.u./s 

Maximum accelera-

tion 
Wmax 1 

c.u./s
2
 

Maximum turning 

velocity 
ωmax π/6  

rad/s 

Robot’s dimensions S 12  c.u. 

Communication 

range (sensors) 
Rmax 300  

c.u. 

Safe distance Ds 24  c.u. 

*c.u.––conventional unit 

 

3.3. The Choice of Model Parameters 

The most significant parameters of the model are 

the function y = β(x), which specifies the degree of 

mutual influence of robots depending on the distance 

between them, and the desired distance D. 

According to subsection 3.1, the maneuvers of 

convergence and divergence are most critical for 

maintaining a safe distance and connectivity, respec-

tively. This fact predetermines the shape of the func-

tion y = β(x) in Fig. 5. A steep slope is required on the 

interval (x0 = 0, x1 = Ds + 4Rt) to avoid collisions and 

on the interval (x3 = Rmax – 4Rt, x4 = Rmax) to avoid 

clustering. The choice x2 = D corresponds to the de-

sired distance between the robots; at this point, it is 

natural to assume a minimum of the function β(x), 

equal to y2. The choice y2 = 1 is not critical. The values 

of ym = β(xm), m = 0, 1, 3, 4, and parameter D were 

chosen based on computer simulations.  
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Fig. 5. The graph of the function y = β(x), where x is the distance 

between robots.   

 

The parameters were initially chosen for a 5 × 4 

arena. One thousand (1000) simulation runs were con-

ducted under different initial conditions and parameter 

values, and the most unfavorable ones were deter-

mined. A run was terminated upon reaching a given 

value of the directional coordination level of swarm 

motion (ψ  ≥ ψz with ψz = 0.92) or exceeding a maxi-

mum number of steps (losing connectivity). For the 

runs with violated safety, the influence of the parame-

ters y0 and y1 on this parameter was analyzed, and new 

values were assigned accordingly. By analogy, for the 

runs with lost connectivity, the influence of y3 and y4 

on this property was analyzed to determine new val-

ues. In some cases, it was also necessary to assess the 

influence and correct the parameter D. This iterative 

procedure terminated when obtaining the desired re-

sults in all 1000 runs; it yielded the basic values of ym, 

m = 0, 1, 3, 4, and D for the given characteristics of 

mobile robots. The parameters were finely tuned on a 

greater number of runs, 10 000. A similar procedure 

served to determine the model parameters for a 5 × 4 

arena with the chosen characteristics of mobile robots. 

Note that the number of unfavorable runs in the it-

erative procedure did not exceed 0.05% of the total 

number of runs (5 out of 10 000). In other words, the 

chosen statistics can be considered sufficient.  

Subsequently, the same procedure was executed on 

10 × 2 and 20 × 1 arenas. The values obtained for a 5 

× 4 arena were chosen as the initial parameter values 

of the iterative procedure. As it turned out, to pass 

from a 5 × 4 arena to a 20 × 1 arena, only the value D 

should be slightly increased to avoid clustering. Ac-

cording to the analysis results, the safety problem was 

successfully solved, whereas the connectivity problem 

requires further investigation. In view of the model 

features, namely, the definition of neighborhood, two 

initial position variants were identified for robots in a 

20 × 1 arena as the most unfavorable ones in terms of 

possible clustering. In the first variant (Zig), the robots 

are placed in a 20 × 1 arena in the corners of the 

square boxes in a zigzag pattern; in the second variant 

(Line), the robots are placed on the diagonal of a 20 × 

1 arena at equal distances from each other. The dis-

tance to the nearest robot is Dmax in the first case and 

2

max( (1 ) / 2 / ( 1))N N D   max0.75D  in the second 

case. In these cases, a robot located in the middle of 

the group has two nearest neighbors and a robot locat-

ed at the edge has one nearest neighbor. Only the ini-

tial velocity vector is randomly changed. For these two 

variants, similar iterative procedures were executed 

(10 000 runs each) to determine the values of the pa-

rameters y3, y4, and D. According to the experimental 

results, Line is the most critical variant in terms of 

clustering. It requires a rather significant increase in 

the value of the parameter D, i.e., D = 235, greater 

than the initial distance between the robots (210). Note 

that D was chosen as small as possible to obtain a less 

sparse swarm. 

The task was to find the same parameter values for 

all selected arenas and variants of the initial condi-

tions. Therefore, the parameter values obtained for 

Line (Table 3) were checked for Zig and all three are-

nas. The results are presented in subsection 3.4 below.  
 

Table 3 

Model parameters 

Parameter Formula Value 

D – 235 

x0 – 0 

x1 Ds + 4Rt 55 

x2 D 235 

x3 Rmax – 4Rt 269 

x4 Rmax 300 

y0 = β(x0) – 30 

y1  = β(x1) – 1.7 

y2  = β(x2) – 1 

y3  = β(x3) – 1.3 

y4  = β(x4) – 5 

alg

minR  – 0.75 

alg

maxR  – 1.25 

t – 0.25 s 
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3.4. Simulation Results 

For the chosen values of the model parameters, 10 

000 simulation runs were conducted for each of the 

five variants of the initial position conditions. Accord-

ing to the simulation results, the desired directional 

coordination level of swarm motion (ψz  = 0.92) was 

successfully reached in 100% of cases, and a safe dis-

tance was maintained as well. 

The data in Table 4 and Fig. 6 reflect the rate of 

reaching a given value of the directional coordination 

level of swarm motion. In particular, the histogram in 

Fig. 6 (with a step size of 50) shows the frequency of 

reaching a given value of this level in a certain number 

of steps. For the first three variants with Rand (a ran-

dom initial placement of robots), the computer simula-

tions demonstrated an increase in the required number 

of steps when passing to a more elongated arena. 

Quite expectedly, the remaining two variants required 

significantly more time. For these variants, there is a 

small maximum (about 200 steps for Line and 250 

steps for Zig) coinciding with the maxima for the first 

three variants; see Fig. 6. 

 
Table 4 

The number of steps: statistics 

The number 

of steps 

  

Arena configuration,  

initial position conditions for robots 

5 × 4, 

Rand 

10 × 2, 

Rand 

20 × 1, 

Rand 

20 × 1, 

Zig 

20 × 1, 

Line 

Minimum 96 98 109 31 14 

Average 230 251 280 593 557 

Maximum 632 636 795 747 661 

 

 

 

 
Fig. 6. The rate of reaching swarm connectivity (ψ ≥ ψz). 

The data in Table 5 and Fig. 7 characterize safety, 

i.e., the minimum distance between two robots ob-

served throughout the mission. In particular, the histo-

gram in Fig. 7 (with a step size of 10/Ds ≈ 0.42) shows 

the frequency of this indicator. Due to the initial posi-

tion peculiarities in the last two variants, the safe dis-

tance is maintained with a margin. For the first three 

variants, however, the graphs are almost identical. The 

minimum value exceeds 1.65Ds, i.e., the safe distance 

is reached with a margin. 

 

Table 5 

The minimum distance (fractions of safe distance): 

statistics 

The number 

of steps 

  

Arena configuration,  

initial position conditions for robots 

5 × 4, 

Rand 

10 × 2, 

Rand 

20 × 1, 

Rand 

20 × 1, 

Zig 

20 × 1, 

Line 

Minimum 1.69 1.67 1.69 5.17 5.25 

Average 2.44 2.4 2.33 7.18 7.63 

Maximum 4.15 4.32 3.51 7.65 8.13 

 

 

 

 
Fig. 7. The minimum distance between robots (fractions of the safe 

distance). 

 

CONCLUSIONS 

The key feature of the problem statement consid-

ered above is no use of the so-called group target. 

(Otherwise, aggregation can be implemented quite 

simply.) The main difficulty is to maintain swarm 

connectivity under maneuvering constraints. The ab-

sence of the group target significantly complicates the 

solution and leads to certain requirements for the ini-

tial position of robots and the arena size. These re-
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quirements essentially depend on the range of com-

munication (sensors) and the characteristics of robots, 

namely, their maximum velocity and maximum turn-

ing velocity. For more maneuverable robots, the arena 

size increases as they respond faster to the desired 

course change, thus avoiding loss of connectivity. 

The swarm control model proposed in this paper 

has been validated using randomly selected test char-

acteristics of robots. The model parameters have been 

successfully tuned to solve the problem for all the are-

na sizes selected. The results are based on statistical 

modeling with random initial position conditions for 

each of the three arenas and two more variants of the 

initial position on one of the arenas (50 000 simulation 

runs in total, 10 000 for each variant mentioned). 

The model parameters used have different influ-

ences on the behavior of a group of robots. Some of 

them are calculated analytically, and others are as-

signed based on computer simulations. Moreover, only 

some parameters have a significant influence, namely, 

the desired distance between robots and the values 

specifying the influence function of neighbor robots. 

In terms of clustering, the most critical case is narrow 

and long arenas, for which the desired distance be-

tween robots must be increased.  

This peculiarity affects the applicability of the re-

sults for other values of robot characteristics. If the 

range of communication (sensors) is sufficiently large 

compared to the distances required for robots to ma-

neuver, only quantitative adjustments to the model 

parameters will be required in most cases. However, 

the matter concerns the degree of mutual influence of 

robots defined in Fig. 5. This condition may be violat-

ed for narrow and long arenas and poor maneuverabil-

ity of robots. In such cases, more stringent constraints 

must be imposed on the arena size. A potential line of 

further research concerns the computer-aided selection 

of model parameters. 

Thus, it is possible to model the behavior of a 

group of robots with given characteristics in advance, 

determine the minimum and maximum distances, and 

choose appropriate model parameters to avoid cluster-

ing and ensure a safe distance when passing to coordi-

nated motion (i.e., when forming a swarm). This task 

is the first stage of a mission carried out by a group of 

robots; it can be performed under some conditions (see 

above). Only the position and heading information of 

nearest neighbors (in the metric-topological sense) is 

used, without introducing any additional information 

(e.g., the group target).  
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