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Abstract. This paper proposes using compositions of two constant-weight codes with orthogonal 

combinations over all bits in the design of controllable and self-checking discrete devices. With 

such codes, computation control at the outputs of discrete devices can be implemented via the 

attribute of belonging of the codewords to a given constant-weight code and, moreover, via the 

attribute of belonging of each function describing the codeword bits to the class of self-dual 

Boolean functions. It is shown how to construct noninterference codes based on the composition 

of two constant-weight codes with orthogonal combinations over all bits. Explicit formulas are 

derived to determine the number of errors undetectable by compositions of constant-weight codes 

by their types (by the number of erroneous 0s and 1s in codewords) and multiplicities. The prop-

erties of the codes under consideration are briefly described. The structure of concurrent error-

detection circuits is presented for discrete devices based on the composition of two constant-

weight codes with orthogonal combinations over all bits and computation control via two diag-

nostic attributes. The use of such compositions can be effective in building highly reliable dis-

crete devices on various components. 

 
Keywords: controllable and self-checking devices; computation control via two diagnostic attributes; com-

positions of constant-weight codes; error detection at discrete device outputs.  
 

 

 

INTRODUCTION  

Constant-weight codes, also called “r-out-of-n” or 
r/n codes, are constructed by selecting, from a set of 

codewords with n bits (with a codeword length of n), 
those having the same weight r. The number of code-

words in an r/n code is determined by the binomial 

coefficient 
r

nC . These codes were described in [1] and 

found wide application in data processing and trans-
mission [2, 3] as well as in the design of controllable 

and self-checking discrete devices [4–7]. The design 
theory of detectors and checkers of constant-weight 

codes is rather deeply developed [8–12]; special prop-
erties and characteristics of these codes were investi-

gated in several works, e.g., in the paper [13]. Note 
also that constant-weight codes are closely related to 

the theory of combinatorial block design and Steiner 
systems [14, 15].  

We focus the reader’s attention on the application 

of constant-weight codes to build devices with fault 
detection [16, 17]. When designing such devices using 

constant-weight codes, the following advantages are 

utilized. First of all, since the codewords of these 
codes have the same weight, they detect any errors in 

the codewords except for multidirectional errors with 
even multiplicity containing the distortion group  

{0 1, 1 0} (the so-called symmetrical errors). 
Constant-weight codes detect any non-symmetrical 

errors classified as unidirectional (associated with dis-
tortions of exclusively 0s or exclusively 1s) and 

asymmetrical (containing an unequal number of dis-
tortions of 0s and 1s). This feature is used in the de-

sign of self-checking devices by searching for groups 
of unidirectional-independent (UI) outputs [18, 19] or 

groups of unidirectional/asymmetrical-independent 
(UAI) outputs [20, 21] in a device and organizing 

computation control at these outputs by means of con-
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stant-weight codes. An alternative is to modify the 
structure of a controlled device into one with a single 

group of UI outputs or UAI outputs [22]. Another 
fruitful property is that constant-weight codes do not 

detect a small number of errors with even multiplicity, 
which also contributes to covering a large number of 

real distortions at the outputs of controlled devices. 
The third important advantage of constant-weight 

codes over other codes is the simplicity of control 
equipment (checkers, detectors, and check logic 

blocks) and clear principles of ensuring self-checking 
[9]. 

Different approaches can be applied to build self-
checking discrete devices using constant-weight 

codes. It is interesting to control computations using 
not only constant-weight codes but also the properties 

of Boolean functions describing the bits of their code-

words, namely, the properties of self-dual Boolean 
functions. Such an organization of computation con-

trol significantly improves controllability indicators in 
the part of observability [23]. When building discrete 

devices with computation control via two diagnostic 

attributes, only /
2

n
n  codes can be applied [24]. In this 

paper, the idea is to design self-checking discrete de-
vices using compositions of two constant-weight 

codes with orthogonal combinations over all bits, 
which significantly extends the design theory of self-

checking discrete devices. 

1. COMPOSITIONS OF TWO CONSTANT-WEIGHT CODES             

WITH ORTHOGONAL COMBINATIONS OVER ALL BITS 

Among all constant-weight codes, it is possible to 
separate those with the following interesting property: 

the set of their codewords contains exclusively the

pairs of orthogonal codewords over all bits. Such 
codes exist only for even n, and there is a single code 

of this type with the value 
2

n
r   for each even n. The 

whole variety of constant-weight codes can be illus-

trated on Pascal’s triangle, where each number charac-
terizes the cardinality of the codeword set of r/n codes; 

see a fragment of Pascal’s triangle in Fig. 1. That is, 
Fig. 1a shows the triangle with highlighted numbers 

corresponding to the cardinalities of the codeword sets 
of constant-weight codes with the above property. For 

example, the constant-weight 1/2 code contains the 
two combinations {01, 10} and is used in information 

coding for error detection, e.g., in the spatial two-rail 
representation of signals [25]. The constant-weight 2/4 

code contains the six combinations {0011, 0101, 0110, 
1001, 1010, 1100} and is used in organizing concur-

rent error-detection (CED) circuits for the combina-
tional components of discrete devices [26]. 

In [24], it was proposed to use (constant-weight) 

/
2

n
n  codes in the design of self-checking discrete 

devices with computation control via two diagnostic 

attributes, namely, the belonging of codewords to a 
given constant-weight code and the belonging of each 

function describing the bits of codewords to the class 
of self-dual Boolean functions. For this purpose, the 

following property must be provided in the design 
process of a CED circuit: on the sets of argument val-

ues orthogonal over all bits, it is required to form, in 
the CED circuit, orthogonal codewords over all bits 

for constant-weight codes. 
The studies of the applicability of constant-weight 

codes to computation control at discrete device outputs 
via two diagnostic attributes have led to the task of 

determining the applicability of groups of other con-
stant-weight codes to CED circuit organization. 
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Fig. 1. Ways to select a) one and b) two constant-weight codes with orthogonal codewords over all bits on Pascal’s triangle. 
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It would ensure higher variability in choosing CED 

circuit design methods and adjusting the key perfor-

mance indicators of self-checking discrete device im-

plementations. 

Combining the codeword sets of constant-weight 

r/n and (n – r)/n codes, where 1, 2, ...,
2

n
r

  
  

  
 is 

the weight of a codeword, yields a composition of the 

pair of constant-weight codes with the desired proper-

ty of their codewords. The binomial coefficients corre-

sponding to such pairs of constant-weight codes are 

highlighted by the same color on Pascal’s triangle in 

Fig. 1b. The non-highlighted ones are the codes with r 

= 0, the degenerate pairs (for which the weight is 

2

n
r   for even n), and the pairs of codes with the 

weights differing by 1. 

Proposition 1. A composition of pairs of r/n and  

(n – r)/n codes will detect any single errors in code-

words if 

2 2.n r                                 (1) 

P r o o f. The codewords of an r/n code have weight r; 

the codewords of an (n – r)/n code, weight n – r. Clearly, 

r/n and (n – r)/n codes will detect any single errors dis-

torting codewords belonging to the given code into those of 

the same code. Only single errors distorting codewords of 

an r/n code into those of an (n – r)/n code may be undetect-

ed. This is possible only if the weight of the codewords of 

an (n – r)/n code exceeds that of an r/n code by 1. In other 

words,   1n r r   , which is equivalently written as 

2 1n r  . Hence, inequality (1) is valid for detecting any 

single errors. ♦  

Thus, we obtain a whole group of modified codes 

based on pairs of constant-weight codes. They can be

applied to design some controllable and self-checking 

discrete devices as well as to provide their diagnostic 

support. 

2. CHARACTERISTICS OF ERROR DETECTION  

BY COMPOSITIONS OF TWO CONSTANT-WEIGHT CODES 

We determine the number of errors that will not be 

detected by compositions of two constant-weight 

codes as well as characterize them. 

Proposition 2. The total number of codeword er-

rors undetectable by a selected composition of pairs of 

r/n and (n – r)/n codes is given by 

 2 2 1 .r r

ND n nN С С                        (2) 

P r o o f. The codeword set of an r/n code has cardinality 
r

nС ; the codeword set of an (n – r)/n code, cardinality 

n r r

n nС С  . Hence, the composition is formed by 2 r

nС  

codewords. An error will not be detected if and only if it 

distorts a codeword of a given composition of codes into a 

codeword belonging to codes from this composition. For 

each codeword, there are 2 1r

nС   such distortions in total. 

Therefore, we arrive at the expression (2). ♦ 

Let (r/n + (n – r)/n) codes denote a composition of 

pairs of the corresponding constant-weight codes. For 

the first values of n as an example, they are given in 

Table 1. Here, the color indicates constant-weight 

/
2

n
n  codes, which also have pairs of orthogonal com-

binations over all bits in the codeword set.  

Table 2 characterizes errors undetectable by  

(r/n + (n – r)/n) codes. For each code, two numbers are  

 

Table 1 

Compositions of pairs of constant-weight codes 

n 
r 

1 2 3 4 5 6 

4 1/4 + 3/4 2/4 – – – – 

5 1/5 + 4/5 – – – – – 

6 1/6 + 5/6 2/6 + 4/6 3/6 – – – 

7 1/7 + 6/7 2/7 + 5/7 – – – – 

8 1/8 + 7/8 2/8 + 6/8 3/8 + 5/8 4/8 – – 

9 1/9 + 8/9 2/9 + 7/9 3/9 + 6/9 – – – 

10 1/10 + 9/10 2/10 + 8/10 3/10 + 7/10 4/10 + 6/10 5/10 – 

11 1/11 + 10/11 2/11 + 9/11 3/11 + 8/11 4/11 + 7/11 – – 

12 1/12 + 11/12 2/12 + 10/12 3/12 + 9/12 4/12 + 8/12 5/12 + 7/12 6/12 

13 1/13 + 12/13 2/13 + 11/13 3/13 + 10/13 4/13 + 9/13 5/13 + 8/13 – 

14 1/14 + 13/14 2/14 + 12/14 3/14 + 11/14 4/14 + 10/14 5/14 + 9/14 6/14 + 8/14 

15 1/15 + 14/15 2/15 + 13/15 3/15 + 12/15 4/15 + 11/15 5/15 + 10/15 6/15 + 9/15 
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Table 2 

Characterization of errors undetectable by (r /n + (n – r )/n) codes 

n 
The number of undetectable errors and their share in the total number of errors in codewords 

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 

4 
56 

23.33333% 

30 

12.5% 
– – – – 

5 
90 

9.07258% 
– – – – – 

6 
132 

3.27381% 

870 

21.57738% 

380 

9.4246% 
– – – 

7 
182 

1.11959% 

1722 

10.59301% 
– – – – 

8 
240 

0.36765% 

3080 

4.71814% 

12 432 

19.04412% 

4830 

7.3989% 
– – 

9 
306 

0.11696% 

5112 

1.95389% 

28 056 

10.72346% 
– – – 

10 
380 

0.03628% 

8010 

0.76464% 

57 360 

5.47562% 

175 980 

16.79917% 

63 252 

6.03808% 
– 

11 
462 

0.01102% 

11 990 

0.286% 

108 570 

2.58978% 

434 940 

10.37484% 
– – 

12 
552 

0.00329% 

17 292 

0.10309% 

193 160 

1.1516% 

979 110 

5.83738% 

2 507 472 

14.94935% 

852 852 

5.08464% 

13 
650 

0.00097% 

24 180 

0.03604% 

326 612 

0.48675% 

2 043 470 

3.04538% 

6 622 902 

9.8701% 
– 

14 
756 

0.00028% 

32 942 

0.01227% 

529 256 

0.19718% 

4 006 002 

1.49244% 

16 028 012 

5.97126% 

36 066 030 

13.43646% 

15 
870 

0.00008% 

43 890 

0.00409% 

827 190 

0.07704% 

7 450 170 

0.69387% 

36 066 030 

3.35901% 

100 190 090 

9.33121% 

specified (top and bottom in cells), namely, the num-

ber of undetectable errors and the share of undetecta-

ble errors in the total number of errors in the code-

words (γn, in %). Compositions of two constant-weight 

codes detect a significant number of errors. With in-

creasing n for each fixed r, the share of undetectable 

errors gradually drops (Fig. 2). 

 
 

 

 
Fig. 2. The dependences of γn on n for different (r/n + (n – r)/n) codes. 

Now we characterize the errors undetectable by dif-

ferent (r/n + (n – r)/n) codes by their types (unidirec-

tional, symmetrical and asymmetrical) and multiplici-

ties d.  

First, consider (1/n + (n – 1)/n) codes.  

Let us take the first (1/4 + 3/4) code and choose an 

arbitrary codeword of the 1/4 code, e.g., <0001>. It 

can be distorted into codewords belonging to the com-

position of these codes in 
1

42 1 7С    ways. The num-

ber of distortions of the codeword <0001> into the 

codewords belonging to the 1/4 code is 
1

4 1 3.С    

Since the codeword weight is preserved, all these dis-

tortions will be double symmetrical distortions. The 

codeword <0001> can be distorted into codewords 

belonging to the 3/4 code in 
3

4 4С   ways. Moreover, 

if after the distortion the single 1 in the codeword pre-

serves its value, the error will be unidirectional. As the 

codewords of the 3/4 code have weight n – r = 3, there 

are 
3 1 2

4 1 3 3С С

    possible ways of such distortions. 

The multiplicity of unidirectional undetectable errors 

will equal 2. The remaining single codeword <1110> 

of the 3/4 code is orthogonal over all bits to the code-

word <0001>. The latter can be distorted into the for-

mer only under a quadruple asymmetrical error. 



 

 
 

 

 
 

45 CONTROL SCIENCES  No. 3 ● 2025  

INFORMATION TECHNOLOGY IN CONTROL 
 

The same fact takes place for the other codewords 

of (1/4 + 3/4) codes.   

Proceeding to the second (1/5 + 4/5) code, we 

choose an arbitrary codeword of the 1/5 code, e.g., 

<00001>. It can be distorted into codewords belonging 

to the composition of these codes in 
1

52 1 9С    ways. 

The number of distortions of the codeword <00001> 

into the codewords belonging to the 1/5 code is 
1

5 1 4.С    Due to preserving the codeword weight, all 

these distortions will be double symmetrical distor-

tions. The codeword <00001> can be distorted into 

codewords belonging to the 4/5 code in 
4

5 5С   ways. 

Moreover, if after the distortion the single 1 in the 

codeword preserves its value, the error will be unidi-

rectional. As the codewords of the 4/5 code have 

weight n – r = 4, there are 
4 1 3

5 1 4 4С С

    possible 

ways of such distortions. The multiplicity of unidirec-

tional undetectable errors will equal 3. The remaining 

single codeword <11110> of the 4/5 code is orthogo-

nal over all bits to the codeword <00001>. The latter 

can be distorted into the former only under a quintuple 

asymmetrical error. The other codewords of the  

(1/5 + 4/5) codes are considered by analogy. 

Continuing the series of considerations, we arrive 

at the following results, valid for (1/n + (n – 1)/n) 

codes: 

 For each codeword, there are n – 1 possible ways 

to distort it into a codeword belonging only to this 

code, characterized by a double symmetrical error. 

 For each codeword, there are n – 1 possible ways 

to distort it into a codeword belonging to the second 

code in the composition, characterized by an (n – 2r)  

= (n – 2)-tuple unidirectional error. 

 For each codeword, there is a single possible way 

to distort it into a codeword belonging to the second 

code in the composition, characterized by an n-tuple 

asymmetrical error. 

There exist 
12 2nС n  codewords in total; therefore, 

each of the above numbers, for each error type and 

multiplicity, should be multiplied by this value to ob-

tain the total number of undetectable errors by type 

and multiplicity. 

Let us represent the total number of undetectable 

errors as 

, , ,υ ,ND d d d d d dN N N N                  (3) 

with the following notation: Nυ, d, Nσ, d, and Nα, d  are 

the numbers of undetectable unidirectional, symmet-

rical, and asymmetrical errors, respectively, with mul-

tiplicity d; the symbols d, d, and d indicate the be-

longing of undetectable errors to the class of unidirec-

tional, symmetrical, and asymmetrical errors, respec-

tively, with multiplicity d. 

Using the expression (3) and the above reasoning, 

we derive the following formula for undetectable er-

rors for (1/n + (n – 1)/n) codes: 

      

  

1/ 1 /

2 2

2 2

2 1 1 1

2 1 2 .

n n n

ND n n

n n

N n n n

n n n

 





       

      
 

  (4) 

For example, for (1/4 + 3/4) codes, formula (4) 

gives 

  1/4 3/4

2 2 4

2 2 4

2 4 4 1 2 4

24 24 8 .

NDN           

     
 

Now we generalize this result to the composition of 

(2/n + (n – 2)/n) codes. 

As an example, let us take the (2/6 + 4/6) code and 

choose an arbitrary codeword of the 2/6 code, e.g., 

<000011>. There are 
2

62 1 29С    its possible distor-

tions into codewords belonging to this composition. 

Among them, there are 
2

6 1 14С    distortions into the 

codewords of the 2/6 code due to double symmetrical 

errors. Also, there are 
2

6 15С   distortions into the 

codewords of the 4/6 code. Such errors have the fol-

lowing structure. There is a single distortion into the 

codeword of the 4/6 code orthogonal over all bits to 

the codeword <111100>, due to a sextuple asymmet-

rical error. There are 
2 2

6 2 4 6С С    distortions under 

which all 1s in the codeword <000011> preserve their 

positions and two 0s are distorted. Such distortions are 

caused by double unidirectional errors. Also, there are 

distortions under which a single 1 preserves its value 

in the codeword <000011>, a single 1 is distorted, and 

three 0s are distorted. The number of possible distor-

tions of 1s and 0s described above are 
1

2С  and 
3

4С , 

respectively. In total, we have 
3 1

4 2 8С С   quadruple 

asymmetrical distortions. 

This error structure is inherent in all codewords in 

the composition under consideration. 

It is easy to generalize the results to  

(2/n + (n – 2)/n) codes: 

 For each codeword, there are 
2 1nС   possible 

ways to distort it into a codeword belonging only to 

this code, characterized by a double symmetrical error. 

 For each codeword, there are 
2

2nС   possible ways 

to distort it into a codeword belonging to the second 

code in the composition, characterized by an (n – 2r)  

= (n – 4)-tuple unidirectional error. 

 For each codeword, there is a single possible way 

to distort it into a codeword belonging to the second 

code in the composition, characterized by an n-tuple 

asymmetrical error. 

There exist 
22 nС  codewords in total; therefore, each 

of the above numbers, for each error type and multi-
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plicity, should be multiplied by this value to obtain the 

total number of undetectable errors by type and multi-

plicity: 

   
  

2/ 2 / 2 2 2
2 2 2

3 2 2 2 2
2 4 2 2 2

2 3 2
2 4

2 1

2 1 2 2 1

4 2 .

n n n

ND n n n

n
n n n n n n

n
n n n n

N С С С

С С С С С

С С С

 




 




    

        

   
 

(5) 

For example, for (2/6 + 4/6) codes, formula (5) 
gives 

 2/6 4/6 2 2 2 2 2 3

6 4 2 6 6 2 6 4 4

2

6 6 2 2 4 6

2 2 1 4

2 180 420 240 30 .

NDN С С С С С С

С

       

         
 

The generalization to (r/n + (n – r)/n) codes leads 
to the following: 

 For each codeword, there are 1r

nС   possible 

ways to distort it into a codeword belonging only to 
this code, characterized by a double symmetrical error. 

 For each codeword, there are 
r

n rС   possible ways 

to distort it into a codeword belonging to the second 
code in the composition, characterized by an (n – 2r)-
tuple unidirectional error. 

 For each codeword, there are  

          

 

   

11 21 2 1

1 2 1 2 2 2

1 1

1

...

...

n r r rn r r n r r r
r n r r n r r n r

n r r rr n r n r
r n r r n r r n r

r
n r r ir n r r n r i

r n r r n r r n r

i

С С С С С С

С С С С С С

С С С С С С

         
  

      
  

     
  



  

   

  

 

possible ways to distort it into a codeword belonging 
to the second code in the composition, characterized 
by asymmetrical errors. Note that the first term is the 
number of asymmetrical errors of multiplicity  
n – 2r + 2; the second term, the number of asymmet-
rical errors of multiplicity n – 2r + 4; ....; the (r – 1)th 
term, the number of asymmetrical errors of multiplici-
ty ((n – r) – (r – (r –1)) + (r – 1)) = (n – 2); finally, the

rth term, the number of asymmetrical errors of multi-
plicity n. 

The total number of codewords in the composition 

considered is 2 .r

nС  

Thus, we arrive at the general formula for the num-
ber of errors of different types and multiplicities unde-
tectable by (r/n + (n – r)/n) codes: 
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    

    

   

    

    

 1 1
2 2 .r n r r r n r

r n r n n r n r nС С С С   
    

(6) 

Formulas (4) and (5) are special cases of (6). 
The error detection characteristics of compositions 

of constant-weight codes can be used in practice to 
build discrete devices with fault detection. 

3. COMPOSITIONS OF AN EVEN NUMBER  

OF CONSTANT-WEIGHT CODES 

For n ≥ 8, compositions of more than two constant-
weight codes can be constructed in which the code-
word set will contain only pairs of codewords orthog-
onal over all bits. Such codes are constructed for even 
values of n ≥ 8. Desired combinations can be formed 
by uniting the codeword sets of the four constant-
weight codes highlighted on Pascal’s triangle (Fig. 3). 

Table 3 shows the composition of quadruples of 
constant-weight codes, and Table 4 characterizes the 
errors undetectable by them. For n > 8, compositions 
of quadruple constant-weight codes do not detect hun-
dredths and thousandths of a percent of the total num-
ber of errors occurring in codewords with the corre-
sponding codeword length. 
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Fig. 3. Ways to select four constant-weight codes with orthogonal combinations over all bits on Pascal’s triangle. 
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The above considerations for determining the error 

detection characteristics of pairs of compositions of 

constant-weight codes by error types and multiplicities 

(see the previous section) can be repeated to character-

ize the errors undetectable by the compositions of 

quadruple constant-weight codes. 

4. APPLICATION OF COMPOSITIONS OF TWO 

CONSTANT-WEIGHT CODES IN SELF-CHECKING 

DISCRETE DEVICE DESIGN 

Figure 4 shows the structural diagram of a self-

checking discrete device with a CED circuit based on 

an (r/n + (n – r)/n) code. It uses two diagnostic attrib-

utes for computation control: the belonging of the 

codewords formed to a given (r/n + (n – r)/n) code 

and the belonging of each function describing the 

check bits to the class of self-dual functions.  

The object under diagnosis is a combinational dis-

crete device F(X) that calculates the values of Boolean 

functions  f1(X), f2(X),…, fn–1(X), fn(X) when sets of 

argument values <xt xt–1 ... x2 x1> = <X> are supplied 

to its inputs. The device F(X) is augmented with a spe-

cial CED circuit to control computation. In addition, 

the operation of this circuit is adjusted appropriately 

[27]. 

The outputs of the device F(X) are connected to the 

inputs of a Boolean signal correction (BSC) block in 

the CED circuit. This block is intended to transform 

the output signals of the device F(X) into signals 

h1(X), h2(X),…, hn–1(X), hn(X) on each set of argument 

values. The signal correction block is formed by a cas-

cade of two-input XORs: their first inputs receive the 

signals f1(X), f2(X),…, fn–1(X), fn(X) whereas their se-

cond inputs the signals g1(X), g2(X),…, gn–1(X), gn(X) 

with the same subscripts from a block G(X) calculat-

ing the Boolean correction functions:  

     , 1, .i i ih X f X g X i n                (7) 

The transformation (7) is performed on each set of 

argument values to endow the functions h1(X), 

h2(X),…, hn–1(X), hn(X) with the following two proper-

ties. First, the codeword <hn(X) hn–1(X) … h2(X) h1(X)> 

must belong to the (r/n + (n – r)/n) code selected. Se-

cond, the values of each function h1(X), h2(X),…,  

hn–1(X), hn(X) on each set of argument values are gen-

erated so that the functions turn out to be self-dual. 

This requires only that orthogonal combinations over 

all bits belonging to the (r/n + (n – r)/n) code be 

formed on orthogonal sets of argument values (see 

above). It is necessary to redefine the values of the 

vectors <hn(X) hn–1(X) … h2(X) h1(X)> on all sets of 

argument values so that all codewords belonging to 

the r/n code and (n – r)/n code will be formed at least 

once. This feature requires the constraint 

2log 2 .r

nt С     

The belonging of the codewords  

<hn(X)   hn–1(X)   …   h2(X)   h1(X)> to the  

(r/n + (n – r)/n) code selected is verified by a totally 

self-checking checker (TSC). Such checkers can be 

designed in various ways, e.g., by separating two func-

tions  0

1z X  and  1

1z X , each being the disjunction of 

conjunctions corresponding to the codewords of the 

r/n code and (n – r)/n code, respectively. (By the way, 

they may appear in each of the functions, but only 

once!) It is possible to use bracketed forms to simplify 
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Fig. 4. The structural diagram of a self-checking discrete device.  
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checker structures. The design methods of constant-
weight code checkers described in [9, 10] are not di-
rectly applicable to build checkers of their composi-
tions. 

The belonging of each function h1(X), h2(X),…,  
hn–1(X), hn(X) to the class of self-dual Boolean func-
tions is checked using nSDC1, a device that receives n 
self-dual signals at its inputs and produces the values 

of two functions  0

2z X  and  1

2z X  at its outputs. 

Such a device can be implemented in two ways. The 
first solution is to install n elementary self-dual check-
ers (SDC) [27] and n – 1 elementary two-rail checkers 
(TRC) [28]. The second is based on the preliminary 
compression of n self-dual signals into one signal us-
ing three-input XORs (see the corresponding scheme 
in [29]) and control of the received signal using one 
SDC device. 

The outputs  0

1z X  and  1

1z X , as well as  0

2z X  

and  1

2z X , operate in the two-rail logic. Violation of 

the two-rail principle indicates a computational error, 
indirectly meaning the presence of faults in one of the 

blocks. The outputs  0

1z X  and  1

1z X , as well as 

 0

2z X  and  1

2z X , are connected to the inputs of one 

TRC block to produce a single reference signal Z
0
(X) 

and Z
1
(X).  

According to the control principles for self-dual 
signals, it is necessary to compare sequentially the 
value on the direct combination supplied and on the 
orthogonal one over all bits, which actually reduces 
the performance twofold [30]. Then the first combina-
tion supplied is the operating one, and the second is 
the check combination. Thus, it is required to supply, 
to the inputs of the device, pairs of sets of argument 
values composed of operating combinations and check 
combinations orthogonal over all variables to the for-
mer. This is conveniently organized in the pulse opera-
tion mode of the structure shown in Fig. 4. The mode 
is implemented by installing a generator G of rectan-
gular pulses with frequency S = 2, which produces the 
sequence a 0101...01 at its output. This sequence is 
supplied to the second inputs of two-input XORs, in-
stalled for each input  x1, x2,..., xt – 1, xt. The first inputs 
of XORs are fed with the values of the input variables 
themselves. With such a circuit, the Boolean zero sig-
nal is transformed into the sequence 0101...01 and the 
Boolean one signal into the sequence 1010...10. Thus, 
the sets of argument values arrive at the inputs of the 
block F(X) in pairs, namely, the operating and check 
ones, the latter being orthogonal over all bits to the 
former. Also, the signal from the rectangular pulse 
generator is necessary for the operation of the check-
ers of self-dual signals (SDC) in the CED circuit. 

Separate examples of CED circuit design by the 
above method are beyond the scope of this paper. Note 

that in practice, the use of (r/n + (n – r)/n) codes in the 
CED circuit design according to Fig. 4 yields totally 
self-checking discrete devices with different perfor-
mance indicators. First of all, it is important to cover 
errors at the outputs of the device F(X), ensure the 
self-checking property of the CED circuit, and obtain 
the simplest CED circuit implementation in order to 
design less redundant structures compared to the du-
plication method. Given a high variability in obtaining 
the values of the functions g1(X), g2(X),…, gn–1(X), 
gn(X) on each set of argument values, it is possible to 
form sufficiently many structures and choose among 
them the simplest in terms of complexity. This indica-
tor determines the device complexity [31]. For in-
stance, the number of ways to redefine the function 
values essentially depends on the number t of inputs in 
the object under diagnosis F(X). It suffices to redefine 
the function values on the first half of the sets, their 

number equals 12t . On each of these sets, redefinition 

can be performed in 2 r

nC  ways. On the second half of 

the sets of argument values, the function values are 
obtained based on the properties of self-dual functions: 
it is required to redefine the functions to opposite val-
ues on the sets orthogonal over all bits. In total, there 

are 2t r

nC  ways to redefine the function values realized 

at the outputs of the block G(X). Given many ways to 
build the blocks G(X), one can choose the simplest 
implementations while ensuring the testability of CED 
circuit components. In many practical cases, it is pos-
sible to implement the block G(X) simpler than F(X), 
which significantly affects the hardware redundancy 
of CED circuits and allows building less redundant 
self-checking devices compared to duplication with 
improved controllability indicators [23]. Nevertheless, 
for some blocks F(X), it is impossible to build a sim-
pler implementation of this structure than in the case 
of duplication, which is a disadvantage of CED cir-
cuits with correction of all signals from the object un-
der diagnosis [32]. According to studies, under certain 
conditions, the number of outputs of the block G(X) 
can be reduced by using the same functions for the 
correction of different signals from the block F(X). 
This approach works only in particular cases and has 
been underinvestigated so far. However, it can be con-
sidered promising for improving CED circuit design 
algorithms based on the structure in Fig. 4. 

CONCLUSIONS 

Using compositions of two constant-weight codes, 

r/n and (n – r)/n with 1, 2, ...,
2

n
r

  
  

  
 and condition 

(1) allows significantly expanding the number of ways 

to organize controllable and self-checking discrete 
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devices with computation control via two diagnostic 

attributes in comparison with the application of only 

/
2

n
n  codes with even n. Compositions of constant-

weight codes with orthogonal combinations over all 

bits can be separated out for n ≥ 4. With increasing n, 

the number of codewords in such codes grows accord-

ingly, and the number of ways to select exactly two 

constant-weight codes sequentially increases by 1 for 

each even n, starting from n = 4. For n ≥ 8, it is possi-

ble to construct a composition of an even number of 

constant-weight codes with orthogonal combinations 

over all bits. 

In a wide class of compositions of constant-weight 

codes with orthogonal combinations over all bits, an 

appropriate composition can be selected for a given 

number of outputs of the object under diagnosis and 

for a possible separation of groups of outputs with 

their smaller number to organize separate computation 

control subcircuits. The application of compositions of 

constant-weight codes with small n may be of interest 

due to simpler checkers and simpler conditions for 

ensuring their total self-checking property. 

Further research can be connected with developing 

CED circuit design methods based on compositions of 

constant-weight codes with minimization of various 

quality indicators (structural redundancy, controllabil-

ity, power consumption, etc.). Practical applications of 

these codes can be interesting, especially in the areas 

of science and technology with rarely changing input 

data. (Such systems are widespread and include, e.g., 

air defense systems, electrical interlocking systems in 

railway transport, control systems in the nuclear indus-

try, etc.). In these systems, operational diagnosis and 

the readiness of devices are very topical tasks [33, 34]. 

The principles to extract compositions of constant-

weight codes described in this paper, as well as their 

properties, may be in demand when building highly 

reliable discrete systems on modern and promising 

components [35, 36]. 
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