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Abstract. This paper presents an identification method for time-varying objects that involves 

mathematical models with parametric tuning. The deviation of object’s transients and its math-

ematical model are estimated in terms of a quadratic performance criterion; the parametric tun-

ing of the object model is a constrained optimization problem. The parametric optimization al-

gorithm is developed using the vector projection property in a Krein space and the second Lya-

punov method for a targeted change in the model parameters. The method is applied to estimate 

parameters in a tumor cell growth model. The nonlinear model describes the relationship be-

tween the populations of normal, immune, and tumor cells that can be measured in the presence 

of Gaussian white noise. Numerical simulation illustrates the design procedure and shows the 

effectiveness of this method.  

 
Keywords: parametric optimization, identification, cost function, nonlinear differential equations, Lya-

punov method, Wiener–Hopf equation.  
 

 

 

INTRODUCTION  

The theory of control of objects with incomplete 

information about the state, parameters, and interac-

tion with the environment (the class of uncertain ob-

jects) has been developing for over 50 years. Numer-

ous books, articles in peer-reviewed periodicals, and 

papers in the proceedings of various-level scientific 

and practical conferences have been devoted to this 

topic. Nevertheless, there is still a high interest of re-

searchers and engineers in it; for example, see [1–11]. 

This fact is explained by the appearance of more com-

plex uncertain objects of different physical nature and 

tougher requirements for the accuracy and reliability 

of the tasks performed by such objects (on the one 

hand) and by the development of computer means to 

implement complex algorithms, reduce, or eliminate 

the undesirable consequences of uncertainty (on the 

other hand). A separate branch of automatic control is 

the identification of uncertain objects, i.e., the design 

of their mathematical representations with parametric 

tuning. 

For time-varying control systems, analytical design 

methods [12] do not yield implementable solutions of 

identification problems. Therefore, it is reasonable to 

design such systems based on additional loops. These 

loops are used to optimize the system in terms of a 

selected performance criterion during system opera-

tion and the accumulation and processing of necessary 

information [7–11]. The implemented solutions can be 

obtained by means of special algorithmic procedures. 

In this paper, we present an algorithmic design method 

[13] for a time-varying system with incomplete infor-

mation about the parameters and the environment that 

contains a set of algorithms to optimize the system in 

terms of a given performance criterion [14–17]. This 

method is applied to the problem of tumor cell growth 

identification using a mathematical model with tuna-

ble parameters. 

In the general case, the identification of dynamic 

objects consists in determining their structure and 

model parameters from observed data: input and out-

put. Note that the stage of choosing the model struc-

ture is crucial [9, 10]. The appropriateness, applicabil-

ity, and efficiency of the resulting estimate significant-

http://doi.org/10.25728/cs.2023.4.1
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ly depend on the degree of reliability with which the 

mathematical model describes the real situation (ob-

ject, measurements, and exogenous parametric dis-

turbances). In most applications, there is no complete 

and accurate model, and its construction incurs great 

difficulties. Therefore, an estimate on the measured 

characteristics of the process has to be designed under 

incomplete knowledge of the model. The problem gets 

even more complicated when external impacts or (and) 

object’s parameters vary in an uncontrolled way. 

Moreover, determining the state of a stochastic object 

described by nonlinear differential equations from 

measurements of its phase components under disturb-

ances requires implementing the solutions of nonlinear 

differential equations. For example, a nonlinear filter 

cannot be designed with perfect precision; most im-

portantly, estimating the approximation accuracy of a 

suboptimal nonlinear filter is either difficult or even 

impossible.  

In such conditions, one alternative is to design a 

model with tunable parameters. The quality of the re-

sulting solution of the identification problem is as-

sessed using a loss function (an even residual function 

of the object’s outputs) and its mathematical model. 

The method for minimizing a quadratic performance 

criterion used below to tune the object’s model param-

eters corresponds to the widespread least squares pro-

cedure [7, 9, 14–17]. 

The state dependent coefficient (SDC) lineariza-

tion method [9] is often used for practically conven-

ient representation when the object’s model is de-

scribed by an ordinary nonlinear differential equation. 

Different parametric identification problems for-

mulated in spaces with an indefinite metric and differ-

ent deterministic and stochastic criteria can be solved 

within a uniform geometric framework. These are the 

so-called Krein spaces [18, 19]. In identification prob-

lems, parametric optimization algorithms for a nonlin-

ear model are developed using the projection of a line-

ar transformation of the model output and the identifi-

cation error. In this case, tunable model parameters are 

purposefully varied by means of appropriate operators 

(sensitivity functions). They are defined using the cor-

responding Lyapunov function. 

The parametric optimization algorithm is applied 

below to study tumor growth. The mathematical mod-

el of this process is described by a system of ordinary 

differential equations [20, 21]. The mathematical 

model includes the growth of populations of normal, 

immune, and tumor cells separately as well as their 

interpopulation relations. This model has already 

served to construct various chemotherapy protocols 

with completely known model parameters [21, 22], to 

design an extended Kalman filter [23], and to deter-

mine the drug dose under an incomplete set of parame-

ters [20]. 

This paper is organized as follows. Section 1 pro-

vides a general description of the solution of the iden-

tification problem and explains the algorithmic param-

eterization method. Conditions for the successful iden-

tification of a time-varying object by purposeful tun-

ing of its model parameters are established. Section 2 

illustrates mathematical modeling results for the iden-

tification problem of a time-varying system (tumor 

cell growth) based on a model with tunable parame-

ters. The results can be applied to determine the drug 

dose for chemotherapy of a tumor patient.  

1. IDENTIFICATION OF A TIME-VARYING SYSTEM 

1.1.  Problem Statement 

Consider an observable uncertain object described 

by the nonlinear ordinary differential equation  

 

0 0

( ) ( ), ( ), ( ) ,

( ) ,

( ) ( ),

d
x t f x t t w t

dt

x t x

y Cx t n t

 



 

           (1.1) 

with the following notations: nx R  is the state vec-

tor; 
my R  is the vector of state measurements, 

n m ; 
k

R  is the vector of unknown (time-

varying) parameters; finally, 
h

w R  and 
m

n R  are 

noises with the characteristics 

   
T

T

T T
0

T
0

( ) 0, ( ) 0,

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) 0, ( ) ( ) 0,

( ) ( ) 0,

w

n

M w t M n t

M w t w W t

M n t n N t

M n t w t M x t w t

M x t n t

 

      

      

       

   

     (1.2) 

where wW  and nN  are the intensities of the corre-

sponding noises. The rate of change of the unknown 

parameters of the object (1.1) is bounded: 

( )
, const 0

d t

dt


     .            (1.3) 

For the tunable model, we use the equation 

 

0 0

ˆ( ) ( ), ( ) ,

ˆ( ) ,

m

d
x t f y t t

dt

x t x

 


             (1.4) 
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where ˆ( ) n
x t R  is the state estimate vector; k

R , 

( )t  , is the vector of tunable parameters in the 

model, introduced for the parametric identification of 

the original object.  

Assumptions 1.1.  
(A1) The function  ( ), ( ), ( ) :f x t t w t

0 , f
n

t t R 
n

w
k

R W R    is continuous and satisfies 

the constraints    ( ), ( ), ( ) 1 ff x t t w t x R    for 

all   0, , ,, f w
n k

x w t t R R Wt      , where 

0.fR   

The function   0( ), ( ) : ,m f
n

f y t t t t R 
nk

R R   is continuous and satisfies the constraints 

   ˆ( ), ( ) 1 ( )m sf y t t x t R    for all 

  0, ,, f
n k

y a t t R Rt    , where 0sR  . 

(A2) The function  ( ), ( ), ( )f x t t w t  satisfies the 

Lipschitz condition in the variable x: 

   , , , , , 0,f x z w f x w z        for all 

  0, , ,, f w
n k

x w t t R R Wt      , .n
z R  

The function  ( ), ( )mf y t t  satisfies the Lipschitz 

condition in the variable y : 

   , , , 0,m mf y f y v         for all 

  0, ,, f
n k

y a t t R Rt    , 0.sR   

(A3) The function  ( ), ( ), ( )f x t t w t  is smooth 

and continuously differentiable over the set of varia-

bles   as many times as necessary.  

The function  ( ), ( )mf y t t  is smooth and contin-

uously differentiable over the set of variables a  as 

many times as necessary. ♦ 

We write the state mismatch between the object 

(1.1) and its model (1.4) as 

ˆ( ) ( ) ( )t x t x t   .                 (1.5) 

Here, ( ) l
t R   is the state tracking error; 

: n l
R R   and : m l

R R   are the linear operators 

transforming the dimension of the state vector and the 

state estimate vector. 

The identification problem for the object (1.1) is to 

minimize a criterion (cost function) of the form 

 min ( ) ( , )
a А

J M F


                   (1.6) 

by tuning the parameters of the model (1.4). In the 

expression (1.6),  ( , )F     is a scalar nonnegative 

symmetric and (or) quadratic function. 

Assumption 1.2. The tunable parameter domain 

  of the model (1.4) contains the parameters 
k

R  

that solve the identification problem (1.6). ♦ 

 

1.2. Necessary Minimum Conditions for the Cost 

Function 

In view of Assumptions 1.1, the local minimum 

conditions for the criterion (1.6) with respect to the 

variable parameters ( )t  of the object (1.1) and the 

tunable parameters ( )t  of the model (1.4) have the 

form 

 

 2 02

( , )
( ) 0,

( , )
( ) 0,

, 1, ..., .

i j i j

F
J M

F
J M

i j k

    
     

        
     



 (1.7) 

The vector in the first equation of (1.7) represents 

the gradients of the mean losses [6, 9]:  

     
1

( , ) ( , ) ( , )
, ...,

k

F F F             
     

. 

The matrices in the second equation of (1.7) are the 

Hessians describing the gradients of the mean losses. 

Using the necessary conditions for a local minimum, 

we write the parametric optimization algorithm [7, 9, 

14] 

0 0

( ( , ))
( ) Г

( ) ,

,
d F

t M
dt

t

         

  

         (1.8) 

where Г  is a positive definite gain matrix. This ma-

trix affects the convergence of the algorithm and its 

ability to resist disturbances.  

Theorem 1.1.  Under Assumptions 1.1 and 1.2 for 

the model (1.2) and the object (1.1), let the initial 

states of the model and object parameters be given 

and 0 0( ) ( )t t  . Then the algorithm (1.8) asymptoti-

cally optimizes the criterion (1.6) if the rates of 

change of the parameters ( )t  and ( )t , 0 , ft t t , 

are related by 

   

   

1Т

T

( , ) ( , )
( )

( , ) ( , )
.

F Fd
t M

dt

F F
M M


                       

         
        
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P r o o f.  We introduce the Lyapunov function 

   ( , ) ( , )LV J       . 

The criterion (1.6) does not explicitly depend on time. 

Hence, the total derivative of the Lyapunov function is giv-

en by 

     

 

 

( ) ( )
( , ) ( ) ( )

( , )
( )

( , )
( ) 0.

J Jd d d
J t t

dt dt dt

F d
M t

dt

F d
M t

dt

     
      

 

             
             

 

Considering the expression (1.8) and the constraint 

(1.3) on the rate of change of the object’s parameters, it 

follows that 

   ( , ) ( , )
( ) .

F Fd
M t M

dt

          
         

(1.9) 

Multiplying (1.9) on the left by the vector 

  Т
( , ) /M F        and taking (1.3) into account, we 

obtain 

   

   

T

T

( , ) ( , )
( )

( , ) ( , )
.

F F d
M M t

dt

F F
M M

          
       

          
        

 

This nonstrict inequality finally yields the desired as-

ymptotic optimization condition for the criterion (1.6). 

More precisely, it suffices to solve the parametric identifica-

tion problem for the time-varying object (1.1) using the 

model (1.4) and the optimization algorithm (1.8): 

   Т 1

( , ) ( , )
( )

F Fd
t M

dt


                        

 

   T
( , ) ( , )

.
F F

M M
          

        
♦ 

 

1.3 Identification of a Time-Varying Object in a Krein 

Space 

This subsection considers models (1.2) with the 

quadratic performance criterion 

2 2ˆ ˆ( ) ( ) ( ) ( ) ( , )J M t M x t x t J x x       . (1.10) 

As has been mentioned in subsection 1.1, different 

parametric identification problems formulated in spac-

es with an indefinite metric and different deterministic 

and stochastic criteria can be solved within a uniform 

geometric framework. Such spaces include the Krein 

space [18, 19] (K-space). The Krein space is an exten-

sion of the Hilbert space and has its basic properties. 

The  main  difference  is that  a Krein  space  can be 

decomposed into two orthogonal subspaces, 

K K K   , so that K  and K  are Hilbert spaces 

and , 0v z   for any v K  and z K . The projec-

tion , 0v z   for both subspaces exists and is unique 

[18, 19]. We will write this projection property in 

terms of the identification problem under considera-

tion. Let  ( )y t ,  , be a linear operator. Then, 

in the case of the identification problem (1.6), the con-

dition  ( ) ( )y t t    holds for both Krein subspaces. 

In other words,  ( ) , ( ) 0y t t   , and the orthogo-

nal projection can be written as 

    T ˆ( ) ( ) ( ) 0.M y t x t x t      
     (1.11) 

In Krein spaces, this projection exists and is 

unique, i.e., it must hold for any operators  . Ob-

viously, the expression (1.11) is nothing else but the 

Wiener–Hopf equation [9, 23]: 

   



T

0

ˆtr ( ) ( ) ( ) 0,

, , ,f

M y t x t x t

t t t

     

 

 (1.12) 

which is a necessary and sufficient condition for the 

minimum of the criterion (1.10). Since condition 

(1.12) fails for ( ) ( )t t  , it can be applied to organ-

ize the parametric optimization algorithm for the ob-

ject’s model. Let    Tˆ( ) ( ) /y t x t    , where 

ˆ( ) /x t   is the sensitivity function of the process 

ˆ( )x t  to the variation of the model parameters ( )t . 

Then the parametric optimization algorithm for the 

model (1.4) has the form  

 
T

0 0

ˆ( ) ˆ( ) ( ) ( ) ,

( ) .

d x t
t M x t x t

dt

t

        
   

  

(1.13) 

However, for the object (1.1) and its model (1.4) 

with parametric tuning, this condition cannot generally 

serve for parametric optimization. Consider an exam-

ple illustrating this fact.  
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With a slight simplification, condition (1.11) re-

duces to 

  T

T T T T

( ) , ( ) tr ( ) ( )

ˆ ˆ ˆtr ( ) ( ) tr ( ) ( ) .

y t t MC x t x t

MC x t x t C M n t x t C

     

       

(1.14) 

Here, 

Tˆ ˆ( ) ( ) ( ), tr ( ) ( ) 0x t t x t M t x t        

due to the problem statement and condition (1.12). 

The second term in equation (1.14) is  

0

0

T T
0

T

T

ˆ ˆtr ( ) ( ) tr ( ) ( )

( ( ) ( ), ( )) ( )

tr ( ( ) ( ), ( )) ( ) .

t

t

t

t

M x t n t M x t n t

f Cx n n t d

M f Cx n n t d

    

      

           





 

Therefore, for ( ) ( )t t  , the value of (1.14) depends 

on the (generally unknown) intensity nN  of the white 

noise ( )n t  in the measurements ( )y t . To eliminate 

this dependence, in view of 

T( ) ( ) ( )nM n t n N t       , we introduce into (1.12) a 

linear operator such that 

   * ( ) ( ) ,y t y t        . 

According to the problem statement,

Ttr ( ) ( ) 0;M n t n t      as a result, 

   T* ˆtr ( ) ( ) ( ) 0M y t x t x t      . 

This condition is necessary and sufficient for the min-

imum of the criterion *( )J   T ( ) ( )M t t      . 

Note that the criteria ( )J   and *( )J   achieve min-

imum for the same relationship of the parameters of 

the object (1.1) and its model (1.5), i.e., under the 

condition ( ) ( )t t  . 

Based on these considerations, the parametric op-

timization algorithm of the model (1.5) for solving the 

identification problem takes the form 

 

T

0 0

ˆ(( )
( )

ˆ( ) ( ) , , ( ) .

d x t
t M

dt

x t x t t

         

         

    (1.15) 

2. RESULTS OF MATHEMATICAL MODELING 

To demonstrate the effectiveness of this parametric 

optimization method, we consider the nonlinear tumor 

growth model [20, 21] as the object (1.1). The model 

consists of three components: the number of normal 

cells (N), the number of tumor cells (T), and the num-

ber of immune cells (I). The nonlinear system of equa-

tions has the form 

2 2 4

1 1 2 3

1 1

(1 ) ,

(1 ) ,

,

N

T

I

d
N r N b N c NT w

dt

d
T r T b T c IT c TN w

dt

d IT
I s c IT d I w

dt T

   

    


    

 

   (2.1) 

where ( ), ( ),N t T t  and ( )I t  denote the normalized 

population sizes of normal, tumor, and immune cells, 

respectively. (Immune cells include lymphocytes, etc.) 

The model parameters are described in Table 2.1. 

The growth dynamics of normal cells and tumor 

cells with the density-dependent mechanism are influ-

enced by the effects of overpopulation and resource 

limitation. The populations of normal cells and tumor 

cells are described using the logistic growth function; 

see the first terms of the equations for N and T. Its dis-

advantage is the a priori knowledge of the limiting 

population size (the parameters 11 b  and 21 b , each 

interpreted as the potential capacity of the population 

predetermined by the available amount of resources). 

Tumor cells and normal cells are assumed to propa-

gate with constant specific rates 1r  and 2r , respective-

ly. The tumor growth rate is restricted due to the de-

struction of malignant cells by killer lymphocytes 

(immune cells; see the term 2 ( ) ( )c T t I t ). In addition, 

the lymphocyte dynamics equation contains the term 

 ( ) ( ) / ( )T t I t T t    describing their propagation, 

where   is the growth rate of lymphocytes under their 

maximum stimulation and the parameter   character-

izes tumor antigenicity (immune response provoca-

tion). Within this model, tumor stimulates the prolifer-

ation (increased growth) of lymphocytes when the 

value T  is small and suppresses it otherwise. The oth-

er two terms in the second equation correspond to the 

natural death of lymphocytes (the term 1 ( )d I t ) and the 

constant afflux of lymphocytes from stem cells (the 

parameter s in the third equation) [23]. The death of 
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lymphocytes during interaction with tumor cells is not 

considered explicitly since one lymphocyte can kill 

several tumor cells.  

The nonlinear system has several equilibria 

( , , )E E EN T I  depending on the parameters described 

above. They are determined by the intersections of 

planes satisfying the equations 

2 4

2 2

1 2 3

1 1

1 1

0,

0
,

0,

0
,

( )
0 .

( )( )

E

E
E

E

E E
E

E
E

E E E

N
dN

r c T
Ndt

r b

T
dT

r c I c N
Tdt

r b

s TdI
I

dt T d c T T


   


    

 
  

   

    (2.2) 

Depending on the parameter values, the model 

(2.1) can have one, two, or three equilibria. The stabil-

ity of equilibria (2.2) also depends on the parameter 

values. To analyze stability, it is necessary to linearize 

the system in the neighborhood of a given equilibrium 

and examine the eigenvalues of the system matrix. 

The tumor-free state (no tumor cells) is determined 

by the relations 1, 0,E EN T   and 1/EI s d ; the 

lifeless state (abiosis, no normal cells) is determined 

by the ratios 0, 0,E EN T   and 1/EI s d , or by 

the relations 

1 2

1 1

1 1

0, ,

( )
.

( )( )

E
E E

E
E

E E E

r c I
N T

rb

s T
I

T d c T T


 

 


   

 

Note that one lifeless equilibrium, ( 10, 0, /s d ), is 

always unstable and depends on the values of the cor-

responding parameters. The second lifeless equilibri-

um can be stable or unstable. Selecting the parameter 

values  according  to  Table 2.1,  we obtain  the  model 

(2.1) with 4 equilibria: 3 unstable (2 lifeless equilibria, 

1 tumor-free equilibrium) and 1 stable equilibrium 

(coexistence).  

We rewrite system (2.1) by shifting the tumor-free 

equilibrium to the origin of coordinates [23]: 

1 2 2 3 11/ , , /x N b x T x I s d     . 

 

Table 2.1  

Model parameters and their variation ranges 

Parameter Description Value Constraints 

1b  Tumor cell population capacity 1.0 1 1
1 2b b
   

2b  Normal cell population capacity 1.0 - 

1c  The destruction rate of immune cells by tumor cells 1.0 1 0c   

2c  The destruction rate of tumor cells by immune cells 0.5 2 0c   

3c  The destruction rate of tumor cells by normal cells  1.0 3 0c   

4c  The destruction rate of normal cells by tumor cells  1.0 4 0c   

1d  The natural death rate of immune cells 0.2 - 

1r  The growth rate of tumor сells 1.5 ,
2

1 2 1 3
1

sc
r r r c

d
    

2r  
The growth rate of normal  

Cells 
1.0 - 

s  The afflux of lymphocytes from stem cells 0.33 0 0.5s   

α Tumor antigenicity 0.3 α 0  

ρ The growth rate of lymphocytes under maximum stimulation 0.01 0 ρ 2   
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In the new coordinates, system (2.1) takes the form 

 

1 4
2 1 2 1 2 4 1 2 1

2

32 2
1 2 1 2 2 3 1 2

1 2

2 2 3 2

3 2 2
2 1 3

1 1 2

2 3
2 2 3 3

2

(1 ) ,

1

,

( )

,

ˆ( ) ( ) ( ) ( ),

dx c
r x b x x c x x w

dt b

cdx sc
r x b x x c x x

dt d b

c x x w

dx c s xs
x d x

dt d d x

x x
c x x w

x

y t x t x t n t

     

 
     

 

 

    
 

  
 

  
 

where  T1 2 3, ,x x x x  is the state vector of the sys-

tem. The parameter values of this model were given in 

many publications; for example, see [23]. Table 2.2 

shows the values of the unknown process parameters 

to be identified (they are set in bold). 
 

Table 2.2 

Parameter values for the object and its model 

P
ar

am
et

er
 

V
al

u
e 

fo
r 

m
o
d

el
 

V
al

u
e 

fo
r 

o
b

je
ct

 

P
ar

am
et

er
 

V
al

u
e 

fo
r 

m
o
d

el
 

V
al

u
e 

fo
r 

o
b

je
ct

 

b1 1.0 1.0 d1 0.2 0.2 

b2 1.0 1.0 r1 1.7 1.5 

c1 1.0 1.1 r2 1.0 1.3 

c2 0.45 0.58 S 0.3 0.3 

c3 0.9 1.0 Α 0.3 0.3 

c4 1.0 1.0 ρ 0.01 0.06 

 

The system of equations for estimating the state 

vector (the tracking model for the object) has a similar 

form [24, 25]: 

22 4

1 1 2 3

1 1

ˆ ( ) ˆ ˆ ˆ ˆ( ) 1 ( ) ( ) ( ),

ˆ( ) ˆ ˆ ˆ ˆ ˆ ˆ( ) 1 ( ) ( ) ( ) ( ) ( ),

ˆ ˆ ˆ( ) ( ) ( ) ˆ ˆ ˆ( ) ( ) ( ),ˆ( )

dN t
r N t b N t c T t N t

dt

dT t
rT t b T t c T t I t c T t N t

dt

dI t T t I t
s d I t c T t I t

dt T t

    

     


   

 

 

where ˆ ˆ ˆ( ), ( ), and ( )N t T t I t  are the estimated popula-

tion sizes of normal, tumor, and immune cells, respec-

tively. (Note that all or some parameter values may 

differ from (2.1).) With 1 2
ˆˆ 1x N b  ,  2

ˆˆ ,x T and 

3 1
ˆx̂ I s d  , the model is pre-transformed as fol-

lows: 

 

1 4
2 1 2 1 2 4 1 2

2

32 2
1 2 1 2 2

1 2

3 1 2 2 2 3

3 2 2
2 1 3

21 1

2 3
1 2 3

2

ˆ
ˆ ˆ ˆ ˆ ˆ(1 ) ,

ˆ
ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ,

ˆ ˆ
ˆ ˆ

ˆ( )

ˆ ˆ
ˆ ˆ .

ˆ

dx c
r x b x x c x x

dt b

cdx sc
r x b x x

dt d b

c x x c x x

dx c s xs
x d x

dt xd d

x x
c x x

x

    

 
    

 

 

    
 

 
 

     (2.3) 

According to the SDC linearization method [9], 

equations (2.3) are represented in the vector form 

 

ˆ ˆ ˆ( ) ( ( ), ( )) ( ) ( ) ( ),

ˆ ˆ(0) (0)

d
x t A x t t x t k t t

dt

x M x

     


 

with the matrix 

 ˆ( ), ( )A x t a t  

 

4
2 2 1 4 1

2

32
3 2 1 1 2 2 2

1 2

32 2
1 3 1

2 21 1

ˆ ˆ(1 ) 0

ˆ ˆ ˆ1 .

ˆˆ
ˆ0

ˆ ˆ( )

c
r b x c x

b

csc
c x r b x c x

d b

xc s xs
c x d

x xd d

     
 
  
       
  
 
              

We apply the parametric identification procedure 

based on the algorithm (1.15) with the vector 

 T1 2 3 1 2( ) ( ) ( ) ( ) ( ) ( )t с t с t с t r t r t  . 

Figures 2.1 and 2.2 show the 3D graphs of the per-

formance criterion (1.10) under different values of the 

estimated parameters.  

For this system, the algorithm (1.15) takes the form 

T

T

0 0 0 0

ˆ( )
( ) ( ) ,

ˆ( )
( ) ( ) , ,

( ) , ( ) ,

d x t
t M t

dt

d x t
k t M t

dt k

t k t k

            

           
   

   

 

where  T1 2 3 1 2( ) ( ) ( ) ( ) ( ) ( )t с t с t с t r t r t  . 
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Fig. 2.1. The 3D graph of the criterion depending on the parameter 
estimates 1c  and 2c  under fixed values of the parameters 1r  and 2r   

( 1 2= 1.1, = 0.58c c ). 

 

 
 

Fig. 2.2. The 3D graph of the criterion depending on the parameter 
estimates 1r  and 2r  under fixed values of the parameters 1c  and 2c   

( 1 2= 1.5, = 1.3r r ). 

 

The sensitivity functions 
T T

5 3 3 3ˆ ˆ( ) ( )
,a

x t x t
R R

k

                
  are calcu-

lated by the formulas 

 

 

T

T T

ˆ( ( ), ( )) ˆ( )

ˆ( ( ), ( )) ( ) , 1,...5,

ˆ( ( ), ( )) ˆ( )

( )ˆ( ( ), ( )) ( ) ( ),

1,...,3.

( )

ˆ( )

( )

ˆ( )

j

j

j

l l

l
l

d A x t t
x t

dt

A x t t k t C j

d A x t t
x t

dt k

k t
A x t t k t C t

k k

l

t

x t

t

x t

 
 



        

 
 



    
           



 

Figure 2.3 shows the graphs of tunable model pa-

rameters under given values of the object parameters 

(see Table 2.2). 

 

 

 
Fig. 2.3. The graphs of tunable model parameters 

 T1 2 3 1 2( ) ( ) ( ) ( ) ( )с t с t с t r t r t . 

 

The main operation of the identification algorithm 

falls on a time interval equal to the duration of the 

state transients; see Fig. 2.4. 

 
 

 
 

(a) 

 

(b) 

 
(c) 

 
Fig. 2.4. Operation of the identification algorithm and state transients: 
(a) state parameters, (b) parameter estimates, and (c) estimation errors. 
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CONCLUSIONS 

This paper has presented an identification method 

for a time-varying using a parametric optimization 

model. The problem has been considered in a Krein 

space, and the projection property of a linear transfor-

mation of the model output and identification error has 

been applied to develop the parametric optimization 

algorithm. A condition has been established for the 

successful tracking of the time-varying parameters of 

the object by the model parameters with this algo-

rithm. The effectiveness of identification has been ex-

perimentally verified on a mathematical model of tu-

mor cell growth. 

Note that this parametric optimization algorithm of 

a nonlinear system in the identification problem can be 

used in control problems for uncertain objects of dif-

ferent  nature, e.g.,  electrical  and  mechanical engi-

neering systems, mobile objects, and non-technical 

systems arising in biology, medicine, chemistry, phys-

ics, economics, and many fields of science. 
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Abstract. Based on VKontakte data, we study the influence of various factors on the dynamics of 

opinions and actions both at the macro level (“public opinion”) and at the micro level (opinions 
and actions of individual agents). This paper concludes the multi-part study. Identification results 

are presented for binary models (threshold models and models with latent variables) that describe 

the dynamics of agents’ opinions and actions in a social network. These models are used to esti-
mate the influence of various factors on agents’ opinions and actions (public opinion, the agent’s 
individual opinions and actions, the opinions and actions of the social environment, and the 

mechanisms of the agent’s trust in information sources and information content). Finally, linear 

models are compared with threshold models and qualitative findings of the multi-part study are 

drawn. 
 

Keywords: social network, agent, opinion, action, social influence, cognitive dissonance, trust in infor-

mation. 
 

 

 

INTRODUCTION  

In part I of this study [1], primary analysis results 

were presented for the joint dynamics of opinions and 

actions
1
 of agents on the example of their attitude to-

ward wearing medical masks in the VKontakte online 

social network during the first year of the COVID-19 

pandemic (the period from March 2020 to February 

2021 inclusive). In part II of this study [2], the results 

were used to identify formal linear models of the joint 

dynamics of opinions and actions, and the following 

questions were partially answered: 

1) How consistent are the opinions and actions of 

agents with each other? 

2) Do agents change their opinions and actions 

over time?  

3) Who are these (opinion- and action-changing) 

agents? Do they differ from others in their socio-

demographic characteristics? 

                                                           
1 An opinion was conventionally interpreted as the “tone” of an 
agent’s comment, as assessed by an automatic classifier; an action 

was conventionally interpreted as the tone of a comment with an 

agent’s like. 

4) Which models better describe the dynamics of 

the opinions and actions of agents (linear, threshold, 

etc.)? 

5) Are the influence of actions on opinions (cog-

nitive dissonance) and the converse effect significant? 

6) Under which factors do the opinions and ac-

tions of agents change? Among such factors, we con-

sidered:  

 the agent’s previous opinions or (and) actions; 

 social influence: 

– public opinion (the averaged shares of cer-

tain opinions and actions of the entire social net-

work, i.e., the so-called macro model, where the 

network is conventionally treated as one agent); 

– the opinions or (and) actions of the agent’s 
environment (the agents with the friendship rela-

tion to a given agent), i.e., the averaged and (or) 

individual ones (the so-called micro model); 

 some unobservable (latent) characteristics of 

the agent. 

7) Does an agent’s change in the opinion (action) 

depend on his trust in the source of information? Does 

it depend on the content of that information? 

http://doi.org/10.25728/cs.2023.4.2
mailto:dmitry.a.g@gmail.com
mailto:novikov@ipu.ru
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This paper will answer Questions nos. 4–7 based 

on binary models. The presentation is organized as 

follows. Section 1 briefly considers key factors for the 

analysis and modeling of network interactions. In Sec-

tion 2, we present identification results for binary mi-

cro models of the joint dynamics of opinions and ac-

tions. Qualitative findings of the multi-part study and 

promising lines of further research are given in the 

Conclusions. 

 

1. AN OUTLINE OF KEY FACTORS TO MODEL AND 

ANALYZE NETWORK INTERACTIONS 

Recall the formalization of the factors necessary to 

analyze and identify the models of the joint dynamics 

of opinions and actions; for details, see the papers [3, 

4]. Let the network participants be agents from a set  

N = {1, 2, ..., n}. They commit some acts
2
 from a 

fixed set K = {1, 2, ..., k} at certain time instants t of 

an interval T. Our considerations are restricted to the 

following types of acts (K = {1, 2}): 

– publishing a comment on a post or another com-

ment, 

– liking a comment. 

We denote by Δ the set of acts.3 Each act a  Δ is 
described by three parameters: the agent who commit-

ted it, the type of the act, and the time instant when it 

was committed. We introduce the following functions 

to characterize acts:  

 fa: Δ → N, associating with each act a  Δ the 
agent i  N who committed it; 

 ft: Δ → T, associating with each act a  Δ the 
time instant t  T when it was committed; 

 fk: Δ → K, associating with each act a  Δ its 
type j  K. 

On the set of acts, we define a binary partial-order 

relation of the form “a causes b”: a b. If a b, 

a  b, and there does not exist c  Δ such that a c 

and c b, then a is the direct cause of b: a ↓ b. The 

binary relation a b is supposed to hold in the follow-

ing cases: 

 a is a comment and b is a like to it. 

 a is a comment and b is a comment on it. 

 a and b coincide. 

For each agent i  N, we define the set of all his 

acts ( )δ { Δ | }i aa f a i    and the set of his friends 

Ni ⊆ N. (The formal “friendship” relation in an online 

                                                           
2 The term “action” used in [4] is replaced here by “act” to avoid 
confusion with actions in models of the joint dynamics of opinions 

and actions. 
3 The set of relevant comments on wearing medical masks (see 
Section 2) and their likes. 

social network implies that an agent can receive in-

formation about the comments posted by his friends, 

the likes they give, etc.). 

Opinions and actions. When modeling the joint 

dynamics of opinions and actions, we conventionally 

interpret the agent’s opinion as his attitude to wearing 

medical masks, expressed in a comment. The agent’s 
opinion in a comment Δb  (fk(b) = 1) is formally 

defined in three ways as follows: 

  ' 0, 1,  2r  , where the classification results 0, 

1, and 2 correspond to “against masks” (or “–”), “for 
masks” (or “+”), and “neutral/irrelevant” (or “=”). 
This result is determined using the stochastic vector  

 ,  , p p p    
calculated by the classifier. 

  '' 0, 1
   

p
r

p p



 

 


, the confidence that the 

comment reflects the “for masks” opinion. Note that 
r' = 0 or r' = 1 for this comment. 

     
1, 1

   

p p
r

p p

 

 


  


, where r = 1 and r = –1 in-

dicate strong confidence in expressing the “for masks” 
and “against masks” opinions, respectively. Note that 
either r' = 0 or r' = 1 for this comment.  

Let a like to some comment be an action as well; 

its assessment coincides with that of the corresponding 

comment liked:  ' 0, 1, 2y  ,  '' 0,1y  , and

[ 1,1]y  . For example, for a like Δa , 

'( ) '( )y a r b , where b is the corresponding comment 

liked (i.e., b a ). To simplify further notations, we 

adopt the conventions ( ) '( )r a y a , ( ) ''( )r a y a , 

and ( ) ( )r а y а . Assume that the instant of liking co-

incides with the instant of publishing the correspond-

ing comment liked.  

2. BINARY MODELS OF JOINT DYNAMICS OF OPINIONS 

AND ACTIONS 

The basic model in this study is the mathematical 
model of the joint dynamics of agents’ opinions and 
actions proposed in [5]. This model became a founda-
tion for building simpler and identifiable models, such 
as linear models [2]. Linear and binary micro models 
consider the dynamics of the opinions and actions of 

agent i N  committing “for” and “against” acts dur-

ing a time interval τ: 
         δ |  τ,  ' 0, 1i i ta f a r a

       is the 

set of his acts, 

       ,1 |  1i i ka f a
        is the set of his 

comments, and 
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       ,2 |  2i i ka f a
        is the set of his 

likes. 

Agent i  is subjected to the following factors: 

 The influence of the entire network, given by  

o  
 

       

         Δ | 1, 0, 1
1, 1 ,

{ Δ | 1, 0,1  }
ka f a r a

i

k

r a

r
a f a r a

   


   
  


 

o          

         Δ | 2, 0, 1

( )

1, 1 .
{ Δ | 2,  0, 1 }

ka f a r a

i

k

r a

y
a f a r a

   
    

   


 

The network influence is mass or background for the 

agent: all opinions and actions of the network are consid-

ered regardless of the agent’s knowledge of them. 
 The influence of the agent’s own actions and 

opinions on himself, given by 

o    

 
,1

,1

( )

ia

i

i

r a

r
 


 

 


, 

o    

 
,2

,2

( )

.
ia

i

i

r a

y
 


 

 


 

 The indirect influence of friends on the agent’s 
opinion (action) h    1,1  , given by 

o  
 

    
 

 
,1

,1,  ,1

,  

,
j

i

i j

i

a

N ij

j N j

E h r a r a

r e




 


   

 
 


  

o  
 

    
 

 
,2

,2

,  ,2

,  

,
i

i j

i

a
j

N ij

j N j

E h r a r a

y e


 


   

 
 


  

where 𝑒𝑖𝑗 ∈ [0, 1] is the trust of agent i in his friend j, 

1,

i

ij

j N

e


  and iE  denotes the information trust func-

tion of agent i (his trust in the information content 

with the range [0, 1]). Here, the influence on the 

agent’s opinion (or action) is estimated at the begin-

ning of the interval  .  

As a result, the change in the opinion of agent 

i N  between successive time instants (m – 1) and m 

(on the time interval  1,m mt t  ) is determined by 

the influence of the entire network (  1m
i ir r


   , 

 1m
i iy y


   ), the influence of the agent’s own ac-

tions (  1 τm
i iy y
  ), and the influence of his friends 

(  1 τ
i i

m
N Nr r
  ,  1 τ

i i

m
N Ny y
  ). In turn, the change in 

the action of agent i N  between successive time 

instants (l – 1) and l (on the time interval  1,τ l lt t ) 

is determined by the influence of the entire network 

  1 τl
i ir r


  ,  1 τl
i iy y

  ), the influence of the 

agent’s own opinions (  1 τl
i ir r
  ), and the influence 

of his friends   1 τ
i i

l
N Nr r
  ,  1 τ

i i

l
N Ny y
  ). The cor-

responding binary micro models of the joint dynamics 

of opinions and actions will be built for significant 

agents.
4
 

 

2.1. Threshold Models 

Besides the linear models, the second “classical” 
approach to describing the dynamics of collective be-

havior involves threshold micro models. In such mod-

els, an agent performs a certain action or agrees with a 

certain opinion only when social pressure is higher 

(lower) than his individual threshold [6–13]. Thresh-

old models reflect the effects known in social psy-

chology, according to which an individual’s inclina-

tion to conformity threshold behavior is a predictor of 

his decisions.  

Assume that agents in a social network are either 

conformists or anti-conformists undergoing social 

pressure u ∈ [–1, 1]. Conventionally, conformists suc-

cumb to the pressure, while anti-conformists express 

opinions and perform actions opposite to the pressure. 

The following threshold model is a special case of the 

basic model:  

– For a conformist, the opinion is given by 

1
,1

1
,1

1,    θ

–1,    ,θ

m
i im

i m
i i

u
r

u







  


                   (1) 

where 1, 2m , and  ,1θ 1, 1i     denotes his 

individual opinion threshold; the action is given by 

1
,2

1
,2

1,   

–1, ,   

l
i il

i l
i i

u
y

u






   
 

                      (2) 

where 1, 2l  ,  and  ,2θ 1, 1i     denotes his 

individual action threshold. 

                                                           
4 The agents who showed the minimum network activity required 

for modeling. The criteria for selecting significant agents were 
described in part I of the study [1]. 
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– For an anti-conformist, the opinion is given by 

1
,1

1
,1

1,    θ

1,    θ ,

m
i im

i m
i i

u
r

u







  


                     (3) 

where 1, 2m , and  ,1θ 1, 1i     denotes his 

individual opinion threshold; the action is given by 

1
,2

1
,2

1,   
,

1,    θ

l
i il

i l
i i

u
y

u






   


                      (4) 

where 1, 2l  ,  and  ,2θ 1, 1i     denotes his 

individual action threshold. 

The quality of models (1)–(4) will be assessed us-

ing the balanced accuracy measure [14] 

1

2

TP TN

TP FN TN FP

    
                (5) 

with the following notations: TP  is the number of 

agent’s “for” opinions correctly determined by the 
model; FN  is the number of agent’s “for” opinions 
incorrectly determined by the model; TN  is the num-

ber of agent’s “against” opinions correctly determined 

by the model; finally, FP  is the number of agent’s 
“against” opinions incorrectly determined by the mod-

el. (This measure takes into account the imbalance of 

opinions expressed by agents; as a rule, one opinion 

prevails for an agent.) 

Consider several threshold micro models in as-

cending order of their complexity: 

(I) micro models where changes in opinions and 

actions are due to the influence of the network; 

(II) unified micro models, which include the influ-

ence of the network and friends; 

(III) personalized micro models (besides the influ-

ence of the network and friends, the agents’ trust func-

tions reflect their individual characteristics). 

(I) Threshold micro models with network influ-

ence 

In these models, the agent’s opinion (action) at the 

current time instant depends on the background influ-

ence of the entire network at the previous time instant 

and his individual threshold. We define the influence 

of the network in two ways as follows: 

 1 1m m
i iu r
 

  ;  

 1 1m m
i iu y
 

  . 

In addition, consider the case of two (lower and 

upper) thresholds:  ̌i,  ̂i ∈ [–1, 1 +  ], where  ̌i    ̂i. 

The opinion of a conformist at a time instant m is giv-

en by (cf. formula (1)) 

 i  {  
  1,   u–i –1    ̂i,1

–1,   u–i –1    ̌i,1

 i
 –1,   u–i –1 ∈ [ ̌i,1,  ̂i,1).           (6) 

The opinion of an anti-conformist is given by (cf. 

formula (3)) 

 i  {  
  –1,   u–i –1    ̂i,1

1,   u–i –1    ̌i,1

 i
 –1,   u–i –1 ∈ [ ̌i,1,  ̂i,1).            (7) 

The dynamics of actions are defined by analogy. 

Possible modifications of opinion dynamics models 

and the results of their parameter identification are 

presented in Tables 1 and 2, respectively. 

The following conclusions can be drawn from Ta-

bles 1 and 2: 

– On average, the quality of models (6) and (7) is 

satisfactory. 

– Considering both conformists and anti-

conformists significantly improves the average quality 

of the threshold models. 

– Introducing two thresholds leads to a smaller 

quality gain. 

 

Table 1 

Identification results for threshold models of opinion 

dynamics 

Types of 

agents 

Type of 

influence 
One threshold 

Two       

thresholds 

C
o

n
fo

rm
is

ts
 Network 

opinions 

Quality 0.73 

(median 0.71) 

Quality 0.79 

(median 0.78) 

Network 

actions 

Quality 0.72 

(median 0.68) 

Quality 0.78 

(median 0.77) 

C
o

n
fo

rm
is

ts
  

an
d

  

an
ti

-c
o

n
fo

rm
is

ts
 

Network 

opinions 

Quality 0.83 

(median 0.83) 

Quality 0.86 

(median 0.87) 

Network 

actions 

Quality 0.83 

(median 0.82) 

Quality 0.86 

(median 0.88) 
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Table 2 

Identification results of threshold models of action 

dynamics 

Types of 

agents 

Type of 

influence 
One threshold 

Two       

thresholds 

C
o

n
fo

rm
is

ts
 Network 

opinions 

Quality 0.73 

(median 0.69) 

Quality 0.76 

(median 0.73) 

Network 

actions 

Quality 0.71 

(median 0.70) 

Quality 0.75 

(median 0.73) 

C
o

n
fo

rm
is

ts
  

an
d

  

an
ti

-c
o

n
fo

rm
is

ts
 

Network 

opinions 

Quality 0.78 

(median 0.75) 

Quality 0.81 

(median 0.8) 

Network 

actions 

Quality 0.76 

(median 0.75) 

Quality 0.80 

(median 0.78) 

 

(II) Unified threshold micro models 
In such models, we estimate the change in the 

agent’s opinions and actions depending on the influ-

ence of his friends:  

 1 1

i

m m
i Nu r
 

  ;  

 1 1

i

m m
i Nu y
 

  .  

Each agent does not “distinguish” between friends 
(treating friends as one meta-agent) and trusts the in-

formation source regardless of its content. 

Unexpectedly, considering only the influence of 

friends deteriorates quality compared to the models 

with macro variables (Table 3). 

 
Table 3 

Identification results for dynamic models 

Types 

of 

agents 

Type of 

influence 

Models of opin-

ion dynamics 

Models of ac-

tion dynamics 

C
o

n
fo

rm
is

ts
  

an
d

 a
n

ti
-c

o
n

fo
rm

is
ts

 

Opinions 

of friends 

Quality 0.66  

(median 0.61) 

Quality 0.66  

(median 0.62) 

Actions 

of friends 

Quality 0.70  

(median 0.67) 

Quality 0.68  

(median 0.65) 

 

(III) Personalized threshold micro models 
In personalized models, the best configuration of 

hyperparameters is chosen for each agent: the types of 

his trust functions for information and friends. 

Like in part II [2], we consider the following 

common types of information trust functions E(∙): 

 ,CE h g  (simpletons),  ,E h g

  (conservatives), and 

 ,E h g

  (innovators). As a common type of the 

friend trust function e(∙), we consider a “non-

differentiating” function (the agent treats his friends as 
one meta-agent) and functions where the trust in a 

friend is proportional to: 

– unity; 

– the number of friends of this friend; 

– the number of friends shared with this friend; 

– unity if this friend is active (i.e., has an opinion 

or commits acts); 

– the number of friends of this friend if he is active; 

– the number of friends shared with this friend if he 

is active; 

– the friend’s activity by comments; 
– the friend’s activity by likes or his popularity. 
The personalized description of friends’ influence 

improves quality on average (Table 4) but still does 

not surpass the quality of models with macro variables 

(i.e., the models with network influence). 

 
Table 4 

Identification results for dynamic models 

Types 

of 

agents 

Type of 

influence 

Models of opin-

ion dynamics 

Models of ac-

tion dynamics 

C
o

n
fo

rm
is

ts
  

an
d

  

an
ti

-c
o

n
fo

rm
is

ts
 

Opinions 

of friends 

Quality 0.69  

(median 0.62) 

Quality 0.72  

(median 0.68) 

Actions 

of friends 

Quality 0.75  

(median 0.70) 

Quality 0.76  

(median 0.75) 

 

The preferable type of the information trust func-

tion. Consider the models with the influence of 

friends' opinions. As it turns out, for the majority of 

agents, the type of the information trust function is not 

important. “Pure” innovators form 12% of the agents 
(the models of opinion dynamics) and 27% of the 

agents (the models of action dynamics). Pure con-

servatives constitute 4% of the agents (the models of 

opinion dynamics) and 10% of the agents (the models 

of action dynamics). Note that there are no pure sim-

pletons (Fig. 1). 

Consider the models with the influence of friends’ 
actions. In these models, the type of the information 

trust function does not matter for 44% of the agents 

(the models of opinion dynamics) and for 39% of the 

agents  (the  models  of action  dynamics);  see  Fig. 2. 
 



 

 
 

 

 

 

 ● 

 

  
  (a)                                                                 (b) 

  

 
Fig. 1. The Euler–Venn diagram of preferability of information trust functions with the influence of friends’ opinions: (a) the models of opinion 

dynamics and (b) the models of action dynamics.  

 

 
 

 
  (a)                                                                (b) 

 

 
Fig. 2. The Euler–Venn diagram of preferability of information trust functions with the influence of friends’ actions: (a) the models of opinion dynamics 

and (b) the models of action dynamics. 

 

“Pure” innovators form 14% of the agents (the models 

of opinion dynamics) and 26% of the agents (the mod-

els of action dynamics). Pure conservatives constitute 

10% of the agents (the models of opinion dynamics) 

and 24% of the agents (the models of action dynam-

ics). Pure simpletons are absent as well. 

The preferable type of the friend trust function. In 

general, the type of the friend trust function is not im-

portant for agents. Also, for a significant share of the 

agents, trusting friends as a meta-agent or trusting 

them separately with the same level give identical 

quality results (Figs. 3 and 4). 



 

 
 

 

 
 

 ●

 

 
                                              (a)                                                                                  (b) 

 

 
Fig. 3. The Euler–Venn diagram of preferability of friend trust functions with the influence of friends’ opinions: (a) the models of opinion dynamics and 

(b) the models of action dynamics. 

 

 
 

 
 (a)                                                                (b) 

 

 
Fig. 4. The Euler–Venn diagram of preferability of friend trust functions with the influence of friends’ actions: (a) the models of opinion dynamics and 

(b) the models of action dynamics. 

 
2.2. Comparison of Linear and Threshold Models 

To answer Question no. 4 (linear vs. threshold models, 

see the Introduction), it is necessary to use the same 

quality criterion. Threshold models consider discrete 

opinions (actions) agents; therefore, the forecasting 

results in linear models have to be preliminarily dis-

cretized in order to calculate the quality (5). Assume 

that if the forecast is greater than 0, its discrete value 

is 1; otherwise, –1. 

Table 5 presents the average quality of the linear 

and threshold models (over the set of agents). 
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Table 5 

Quality comparison: linear vs. threshold models 

Class of 

models 
Type of models 

Quality of models 

Opinion 

dynamics 

Action 

dynamics 

Linear 

models 

Network influence 0.62 0.58 

Unified 0.70 0.62 

Personalized 0.80 0.77 

Threshold 

models 

Network influence 0.78 0.76 

Unified 0.70 0.68 

Personalized 0.75 0.76 

 

Note. Table 5 presents the best results of the 

threshold models. For example, if the unified models 

with the influence of friends’ actions demonstrate 
higher results than those with the influence of friends’ 
opinions, then only the former results are given there-

in. 

We emphasize in contrast to the linear models with 

the complete set of explanatory variables, the thresh-

old models use only one of the following explanatory 

variables: network actions, network opinions, friends’ 
actions, or friends’ opinions. Despite this peculiarity, 
the threshold models have comparable quality (in the 

case of threshold models with network influence, even 

a significantly higher quality). 

 

2.3. Models with Hidden States and Observed Actions 

An alternative to the approach above (the separa-

tion of opinions (comments) and actions (likes)) is the 

introduction of hidden variables (opinions) and their 

identification by observed “actions” (comments and 
likes) within hidden Markov models, Bayesian net-

works, etc. For example, see the papers [15, 16]. 

Consider a model with the agent’s state as a hidden 

(latent) variable taking a value  t ∈ [0, 1] at a time in-

stant t. Suppose that the state is not directly observable 

but determines the agent’s observed binary “actions” 
xt ∈ {0; 1} (the tones of his comments and the com-

ments liked by him) in the following probabilistic 

way: at each time instant when the agent performs 

such an action, this action is independently equal to 1 

(unit action, “for” wearing masks) with a probability  t 

and to 0 with the probability (1 –  t) (zero action, 

“against” wearing masks). In other words, the action is 
a random variable described by the Bernoulli distribu-

tion with the density 

  1, (1 ) .x x
p x

                          (8) 

Given the vector of observed actions 

x = (x1, x2, …, xT) for T sequential time instants, the 

optimal current state estimate (by the maximum likeli-

hood criterion) has the form 

 
1

1
.

t

t x
t 

    

Let the agent’s state have changed once from a 

known initial value  1
 to a known final value  2

. In 

this case, the change point рt  is a posteriori estimated 

by the cumulative sums method as 

 1inf : , 2, ,р tt t S S T      

where 

 
 

1 21

2 2 1
1

11
 ln ln .

1 1

t

tS t x


    
      

(For details, see the expression (2.3.3) in [17].) 

If the initial and final values are unknown, the 

change point рt  is a posteriori estimated as [18] 

 
1, 1

arg max , ,р
t T

t d x t
 

                       (9) 

where    
2

1 1

1 1
,

t T

t

d x t t T t x x
t T t

 
  

 
    

  . 

Whenever the one-time change is not justified, the 

latent variables can be estimated using the moving 

average method: 

 Δ
Δ

1
.

Δ

t

t

t x
 




    

Here, the window Δ is tuned depending on the availa-

ble experimental data. 

Now we proceed to the identification of hidden 

variables (the states of agents) based on the available 

information about their actions in the social network. 

The procedure (9) allows finding the single change 

point for a sequence of agent’s actions in the network. 
Consider the agents who have performed at least 10 

zero or unit actions with at least one unit action and 

one zero action. In total, there are about 2000 such 

agents (4% of the total number of agents who per-

formed unit or zero actions). For each agent of this 

group, we determine the change point рt  and the cor-

responding estimates  1
 and  2

. First, the values 

 
1, 1

max ,
t T

D d x t
 

  and 
2/D D T  are calculated. Then 

the quality of detecting the single change point is as-

sessed using the value D  and the variation of the max-

imum likelihood: 

    
 

1, 1,
1, 1

1,

max max  , max  ,

max  , ,

t t T
t T

T

L L x L x

L x

   



   

 
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where        
,

, ln 1 ln 1
b

a b

a

L x x x 


          is 

the logarithmic likelihood function on the interval 

.,a b   

The following results were obtained. Figure 5 

shows the distribution of the normalized change points  

(normalization by T). Clearly, in many cases, the 

change point is shifted to the start of the agents’ activi-

ty. 

 
 

 

 
Fig. 5. The distribution of change points. 

 

Next, Figure 6 demonstrates a histogram of the dis-

tribution of the differences between  1
 and  2

 (in abso-

lute terms). For 18% of the users, the hidden state 

changes insignificantly (by at most 0.2); for half of the 

users, by at least 0.5. Thus, the state of the bulk of us-

ers undergoes a significant change. (Of course, the 

change point must “meaningfully” separate the se-

quence of actions for each agent.) 

 
 

 

 
Fig. 6. The distribution of the difference |θ1 − θ2|. 

 

Figure 7 shows a histogram of the distribution of 

the value L . For a quarter of the agents from the con-

sidered set, the likelihood value improves at least by 

3.25. 

 
 

 

 
Fig. 7. The distribution of the likelihood variation due to introducing 
change point. 

 
Finally, Fig. 8 presents a histogram of the distribu-

tion of the value D . For one quarter of the agents, D  

is not smaller than 0.06. This value can be used as a 

threshold to scissor “bad” cases. 
 

 

 

 

Fig. 8. The distribution of the value D . 
 

The values L  and D  are well correlated with 

each other: their Spearman’s correlation coefficient is 
0.64. In addition, the values | 1

 –  2
| and L  as well as 

| 1
 –  2

| and D  correlate well with each other (0.65 and 

0.83, respectively). The quality of the disorder will be 

assessed mainly using the value L . 
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Figure 9 shows a scatter diagram (more precisely, 

a heat map) for the identified hidden parameters of the 

network agents before and after the disorder. 

 
 

 

 
Fig. 9. The heat map of the parameters θ1 and θ2 (the agent’s hidden 
state before and after disorder). The darker the color of the hexagon is, the 

more agents it contains. 

 
The diagonal of this diagram is “empty”: the 

agents change their state. 

As an example, Fig. 10a demonstrates a time series 

of agent’s actions for which 11.09L   (the likeli-

hood gain due to introducing disorder). The zero and 

unit values are indicated by large dots; the disorder 

time, by a dashed red line. The found values of the 

agent’s hidden state are given to the left and right of 
the disorder time. Figure 10b shows the graph of the 

agent’s function d(t) as well as the values D (its max-

imum) and D  (its normalized maximum). 

The disorder detection method (9) works well for 

homogeneous sequences (with relatively clear switch-

ing from 0 to 1 and vice versa) but worse for sequenc-

es where  1
 and  2

 are close or zero and unit actions 

alternate. Therefore, we form the following heuristic 

criteria to identify agents with a single disorder: 

 The change point is in the sequence 

1 1.рt T     

 The sequence contains at least two “for” actions 
and two “against” actions. 
 The variance of the value  Δ 2 t  before and af-

ter the disorder does not exceed 0.12. 

 The estimate of the state   changes at least by 

0.1. 

 The likelihood variation is 2.86L  . 

The criterion thresholds were obtained by the ex-

pertise of the sequences of agents in descending order 

of their criterion values. A total of 320 agents with a 

single disorder were found.  

Linear micro models and the agent’s hidden 
state 

Consider the micro models of the joint dynamics of 

opinions and actions for significant agents (see part II 

[2]) and include the agent’s hidden state in them. 
 The model with the variable θ. For each agent, 

we find the change point and calculate the hidden state 

before and after it (  =  1
 and   =  2

, respectively). Let 

us conduct a series of computational experiments as 

follows. In each experiment, a sequence of agents’ 
actions is generated by model (8) with hidden states 

and observed actions; then the degree of its similarity 

to the observed sequence is assessed. The resulting 

estimates are averaged to obtain the quality of the 

model with the variable  . 

 The inertial model with θ. We add the variable 

  in the inertial model and estimate the quality of the 

new model. 

 The unified model with θ. We add the variable   

in the unified model and estimate the quality of the 

new model. 

 The personalized model with θ. We add the var-

iable   in the personalized model and estimate the 

quality of the new model. 

 
 

 
                                       (a)                                                                                   (b) 

 
Fig. 10. (a) the time series of agent’s actions and (b) the graph of d(x, t).
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As it turns out, the balanced accuracy measure of 

the model with the variable   is 0.70 (opinion model) 

and 0.64 (action model). Table 6 summarizes the es-

timated quality gain of the linear micro models due to 

introducing the variable  .  

 
Table 6 

Quality gain of linear micro models due to introducing 

the variable θ 

Type of models Relative error 

reduction for 

opinion model 

Relative error 

reduction for 

action model 

Inertial models – 59% – 56% 

Unified models – 17% – 7% 

Personalized 

models 
– 17% – 8% 

 

The maximum quality gain occurs for the inertial 

model (an error reduction of 56–59%); the contribu-

tion of the latent state is smaller for the unified model 

(7–17%) and for the personalized model (8–17%). In 

general, introducing the latent variables gives approx-

imately an additional “net” quality gain of 2% for the 
models of opinion and action dynamics. 

CONCLUSIONS 

This multi-part study has been devoted to the joint 

dynamics of the opinions and actions of VKontakte 

users (on the example of their attitudes towards wear-

ing medical masks during the first year of the 

COVID-19 pandemic). Based on the results, we have 

verified mathematical models of the relationship be-

tween changes in the opinions and actions of agents. 

The most important outcomes are as follows (see the 

previous parts [1, 2]). 

In part I of the study [1], the opinions of VKon-

takte users have been identified and then a primary 

analysis of the joint dynamics of opinions and actions 

in the network has been carried out. Among other 

things, the polarization of positions (opinions and ac-

tions) in the network and the gradually increasing 

share of “against” positions have been discovered. 
The analysis of network interactions has shown that 

there are no echo chambers in the network and agents 

are exposed to the information influence of different 

positions of the social environment and, as a conse-

quence, can change their opinions. The consistency 

and mutual influence of agents’ opinions and actions 
have been revealed (see Questions nos. 1 and 5 in the 

Introduction). In addition, the so-called significant 

agents have been found and characterized; they 

changed their opinions during the period under con-

sideration (see Questions nos. 2 and 3). 

In part II [2] and this paper, formal models of 

opinion and action dynamics have been identified and 

investigated (see Question no. 6). Different modifica-

tions of macro models have been considered where 

the “public” opinion and action in the network (i.e., 
the share of “for” or “against” opinions and actions) at 
the current time instant depends on the opinions and 

actions at the previous one. Also, different modifica-

tions of the micro models (linear and threshold mod-

els) have been considered; they take into account the 

influence of the entire network, the influence of the 

agent’s friends, and his personal characteristics. Ac-

cording to the identification results of these macro 

models, there exists a relationship between actions 

and opinions in the network. 

Micro models have been considered only for sig-

nificant agents. The quality of such models is ac-

ceptable and improves as they become more complex. 

In the class of linear micro models, the largest error is 

given by the inertial model (Fig. 11); moderate errors, 

by the model with macro variable(s) (with 1–4 varia-

bles; see Fig. 11) and the unified model (see “Unif.” 
in Fig. 11); the smallest error, by the personalized 

model (see “Pers.” in Fig. 11), in which each agent 
can have an individual trust function. The contribution 

of the latent variables for linear models is about 2% 

(see “Pers.+ ” in Fig. 11). 
 

 

 

 
Fig. 11. The quality of linear micro models of agents’ opinions and 
actions. 
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Among the threshold micro models (see Question 

no. 4), the models with network influence show the 

best quality, followed by personalized and unified 

models with the influence of friends. Considering an-

ti-conformity significantly improves the quality of the 

models on average; however, introducing the second 

threshold does not produce the same effect. In the 

case of personalized threshold models, the type of 

information trust functions is not important for a high 

share of agents (about 40%); the share of those trust-

ing information that diverges from their opinion is 

greater than the share of those trusting information 

that coincides with their opinion; meanwhile, there are 

almost no agents trusting information regardless of its 

content. Also, the choice of friend trust functions is 

not determinant in threshold models (see Question 

no. 7). 

The threshold and linear models demonstrate ap-

proximately the same quality. But threshold models 

involve fewer parameters and seem to be preferable 

(see Question no. 4). 

The “promotional” version of outcomes of this 

multi-part study can be formulated as follows. A very 

small proportion of people (about 1%) change their 

opinions (beliefs, actions, etc.). These dynamics are 

largely influenced by their own initial beliefs
5
 (condi-

tionally, about 67% of influence on average; see Fig. 

12), less by the social environment (about 15% of in-

fluence of the opinions and actions of other network 

agents) and their own actions (about 3% of influence, 

the contribution of cognitive dissonance), by latent 

factors (about 2% of influence), and other (off-model 

and (or) random) factors (about 13% of influence). At 

the same time, people often focus on information that 

strongly differs from their current beliefs. 

A promising line for further research is to analyze 

more complex mechanisms of changing the opinions 

and actions of social network agents, e.g., with the 

agent’s “memory,” the influence of exogenous factors 

on the network, and even more “subtle” effects: the 
relationship of the agent’s opinion on a current issue 
with his opinions on related issues (e.g., COVID-19 

aspects), the influence of arguments and emotions in 

network messages (actions) on the agent’s opinion, 
the influence of individual characteristics of the agent 

(e.g., the degree of rationality), etc. 

                                                           
5 Note separate and very important and interesting questions as 

follows. Where do these “initial beliefs” come from? How are 
they formed? Indeed, this multi-part study considers the period 

from the very beginning of the COVID-19 pandemic (March 

2020): before it, few people on Earth thought about the benefits of 

wearing medical masks. 

 

 
Fig. 12. The influence of different factors on agent’s opinions. 
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Abstract. This paper considers an automatic control approach for an overhead crane trolley under 

the current parametric uncertainty of the crane, transported cargo, and exogenous disturbances. It 

generates a given trolley speed, which corresponds to the modern hardware implementation of 

control of cranes with asynchronous motors and frequency converters. The approach is based on a 

control scheme with a current parametric identification algorithm, an implicit reference model, 

and “simplified” adaptability conditions to track cargo movements directly. This algorithm in-

volves a recursive least-squares method with the forgetting factor. Unlike previous publications 

on the topic, the idea is to use a reduced model of the “crane–cargo” object when moving the car-

go along one horizontal axis. In this case, it is necessary to estimate only two parameters; moreo-

ver, the construction of the control algorithm becomes simpler and the closed-loop control system 

has a better performance. The stability of the closed-loop control system is proved and require-

ments for the parameters of the assigned reference motion are found. Due to the self-tuning prop-

erty of the control system, the approach can be obviously generalized to construct an overhead 

crane control system along two horizontal axes and three axes (with simultaneous vertical move-

ment of the cargo). A model example is given to demonstrate the implementability of this crane 

control system based on modern controllers and sensors. 
 

Keywords: automatic control of overhead crane, adaptive control system, parametric identification algo-

rithm, current parametric uncertainty, stability of the closed-loop control system.  
 

 

 

INTRODUCTION  

Automatic control of cranes with suspended cargo, 

particularly overhead cranes, is very important due to 

their mass use and the need to increase the productivi-

ty of crane operations and safety, to reduce operating 

costs, etc. A crane control system is required to move 

the cargo to a given point with the maximum speed 

and accuracy, eliminating the pendulum swinging of 

the suspended cargo. This phenomenon arises due to 

different factors: inertial swinging at the motion start 

and stop, wind gusts affecting the cargo, sea waves on 

ship cranes, etc.  

As a rule, modern cranes are characterized by nu-

merous  operating  modes,  a  large  variation  of  the  pa- 

rameters of the transported cargo and suspension-

length, and the probability of exogenous disturbances. 

Therefore, the operation of a crane control system is 

often associated with the current uncertainty of its 

characteristics as well as the characteristics of the 

transported cargo and exogenous disturbances.  

Many studies on the automatic control of an over-

head crane are based on a priori information about the 

parameters of the crane and the cargo or require the 

preliminary tuning of the control system. For example, 

see the papers devoted to the use of PID and PD con-

trollers [1–3] and sliding mode control systems [4–8]. 

But such systems cannot, in principle, implement 

high-quality control of the crane in numerous opera-

tion modes with a single tuning. A priori information 

about a controlled object is required when designing 

optimal control (e.g., see the publications [9, 10]). 

Much research considers the application of fuzzy logic 

and neurocontrollers (e.g., see the papers [11, 12]). 

________________________________ 
1 Funding. This work was supported by the Russian Science 

Foundation, project no. 23-29-00654; https://rscf.ru/project/23-29-

00654/.  
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However, fuzzy control strategies are rather difficult 

to tune and neglect uncertain factors. On the other 

hand, neurocontrollers need significant time for train-

ing. 

There exist approaches to designing an adaptive 

crane control system based on the Lyapunov function 

(e.g., see the papers [13, 14]). Here, the control law 

parameters are tuned using the gradient algorithm, 

which leads to the problem of selecting the discrete 

tuning parameters for a particular case. 

The authors [15, 16] proposed an adaptive control 

approach for an overhead crane trolley based on the 

direct tracking of horizontal cargo movements with 

forming a control force or a given speed. Control by a 

given speed corresponds to modern crane control ap-

proaches using asynchronous motors and frequency 

converters. The approach is based on a control scheme 

with a current parametric identification algorithm, an 

implicit reference model, and “simplified” adaptability 

conditions [17]. The solution allows constructing a 

relatively simple control law for an overhead crane 

under the current parametric uncertainty of the crane, 

transported cargo, and exogenous disturbances. 

This paper is a logical continuation of the studies 

[15, 16]; unlike them, the idea is to use a reduced 

model of the “crane–cargo” object when moving the 

cargo along one horizontal axis. In this case, the de-

sign of identification and control algorithms becomes 

simpler and the closed-loop control system has a better 

performance. The stability of the closed-loop control 

system with the generated control law is proved and 

requirements for the parameters of the assigned refer-

ence motion are found. 

1. PROBLEM STATEMENT 

Consider a single-pendulum model of an overhead 

crane moving cargo along one horizontal axis. We will 

neglect the weight of the cable on which the cargo is 

suspended and the resistance during its movements. 

Figure 1 shows the diagram of this overhead crane. 

Figure 1 has the following notations: 
T

m  and cm
 

are the masses of the crane trolley and transported car-

go, respectively; cr  is the radius of the cargo inertia; l  

is the  length of the cargo suspension (the distance be-

tween the attachment point of the suspension on the 

trolley and the cargo’s center of gravity; x  is the hori-

zontal movement of the trolley from an assigned posi-

tion; x v  is the trolley speed and givv  is a given val-

ue of this speed; conf  is the control force generated by 

the drive of the crane trolley; fri frif k v  is the friction 

force counteracting trolley movements with the vis-

cous  friction  coefficient  frik ; wf   is  the  wind  force 

 

 
Fig. 1. The diagram of an overhead crane moving a cargo along one 

axis. 

 

applied to the center of the cargo mass;   is the devia-

tion angle of the cargo suspension from the vertical 

axis; c sinx x l    is the horizontal movement of the 

cargo. (Without loss of generality, we adopt this fric-

tion model, which is obvious for control by speed.) 

Assume that the motion of the trolley with the cargo is 

subjected to an exogenous disturbance. It represents a 

stepwise change in the friction force and wind gusts 

with an arbitrary instant of occurrence and a limited 

intensity. 

The motion dynamics of the object presented in 

Fig. 1 are studied well enough. Without considering 

the initial state in terms of linear and angular move-

ments and their speed, it can be described by the fol-

lowing system of Euler–Lagrange equations (similar 

to the papers [2, 6] and others): 

   

   

2
т c c con fri c

2 2
c c c c w

c

cos sin

cos sin cos

x sin ,

m m x m l f k x m l

m l x m l r m gl lf

x l

         

        


  

(1) 

where g  denotes the free fall acceleration. 

Since the cargo’s deviation angle is small (in prac-

tice, no more than 10 20 ), the angular velocity is 

also low. Considering the kinematics of motion, we 

suppose that sin , cos 1,   and 2sin 0   . 

Therefore, system (1) can be linearized as follows:  

 
 

con

con

con fri

con fri

c ,

f

x x x

f

x a f k x a a

a f k x a a

x x l




  

    
    


  

           (2) 
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where  con 1 2 2
c c

f

xa m l r
   ,  21

cxa g m l
   , 

 1 2 2 2
c c fri wxa m l r f l f

        ,
 

con 1
c

f
a m l


   , 

 1
т c ca m m m gl

 
    ,

 
1

c fri тa l m f m


    

 c w ,m f  and  2 2
c т т c cm m l m m r      .  

Let us substitute the first and second equations into 

the twice-differentiated third equality of system (2), 

express the signal  con frif k x  from the first equality 

of (2), and substitute it into the resulting formula. 

Consequently, the cargo’s motion can be approximate-

ly described through the trolley speed as follows: 

c c c c
v

x a v a a
   ,                       (3) 

where  2 2 2
c c c
v

a r r l  ,
 

 con con

c
f f

x xa l a a a a
  

  

,g  
  2 2 2

cl l r     is the dimensionless coeffi-

cient of the cargo’s radius of inertia, and 

 con con

c
f f

x xa l a a a a   .  

For further considerations, let 2 2
cl r , which 

holds in most practical cases. Then c 0v
a   and equa-

tion (3) can be rewritten as 

c c cx a a
  .                             (4) 

    This linearized cargo transfer model along one axis 

will be called reduced as compared to model (3), 

which was used in the paper [16] to design an adaptive 

crane control law. The reduced model contains only 

two unknown parameters. In addition to the arguments 

above, such a significant simplification of the dynamic 

model of cargo’s linear movements is explained by the 

fact that it will be used to approximate these move-

ments only. 

The natural frequency of the cargo’s angular oscil-
lations  0  can be determined from equation (4). As 

is well known, natural oscillations satisfy the equation  

[18] 2
0 0   . Equality (4) can be written as 

c cx l a a
    . The frequency 0  is found under 

0x   and the absence of exogenous disturbances 

( с 0a  ). Hence, considering equation (3), we obtain 

0 ca l g l
     .                    (5) 

Under the current parametric uncertainty of the 

crane, cargo, and exogenous disturbances, it is re-

quired to construct a control law (a given speed of the 

crane trolley provided that givx v ) for the trolley 

drive so that 

c c giv , 0x x  ,                        (6) 

where c givx  is the given position of the cargo (or its 

target point). Assume that there is approximate a priori 

information about the natural frequency of angular 

oscillations. As data sensors, we will adopt meters of 

the signals c, ,x  and x . Note that modern sensors 

provide the necessary functionality. For example, the 

first two signals can be measured by a micromechani-

cal sensor located near the cargo with remote data 

transmission. 

2. CONTROL ALGORITHM 

Let the following equality be the desired (model) 

behavior of the second derivative  m
cx

 
of the cargo’s 

linear movement that corresponds to the oscillatory 

process: 

 m 2
c m m m c c giv2x x x x      ,             (7) 

where m  is a given natural frequency of the refer-

ence motion and m  is the relative damping factor. 

This behavior will be called the reference motion; see 

the Appendix for the justification of such a solution 

vs. the usual reference model. 

Equating the right-hand sides of equations (4) and 

(7), we find the control law of the crane trolley in the 

form of its given speed  givv : 

   1 2
giv m c c giv m c cx v T x x a a

          ,  (8) 

where m m m2Т     is a given (model) time constant 

of the linear movement. 

Based on Fig. 1, the cargo tracking error can be 

written as 

c c giv givx x x x   ,                        (9) 

where giv c giv st constx x l    , assuming that st  is 

the steady-state constant value of the angle   after 

control. 

Equation (8) can be transformed to a dependence 

describing the dynamics of the closed-loop control 

system: 

 2
m giv m c cT x x x a a

     .            (10) 

In the case of no angular motion  0   and no 

disturbance  c 0a  , it follows from (10) that 

givx x  aperiodically with the time constant mT  

(which explains the name of this parameter). General-

ly speaking, the aperiodic motion of the crane trolley 

is disturbed by the angular motion and the component 

ca  [19]. 
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According to formulas (4) and (10), if the steady 

state c0, 0, 0x x    
is reached in the closed-

loop control system, the only possibility is 

st c ca a
    and giv ;x x  hence, by formula 

(9), we have c c givx x . 

Proposition. Under m 0  , the closed-loop con-

trol system (2), (4), (8) satisfies c0, 0, 0x x  
as t  , where t  denotes the current time. Hence, 

the control objective (6) is achieved.  

P r o o f. For simple considerations, let c giv constx  . 

(According to the reasoning below, it can be also assumed 

that c giv const.x  ) We choose the Lyapunov function  

 22 2
c m c c giv0.5 0x x x .       

 

Note that 0   only for c 0x   and c c givx x . Due to 

the equated right-hand sides of (4) and (7), the derivative of 

the Lyapunov function is m m c2 x x .      Hence, for the 

Lyapunov function to decrease in time, it suffices to fulfill 

the condition    csign signx x  on almost the entire oscil-

lation period. Let us analyze it. 

Considering the third equality of (2), equation (7) with 
m
cx  replaced by cx  (the closed-loop control system with 

control law (8)) can be written as 

2 2
m m m c giv m2 ( ) ( )x x x x l         . 

Adding to the right-hand side of this equality the zero 

expression 2
0 0    multiplied by l  yields 

 
    

2
m m m c giv

2 2 2 2
0 m 0 m c

2x x x x

l x x .

    

       
 

Differentiating this equality and performing further 

transformations, we obtain 

 2 2 2
m 0 0 0 m c2x x x x       , 

where m m m 0      is the resulting relative damping 

factor. 

According to the theory of automatic control, the trol-

ley’s dynamics in the variable x  correspond to an oscillato-

ry link with the natural frequency 2
0 0 m1x    of the 

output signal and with the convergence property 

 2 2 2
0 m 0 cx x       [19]. 

Let us impose the condition m 0  . Then the natural 

frequencies of the output signal of the closed-loop control 

system and the assigned reference motion (7) ( 0
x  and 

m 2
0 m m1    ) will be related as follows: 

   2 2 2 m
0 0 m m 0 m 0 m m 01x              . 

Since the control law (8) aims at changing the variable

cx  by properties (7), the natural frequency m
0  

of the refer-

ence output signal will dominate in the motion in cx . In 

other words, in the closed-loop control system, the transi-

ents in x  are faster than in cx . Therefore, x  has the same 

sign on almost the entire period of oscillations: 

   csign signx x . 

Thus, if m 0  , then the Lyapunov function will de-

crease in time. Due to its properties, we have c 0x   
 c 0x   and c c givx x . It follows from formulas (8) and 

(4) that 0x  . In view of the dependence cx x l   , it 

also follows that 0 . ♦ 

As a rule, the desired motion of the cargo to the 

target point is a process close to aperiodic, without 

overshoot and with the smallest possible time. Note 

that the parameters mT  or m  should be chosen con-

sidering the maximum implementable speed of the 

drive and the required cargo movement. In view of 

these provisions, the properties of the maximum speed 

of the oscillatory motion, the proof of the proposition 

above, the parameters of the assigned reference mo-

tion (7) should satisfy the following requirements [19]: 

m

0

0.8

m 0 m m max c giv c

m m

, 0.8, 2.3 ,

1.6 ,

v x x

T

 

       

 
 (11) 

where maxv  is the maximum speed of the crane trolley 

implemented by the drive and 
0cx  is the initial posi-

tion of the cargo. 

The control law (8) is based on the exact values of 

the parameters ca
  and ca  

of the controlled object (4). 

In practice, however, with numerous types of trans-

ported cargos, suspension lengths, and exogenous dis-

turbances at the current time instant, they are usually 

unknown. If it were possible to measure cx , then this 

variable would be used in the control law (8) instead 

of  c ca a
  based on equation (4). As a rule, the 

measurements of the variable cx  are very noisy, which 

reduces the control performance. A conventional low-

frequency filter introduces a phase delay, which also 

deteriorates control. 

To solve the above problems, we approximate сx
 
 

based on current parametric identification for low-

frequency filtering without phase shift. This idea is 

part of the approach called the “simplified” adaptabil-

ity conditions [17]. 

Therefore, the control law is constructed using the 

current estimates of these parameters instead of formu-

la (8): 
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   1 2
giv m c c giv m c cx v T x x a a

          , (12) 

where the hat symbol indicates the current estimates of 

the corresponding parameters yielded by the current 

parametric identification algorithm. For example, it is 

possible to apply the recurrent least-squares method 

with the forgetting factor [20]: 

 

т
1 г 1

1т т
1 1 1 1

0 2

,

1

, 1,  1, 

ii i i i i i i i

i i i i i i i i i

x 



   

      

        
     

θ θ P y y θ

P P P y y P y P y

P E

  (13) 

where 1, 2, 3,...i   denotes the ith time instant with a 

step t ; 
т

c c, a a
   θ  is the vector of the estimates of 

the desired parameters;  т, 1 y  is the vector of the 

factor variables;   is the identification residual; iP  is 

the matrix gain of the algorithm of dimensions 2 × 2; 

  is the assigned forgetting factor of previous meas-

urements to track the time-varying desired parameters; 

ϑ is a large positive number determining the initial rate 

of variation of the parameter estimates; finally, 2E  is 

an identity matrix of dimensions 2 × 2. The least-

squares estimation procedure has good approximation 

properties, which is generally recognized. 

In the Appendix, we show that the identification 

residual of algorithm (13) with the linearly independ-

ent elements of the vector-function iy  on a sliding 

time interval with a sufficiently small step t  con-

verges very quickly to the neighborhood of zero (even 

in the first steps of the algorithm) and remains therein. 

Meanwhile, the parameter estimates can be far from 

the true values [17]. In the paper [21], this result was 

also established under more stringent operating condi-

tions of the closed-loop control system. 

Thus, algorithm (13) ensures the condition 

c c c cx x a a
   ,                       (14)  

i.e., approximates the variable cx  even under inaccu-

rate parameter estimates. 

In other words, the estimates can be substituted in-

to the control law (12) from the very beginning of the 

identification algorithm. Also, the control objective is 

achieved for the current parameter estimates and cx  

(in approximate terms); see the proof above. 

Concluding the theoretical part of this paper, we 

emphasize that all the considerations involve the con-

dition 2 2
cl r  and equation (4). According to model 

studies, the control system with the control law (12) 

and the identification algorithm (13) demonstrates 

high performance without this condition (e.g., if 

c )l r . This result is explained, in particular, by the 

good approximation properties of the identification 

algorithm (13) with condition (14) even for the mod-

erately incorrect reduced model (4). 

3. A MODEL EXAMPLE 

A model example to analyze the properties of the 

closed-loop control system was constructed based on the 

dependencies (1), (12), and (13) using formulas (5), (7), and 

(11). Numerical simulation was carried out in 

Matlab/Simulink/SimMechanics. Differential equations 

were solved by the Runge–Kutta method of the fourth and 

fifth orders with a step of 0.01 s. 

Consider control of the trolley of a typical medium-

sized crane with the following parameters: т 450 kgm  ,

c 100 10 000 kg,m    3 10 m,l    c 0 2 5 m,r .   

fri 0 3 N s m,k .
 c giv 10 m.x   The servo drive generating 

the speed of the crane trolley  x  according to a given val-

ue  givv  is described by an aperiodic link with the unit 

gain and a time constant of 0.1 s. It has additional nonline-

arities: a time delay of 0.03 s and the output signal con-

straints max 0 67 m/sv .  and 23 m/sv  . Many of these 

parameters match the standard [22] and the variety of typi-

cal cargo. 

Assume that a step wind disturbance with an intensity of 

10% of the cargo weight affects the cargo at the time instant 

50 s. (This disturbance is smoothed by an aperiodic link 

with a time constant of 1 s.) 

The angular velocity   and acceleration cx  were 

measured using an MPU-6050 micromechanical sensor lo-

cated near the cargo with wireless data transmission. The 

data contain the centered Gaussian noise with RMS errors 

of 0.1 deg/s (angular velocity) and 20 1 m/s.  (acceleration) 

[23]. The signal
   was obtained by integrating the meas-

ured angular velocity. The linear movement of the trolley 

 x  was determined by an encoder with the same noise 

with an RMS error of 0.01 m. The cargo position was de-

termined from the measured signals x  and   and the sus-

pension length estimate ( )l : cx x l   . 

In the studies described here, l l : due to the depend-

ences presented above, if this estimate has an error, the 

crane control algorithm will generate a constant inaccuracy 

of cargo positioning only under an exogenous disturbance. 

When organizing an automated crane control system, the 

operator can easily compensate this effect. By the expres-

sion (5), the error in determining the parameter 0  based on 

l  to  set m  
remains  small  even  under  large  errors  of l .  
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For example, an error of up to 30% in the estimate l  gives 

an error of up to 16% in the value 0 . 

The identification algorithm (13) has the following pa-

rameter values: 0.01 st  , 10,   and 0 998.  . (The 

control law (12) is implemented with the same time step.) In 

the crane operation modes, its natural frequency varies in 

the range 1
0 0.9 1 8 s.

   . In view of (11), the parameters 

of the control law (12) are 1
m 0 15 s.

  , , and 

m 10 7 s.T .  

The behavior of the closed-loop control system in the 

variables x  and cx  
was compared with the variable mx , 

which is the output of the dynamic link corresponding to the 

reference motion (7): 
2

m m m m m m c giv2 ( )x x x x       

(with the parameters specified above). 

Figure 2 shows the results of the study under the aver-

age values of the crane operation parameters: 

c 3 000 kgm  , 5 ml  , and c 2 mr  . Other parameter 

values  from  the  ranges  (see  above)  give  almost  the same 

curves (the difference is units of percent). The only excep-

tion is high-frequency transients near the time instants 0t   

and 50 st   in the variables , ,v   , and cx  
under a large 

ratio cr l . In any case, their duration does not exceed 5 s. 

The stable response of the closed-loop control system under 

various parameters of the crane, cargo, and an exogenous 

disturbance indicates better performance characteristics of 

the control system under the current uncertainty compared 

to the approach proposed in the papers [15, 16] (the model 

of the object (3) with three unknown parameters). For ex-

ample, in these works, there was a small (but more signifi-

cant than indicated above) variation of the transient time 

and its character.  

 In addition, Fig. 2 shows the graphs of the variable cx  

and its estimate cx  (14) based on the current parameter es-

timates using algorithm (13). Clearly, the identification al-

gorithm provides excellent low-frequency smoothing with-

out phase shift (even without the condition 2 2
cl r , i.e., 

when the reduced cargo model is “not quite correct.” 

 

 

 

Fig. 2. The analysis results of the crane control system: (a) linear movements of the trolley and cargo compared to the variable мx , (b) the deviation angle of 

the cargo suspension, (c) the trolley speed generated by the servo drive, and (d) the second derivative of the cargo’s linear movement measured by the sensor 

and its estimate. 

m 0 8. 
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Note that the impact of the third condition in (11) was 

also analyzed. If this condition is violated, when the crane 

trolley cannot provide the required speed, the cargo coordi-

nate simply lags behind the reference curve on the sections 

of motion associated with the transients. When approaching 

the steady state, the identity with the reference motion is 

restored. In practice, such small lags during transients are 

not critical. 

The theoretical calculations presented above were fully 

confirmed by simulations. With a large variety of cargo 

parameters, its motion is close to the behavior of the as-

signed reference motion with reaching the target point. A 

step wind disturbance is successfully compensated. All the-

se results are established under the current parametric un-

certainty. Similar properties were obtained for other crane 

parameters without changing the control algorithm. 

CONCLUSIONS  

This paper has considered the automatic control of 

an overhead crane trolley to transport the cargo to a 

given point and damp its angular oscillations under the 

current parametric uncertainty of the crane, cargo, and 

exogenous disturbances. The approach involves a line-

arized dynamic model of cargo movements depending 

on the trolley speed, containing two unknown parame-

ters, and the control algorithm based on “simplified” 
adaptability conditions. 

To implement the proposed approach, it is neces-

sary to select the parameters of the reference motion 

(7) considering conditions (11) and then design the 

current identification algorithm (13) and the control 

law (12). The reference motion parameters are select-

ed using a priori information about the natural fre-

quency of the crane suspension, determined by formu-

la (5) based on the suspension length. Due to condi-

tions (11), it suffices to know this frequency approxi-

mately. Also, the suspension length is necessary to 

calculate the cargo’s horizontal coordinate. The inac-

curacy in determining the suspension length affects 

only the constant positioning error of the cargo under 

an exogenous disturbance. The latter can be easily 

compensated by the crane operator in an automated 

control system. In the case of a fully automated con-

trol system (e.g., a remote crane control system), an 

additional sensor will be required to determine the 

suspension length. 

A modern micromechanical sensor located near the 

cargo with wireless data transmission that determines 

acceleration and angular velocity has been proposed as 

a cargo motion sensor. An alternative is to place such 

a wired sensor on the crane trolley. 

This paper has been devoted to the problem of hor-

izontal motion along one axis. However, due to the 

self-tuning of the control system, the results can be 

generalized to the case of control on two horizontal 

axes and even on three axes with simultaneous vertical 

motion of the cargo. 

In future, the overhead crane control algorithm will 

be investigated on an experimental setup.  

APPENDIX 

J u s t i f i c a t i o n of the reference motion (7).  

In the case of control by the cargo coordinate, the refer-

ence model cannot be used instead of model (7) in the con-

ventional sense (when the output variable of the scalar ref-

erence model corresponds to the controlled variable). This 

conclusion is immediate from the following arguments: 

 2
m m m m m m c giv2x x x x      , 

where mx  corresponds to the variable cx ; then the desired 

second derivative of the cargo’s linear movement (denoted 

by m
c ,x  above) takes the form 

 m 2
c m m c m c c giv2x x x x      , 

and the control law (8) becomes 

   1 2
giv m c c giv m c cx v T x x a a l

            . 

Due to the last term in the control law

sign( ) sign( )x    , we obtain internal instability (see Fig. 

1) in the formation of a given speed, i.e., an analog of non-

minimum-phase systems (unstable by the input). ♦ 

 

P r o o f of the convergence of the identification residual 

in algorithm (13).  

Let us eliminate the trivial cases 0i y  from considera-

tion. Assume also that the norm of the estimate vector is 

bounded. We multiply the first equality of (13) by the non-

zero vector т
iy  on the left and add the term  1i i 

 
to 

the left- and right-hand sides of the result. Then straightfor-

ward manipulations yield 

   
1

т
c c 1 1 (1 )

i i i i i i i ix x
         y y θ ,  

where 
т

i i i iP  y y
 
and

 
0 1i  . 
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Since  1 1 т
1

i i k
i i ik

P y y
  


    , this restriction of

i  is easily proved by direct calculations for the scalar val-

ue y . In the multidimensional case, it can be established by 

considering the range of the eigenvalues of the matrix iP  

based on the Rayleigh relation. Note that the matrix 1
iP
  is 

nonsingular under the linearly independent elements of the 

vector-function iy  on the sliding time interval of the algo-

rithm “memory.”  

The right-hand (left-hand) side of the presented equality 

describes the “proper motion” of the identification residual 

(its “disturbance,” respectively). The proper motion of this 

discrete system is stable due to the range of the value i . 

The norm of the disturbance takes lower values for smaller 

steps t . Indeed, when t  decreases, the norms of the pa-

renthesized vectors on the left-hand side of the equality be-

come smaller even in the closed-loop control system: under 

the accepted conditions, according to formula (4), the trol-

ley speed formed by the control law does not actually affect 

the variable cx , and the angle   within the vector y  is 

related to this speed through the integral (i.e., very weakly). 

This fact follows from the third equality in system (2). The 

elements i  and 1 of the vector-function iy  are linearly 

independent on a moving time interval, at least on transi-

ents. 

Hence, as the step t  decreases, the stable proper mo-

tion of the identification residual generates an increasingly 

narrow domain of attraction near zero [19]. ♦ 
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Abstract. In an airborne geophysical survey, the control of moving objects requires forming op-

timal program (reference) trajectories. Optimality criteria differ depending on the tasks to be per-

formed. The most obvious criterion is the time in which an object reaches its final position from 

an initial position. Problems with such a criterion are known as time-optimal control problems. 

This paper considers two control problems of this class related to the performance of a flight task 

by an aircraft during an airborne geophysical survey. Such a survey is traditionally carried out 

over a network of parallel routes. Accordingly, the first mode is to start the next survey route. The 

second mode is to approach the current straight segment of the route. The corresponding time-

optimal control problems are posed and solved. The resulting solutions are the reference trajecto-

ries for the start and approach modes. The solutions are formally analyzed and methods for form-

ing optimal trajectories and the corresponding controls implementing these trajectories are de-

scribed. The onboard software implementation of these algorithms is described. 
 

Keywords: Dubins’ car, time-optimal control problem, optimal control, Pontryagin’s maximum principle.  
 

 

 

INTRODUCTION  

Trajectory planning in automatic control is applied 
in various technical systems, e.g., manned and un-

manned vehicles, robotic complexes, etc. One qualita-
tive optimality criterion is the minimum time to pass a 

planned trajectory by a moving object. 
A system known as the Dubins’ car [1, 2] is often 

considered when planning optimal shortest-length tra-
jectories. Such a model is described by a nonlinear 

system of third-order differential equations. Two state 
variables characterize the location of a controlled ob-

ject on the plane whereas the third variable the direc-

tion (angle) of the velocity vector. The velocity value 
is assumed to be constant. The scalar control action 

under geometric constraints determines the instantane-
ous turning radius. 

For the first time, this system was considered by 
A.A. Markov in 1887 [3]. The Dubins’ car is studied 

as a controlled object with the simplest model of mo-
tion in the horizontal plane. In terms of geometry, the 

Dubins’ trajectory is the shortest curve of bounded 
curvature connecting two points on the plane in the 

Euclidean space. In 1957, L. Dubins proved [4] that 

the time-optimal trajectory is composed of segments 
of circular arcs of maximum curvature and straight 

lines.  
Motion control along a trajectory composed of 

fragments arises in many applications: control of ma-
nipulators on automated assembly lines, monitoring of 

thermal and power networks, the aerial survey of some 
territory over a network of parallel routes, etc. In this 

paper, Dubins’ trajectories are considered for aircraft 

control in an airborne geophysical survey. 
This task requires two main control modes to be 

switched sequentially: 
– start the next segment of the trajectory (the next 

route) with a given course; 
– approach the current straight segment of the 

route with the minimum lateral deviation. 
There exist different approaches to solving this 

problem. For a manned object, navigational infor-
mation for the pilot is generated by software systems 

based on certain control algorithms. A widespread ap-
proach is to demonstrate on graphic displays a map 

with path lines and the current location of the con-

http://doi.org/10.25728/cs.2023.4.4
mailto:garac@ipu.ru
mailto:tolyagladyshev@yandex.ru
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trolled object [5, 6]. The disadvantages of such flight 

support systems are excessive information for the pilot 
and the absence of control algorithms. Within some 

approaches, control commands are generated for 
manned aviation to optimize the start and improve the 

passage of a straight segment [7, 8]. One approach 
described therein is to design a new program trajectory 

at each time instant corresponding to new navigational 
information and to use a PID controller to demonstrate 

the deviation from the program trajectory to the pilot. 
The papers [7, 8] were mainly focused on the algo-

rithmic component of the control process. Many pa-
rameters were considered that directly or indirectly 

affect the quality of navigational information. The in-
formation is displayed on the trajectory control indica-

tor, which is common for the pilot. 

This paper is devoted to aircraft motion control al-
gorithms for an airborne geophysical survey. To im-

plement these algorithms, a program trajectory is cal-
culated at each time instant, and the deviation from 

this trajectory is displayed on the Pilot’s Indicator. The 
program trajectories are obtained by solving two time-

optimal control problems: when the aircraft starts the 
next route and when it approaches the current straight 

segment of the route. Altitude control goes beyond the 
scope of this paper. As a rule, the pilot carries out a 

geophysical survey with terrain flow, and aircraft alti-
tude control is a separate complex problem [9]. 

1. MOTION EQUATIONS 

Figure 1 shows the general form of a piecewise 

fragmentary trajectory in geographic coordinates. 

Fragments (2–3) and (4–5) correspond to the start 

mode whereas fragments (1–2), (3–4), and (5–6) to the 

approach mode (stabilization on the route).  

 
 

 

 
Fig. 1. One example of a fragmentary trajectory. 

 
Consider a simplified problem statement. The main 

assumptions are as follows. First, the flight altitude is 

not analyzed in this paper: the problem is solved in 

projection on the horizontal plane. Second, at the cur-

rent stage of research, the variation of the horizontal 
velocity of the object is neglected. Finally, the aircraft 

is controlled through the momentary action of constant 
vertical angular acceleration to change the direction of 

motion. For an aircraft, it corresponds to a momentary 
deviation of the ailerons by a fixed angle. When a giv-

en roll angle is reached, control is terminated. 
In the case of a coordinated turn, when the sum of 

centripetal and gravitational accelerations is compen-
sated by the wing lift, the roll angle under a fixed ve-

locity is uniquely related to the turning radius. 
We introduce the following notations: T  is the 

time (in s); 1x  and 2x  
are the object’s local Cartesian 

coordinates (in m);   is the course (track angle) of the 

object’s motion (in rad);   is the rate of course 

change (in rad/s); V  is the absolute value of the ob-

ject’s horizontal velocity (in m/s); finally, U  is the 

control action (in rad/s
2
). 

Under the accepted assumptions and notations, the 

aircraft’s motion equations [8] can be written as 

1

2

cos

sin

.

x V

x V

U

 
  
  


                            (1) 

Let us reduce the system of equations (1) to a di-
mensionless form. For this purpose, we introduce the 

following scaling factors: * 50V V   m/s is the char-

acteristic speed of an aircraft (e.g., the Antonov An-3); 
* 0.35   rad (approximately 20 deg) is the maximum 

value of the roll angle. We express the radius *
R  of a 

coordinated turn. 

According to the scheme in Fig. 2, this radius satis-
fies the relation 

*2 * *2 *2
cf* *

* *

grav

tan ,
tan

F m R V V
R

mg gR gF

     


 (2) 

where m is the aircraft’s mass; g  is the gravity accel-

eration; cfF  is the absolute value of centrifugal force; 

gravF  is the absolute value of gravity. Therefore, 

* 2500

10 0.3
700

6
R  


 m. Now, the time constant of the 

trajectory motion can be calculated as 
*

1 1*

700
14

50

R
T T

V
     s. The course angle changes 

by one radian in this time. Also, consider the time 
constant for the fourth equation of system (1), i.e., the 
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roll angle setting time 2 ~1T  s. The value 2T  was cho-

sen experimentally for performing flights on aircraft 
such as An-2, An-3, Cessna, and others. 

 
 

 

 
Fig. 2. Forces acting on the aircraft. 

 

Obviously, the characteristic values of the angular 

velocity and the angular acceleration are  
*

* *

*
1

1 1
~ 0.07

14

V

TR
      rad/s and 

*
* *

2 1 2

1 1
~ 0.07

1 14
U U

T TT

   


 rad/s
2
, respective-

ly. 

Note that the value U  in equation (1) is nonzero 

only at the instants of varying the angular velocity, 

i.e., on time intervals 2.T T   

Thus, the solution of system (1) for the course an-

gle   is a linear function on time intervals of the order 

of 1T  or higher and a quadratic function on short tran-

sient segments. 

We introduce the dimensionless quantities 

1 2

* * * * *
2

, , , , ,
x xT U

t x y w u
T R x U

    


 

where 
*

1T T  or 2 ;T  then system (1) takes the form 

*

1

*

1

*

1

*

2

cos

sin

.

T
x

T

T
y

T

T
w

T

T
w u

T


 



  


 


 


                            (3) 

Applying the theory of motion separation [10], system 

(3) can be considered in “fast” (
*

2T T ) and “slow” (

*
1T T ) time. “Fast” time makes sense only on the 

control interval where 1.u    Indeed, with the small 

parameter 2

1

~ 0.07,
T

T
   the object is stationary in the 

zero approximation, and only the dimensionless  angu-

lar velocity w varies: 

0, .x y w u    

In “slow” time, the small parameter occurs only in 

the last equation of system (3): 

cos

sin

0.

x

y

w

w

 

 


 
 

                               (4) 

Thus, the original system of motion equations (1) has 

been reduced to the one (4) of lower dimension with 

the control action ,w  limited to the values [ 1, 1].  In 

dimensional time, it corresponds to angular velocities 

ranging from –0.07 to +0.07 rad/s. 

According to Poincaré’s theorem [8], the solution 

of system (4) on the time interval 1T  will differ from 

that of system (1) by a value of the order of .  The 

optimal trajectory will be permanently calculated 

based on the current coordinates updated several times 

per second. Consequently, this difference will not af-

fect the further solution of the control problem. 

2. TIME-OPTIMAL CONTROL PROBLEM 

2.1. Motion Equations 

Consider system (4) in the dimensional version, 

which corresponds to problem (1) without the last 

equation: 

1

2

cos

sin

,

x V

x V

 


 
  

                            (5) 

where max max[ , ]    is the control action. 

 

2.2. Time-Optimal Control in the Start Mode 

First of all, we introduce new variables 

 1 2 3, ,y y y  for system (5) so that the origin of coor-

dinates O coincides with the initial point of the start 

route, the Oy1 axis coincides with the direction of this 
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route, and the Oy2 axis complements the coordinate 

system to the right orthonormalized pair; the parame-

ter y3 specifies the deviation angle of the motion direc-

tion from the route direction (in rad): 

1 1 0 2 0 10

2 1 0 2 0 20

3 0

cos sin

sin cos

,

y x x x

y x x x

y

    


     
  

            (6) 

where 10 20( , )x x  are the coordinates of the initial point 

O of the route and 0  is the course of the route. 

With the change of variables (6), system (5) takes 

the form 

1 3

2 3

3

cos

sin

.

y V y

y V y

y





  

                           (7) 

The performance criterion for the object’s motion 
is given by 

0

1 min.

ft

t

J dt                           (8) 

In view of the expressions (7) and (8), we consider 

the time-optimal control problem in the start mode: 

1 3

2 3

3

cos

sin

,

y V y

y V y

y


 
    

0

1 1

0

2 2

0

3 3

(0)

(0)

( ,0)

y y

y y

y y

 



   

1

2

3

( ) 0

( ) 0

( ) 0.

f

f

f

y t

y t

y t

 



 

       (9) 

Here, the parameters {y1
0
, y2

0
, y3

0
} describe a given 

initial state of the object and tf is the start time subject 

to minimization. 

It is required to find an optimal control action 

( )t  and the corresponding trajectory y
+
(t) such that 

the controlled object moves from the given initial state 

to the origin of coordinates in the minimum time f
t  

[11]. 

To solve problem (9) using Pontryagin’s maximum 

principle, we introduce the vector of conjugate varia-

bles  1 2 3
( ), ( ), ( )t t t    and write the Hamiltonian 

and the adjoint system of equations [11]: 

1 3 2 3 3
cos sinH V y V y    ,  

1

2

3 1 3 2 3

0

0

si o ,n c sV y V y

 
 
   

             (10) 

where , 1, 2, 3.i

i

i

d H
i

dt y

     


 

According to the maximum principle for the time-

optimal control problem, it is necessary that there ex-

ists a solution ( ) 0t   of system (10) such that

max ( , , ) ( , , ) const 0H y H y
 



        [11]. 

Obviously, the first equation of system (10) im-

plies *
1 1( ) constt    and the second equation im-

plies *
2 2( ) const.t    We adopt the change of var-

iables * * * *

1 2 1 2
, : cos , sin .         Then

*2 *2

1 2
    and 

*

2

*

1

tan .


 


 With this change, the 

Hamiltonian takes the form 

 3 3
cos .H V y                    (11) 

The conditions for the time-optimal control problem 

are as follows: a) const;H   b) max.H


  

If 0,   then 
3

H   , where 
3

0.   Therefore,

max 3

3

max 3

, 0
( ) sign

, 0
t

   
      

 since for 

max 3 3 3 3
| | sign const.C          

Conditions a) and b) are satisfied. 

For 0   in formula (11), the control action is 

max 3

3

max 3

, 0

( ) 0, 0

, 0.

t


  
   
  

 

Here, *
1 0   and (or) *

2
0   

* * *
3 1 2 2 1( ) ( ) ,y t y t C

    
 

const,C   where

1 2
( ), ( )y t y t

   is the optimal trajectory. 

The value ( ) 0t
   is also a solution of the time-

optimal control problem: if ( ) 0t   in formula (11), 

the maximum value  3
cos constH V y     is 

achieved at  3
2

y
    as well. This solution cor-

responds to *
3 0,   describing straight-line motion 

[12] because * *

1 2
,    , and C

 
are constants: 

* *
1 2 2 1 0.y y C
                         (12) 

The control actions satisfying the maximum prin-

ciple may vary only on the straight line (12), which is 

called the switching line. The motion outside the 

straight line will be a circular arc.  

The solution of the time-optimal control problem 

for the object described by equations (7) is the solution 

of the Dubins’ problem [4]. The resulting time-optimal 

trajectories will be called Dubins’ trajectories. 
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In Fig. 3, the optimal trajectory consists of three 

fragments. The first one is arc LaA of a circle centered 

at 
1

C ; the second one is segment AB joint with arc LaA 

at the point of tangency with the circle centered at 
1

C ; 

the third one is arc BO of a circle centered at 
2
.C  The 

values 0 , 1, 2, 3iy i  , are the initial conditions of 

problem (8): 0
1y

 
is the initial value of the pitch devia-

tion from the start of the route, 0
2y  is the initial value 

of the roll deviation, and 0
3y  is the initial deviation of 

the object’s course from the route direction. The 

switching line represents the straight-line segment AB. 

The first switch occurs when passing from fragment 

LaA to AB. The second one occurs when passing from 

AB to BO. The start route is limited to segment OD. 
 

 

 

Fig. 3. A trajectory in the start mode. 

 

2.3. Time-Optimal Control in the Approach Mode 

The approach problem is as follows. If the aircraft 

has left the survey route, it must be returned to the cor-

responding straight line as quickly as possible. It does 

not matter at which point along the straight line the 

return will occur. Problem (9) is solved for a smaller 

dimension: y2 is the deviation from the straight line (in 

m), and y3 is the angle of course deviation from the 

route direction (in rad): 

2 3

3

sin

,

y V y

y


    

0

0

2 2

3 3

(0)

(0 ,)

y y

y y

 


  

2

3

( ) 0

( ) 0.

f

f

y t

y t


 

      (13) 

We write the Hamiltonian for the expression (13): 

2 3 3
sin .H V y                      (14)

 The corresponding adjoint system of equations is 

2

3 2 3

0

cos .V y

 
  

                      (15) 

Hence, *
2 2( ) const.t    

Analyzing equation (14), we observe that if 
*

2
*

3 const0 0,     then 
3

( ) signt
  

max 3

max 3

, 0

, 0

  
   

 since ( ) 0.t   If *
3 0   with 

*
2 0,   then by the second equation of system (15) 

the control action is 

max 3

3

max 3

, 0

( ) 0, 0

, 0.

t


  
   
  

 

The case 0   occurs only for 
3

2
y

  .  

Note that the expression (14) is equivalent to for-

mula (11) for 
2

   and 
2

.   Thus, the approach 

problem is a particular case of the start problem. 

Figure 4 shows two start trajectories. As in the start 

mode, the first optimal trajectory has two switches. 

The second one has one switch (at point A when pass-

ing from fragment LaA to fragment AB). 
 

 

 

(a) 
 
 

 
(b) 

 

 

Fig. 4. Examples of trajectories in the start mode: (a) with two switches 

and (b) with one switch. 



 

 
 

 

 

 

39 CONTROL SCIENCES No. 4 ● 2023  

CONTROL OF MOVING OBJECTS AND NAVIGATION  
 

 

2.4. Numerical Solution of the Time-Optimal Control    
Problem 

We introduce the following notations: C is a circu-

lar arc, and S is a straight segment. According to the 

theorem proved in the paper [13], the Dubins’ trajecto-

ry has the types CSC and CCC or a subset of these 

types. An arc C with 
3

0y   is that of left turn L (left 

arc); an arc C with 
3

0y   is that of right turn R (right 

arc). Considering the turning direction, the Dubins’ 
trajectory can be characterized by one of the types 

from the set 

{LRL, RLR, LSL, LSR, RSL, RSR}, 

or a subset of one of these types, e.g., LR, RL, RS, L, 

etc. In total, we have 15 possible variants. The ap-

proach proposed in the paper [13] for obtaining the 

shortest (optimal) Dubins’ trajectory is to parameterize 

the time-optimal control problem in terms of the final 

time f
t  and switching times. 

Let 
1

L  be a left arc of length 
1
,V  2

R  be a right 

arc of length 
2

V , and 
3

S  be a segment of length 

3
.V  Also, for an arc 

4
L , we introduce the length 

4
;V  for an arc 

5
R , the length

 5
.V  The resulting 

sequence has the form 

1 2 3 4 5
.L R S L R      

On the one hand, a trajectory of the type RLR can be 

obtained when 
1 3

0,     2 4 5
, , 0.     On the oth-

er hand, a trajectory of the type LR can be obtained 

when 
3 4 5

0       
and 

1 2
, 0,    or

1 2 3 4 5
0, , 0.          Let the initial time be 

0
0t   and the final time be 5

.
f

t t  Also, we define 

the switching times , 1, ,4
j

t j   , such that 

1
, 1, , 5.

j j j
t t j      

Note that the control action is 
max

( )t   along an 

arc L and 
max

( )t    along an arc R. Along a seg-

ment S, we have ( ) 0.t
   In view of these considera-

tions, the numerical approach to solving the time-

optimal control problems will be as follows. For 

1
,

j f
t t t    

      3 3 1 1
if 1, , 5,

j j
y t y t t t t j


       

        

    

1 1 3 3 1

1

1 1 3 1

if 1, 2

sin sin /

(

, 4, 5

if 3,

)

cos

j j

j j

y t V y t y t t

y t

y t V y t t

j

t

j


 

 

   

 




 
  



 

 

        

    

1 3 3 1

1 3 1

2

2

2

if 1, 2, 4, 5

if

cos cos /

sin

3,

j j

j j

y t V y t y t t

y

j

j

t

y t V y t t t


 

 

   




 






 



where 

 
max

max

if 1, 4

if 2, 5

0 if 3.

j

t j

j



 
  
 

  

The time-optimal control problem is reduced to the 

optimization problem 








3

0 0

5

1

1 2

1 3 3 3

m

0

ax

4 2

3 3

0 1 2

2 3 3 3

max

4 2

3 3 3

min

sin 2sin 2sin

2sin cos 0

cos 2cos 2cos

2cos 1 sin 0

0 for 1, , 5,

f j

j

j

y y y y

y y

y y y y

y y

t

V

V

V

V

j



  



    
    


  


     
  



      (16) 

where 
m

1 0

3 3 ax 1
,y y     m3 3

2 1

ax 2
,y y     and 

4 2

3 3
y y   

max 4
.   Substituting 1

3 3

2

3

4, ,y y y  into prob-

lem (16), we obtain a finite-dimensional nonlinear op-

timization problem. 

This numerical solution approach to time-optimal 

control problems was described in detail in the paper 

[13]. In particular, the problems and possible trajecto-

ries were generally analyzed. 

Note that Dubins’ trajectories cannot be imple-

mented in the trajectory control of real moving ob-

jects. Here, they are used as program trajectories only. 

3. CONTROL THROUGH PILOT’S INDICATOR 

The described approach to forming aircraft pro-

gram trajectories during an airborne geophysical sur-
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vey is used in the NavDat hardware-software complex 

[7, 14, 15]. The Pilot’s Indicator receives the differ-

ence between the angular velocity for the program tra-

jectory and the real current trajectory of the aircraft 

based on a satellite navigation system (SNS). SNS 

data can be used to obtain the exact time, coordinates 

(latitude and longitude), altitude, and velocity of a 

moving point. 

The angular velocity is given by 

,
V

R
  

where V  denotes the horizontal velocity and R is the 

radius of a coordinated turn. 

For program and real current trajectories, the value 

V  is taken from SNS data. The radius R  is set for the 

program trajectory and is calculated for the current 

trajectory by formula (2) with the limitation on the roll 

angle of the aircraft. 

In the approach mode, the NavDat program uses a 

PID controller based on the current lateral deviation. 

Consequently, the controller must be retuned if the 

aircraft velocity varies significantly. 

In this paper, the control algorithm in the approach 

mode is designed in the same way as in the start mode.

The only parameter of the algorithm to be tuned is the 

maximum angular velocity of the object, which is di-

rectly related to the maximum admissible roll angle.  

The requirements for lateral deviations from the 

survey route are specified as follows. For surveys with 

an inter-route distance of 100 m (the survey scale is 

1:10 000), the admissible lateral deviation is 15–25 m; 

for inter-route distances of 1000 m (1:100 000), the 

admissible lateral deviation is 100–200 m [16]. 

To avoid an excessive pilot’s workload, the idea is 

to calculate the program trajectory in the approach 

mode using the minimum admissible value of the roll 

angle instead of its limiting value (limiting angular 

velocity). In this case, the approach program trajectory 

can be constructed without crossing the boundaries of 

the aircraft flight corridor (Fig. 5.). 

Figure 5 shows two trajectories with one switch 

and one common initial point La. The first one is the 

optimal trajectory formed by the arcs of circles cen-

tered at 
1

C  and 
2
.C  The switch occurs at point A when 

moving from fragment LaA to fragment AB. The se-

cond one is an admissible trajectory formed by arcs of 

circles of greater radius than in the first case. The 

switch occurs at point C at the conjunction of sections 

LaC and CF. 
 

 

 

 
Fig. 5. An admissible approach. 
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Figure 6 shows a pad with the Pilot’s Indicator, 

original software installed on it. The display is divided 

into three windows. The first window contains a 

crosshair indicator informing the pilot about the cur-

rent position relative to the program trajectory. The 

second window is a navigation panorama with routes 

and other necessary data. The third window (a list on 

the left) provides the status of devices connected to the 

NavDat hardware and software complex. 

 

 

 
Fig. 6. Pilot’s Indicator. 

 

CONCLUSIONS 

Optimal trajectory planning methods for moving 

objects are widely used in various systems. In systems 

with multi-mode motion, it is necessary to consider the 

constraints when passing from one motion mode to 

another. The resulting time-optimal control problems 

with constraints are solved within classical approach-

es, such as Pontryagin’s maximum principle. 

This paper has considered a model of object mo-

tion in the plane, known as the Dubins’ car, for an air-

craft carrying out an airborne geophysical survey in 

the start and approach modes. The optimal trajectories 

and controls implementing these trajectories in the two 

modes have been designed and formally analyzed. The 

methodology described above is unified and can be 

applied to form optimal trajectories in both modes 

mentioned. 

A transition from optimal control to flight task-

permissible control has been proposed to reduce the 

pilot’s workload. 

The corresponding methods have been adopted to 

modify the NavDat software, which forms an optimal 

program trajectory and guides the aircraft along a giv-

en route. After calculations, all the necessary data are 

displayed on the Pilot’s Indicator in a rather conven-

ient form. 
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Abstract. This paper presents a new approach to choosing initial approximations in inter-orbital 

transfer optimization problems for a spacecraft with a chemical booster and fixed thrust. The ap-

proach involves correlations between the values of key problem parameters. It is implemented 

using numerical methods, mathematical modeling, and programming. Relevant publications on 

the subject area (methods for finding initial approximations in optimization problems) are sys-

tematically studied and several mathematical relationships are identified. As a result, laws are 

specified to facilitate the choice of initial approximations in order to ensure convergence and 

achieve the optimum. The results of a computational experiment confirm the applicability and 

effectiveness of this approach in typical optimization problems (an optimal spacecraft trajectory 

design between near-Earth orbits as one example). 

 
Keywords: optimal control, spacecraft trajectory optimization, maximum principle, mathematical modeling, 

nonlinear programming, statistical analysis.  
 

 

 

INTRODUCTION  

In optimal control, choosing initial approximations 

is a relevant and significant problem. Here, a correct 

approach ensures faster convergence of a numerical 

method for solving the boundary-value problem and 

successfully yields an optimal solution [1–3]. Howev-

er, there are difficulties in selecting such an approach 

due to the branching of optimal solutions and the high 

sensitivity of the residuals of the boundary-value prob-

lem to its parameter variations [4]. 

Currently, there exist many practical methods to 

simplify the process of finding initial approximations, 

e.g., the homotopy of maximum thrust [5], edge nor-

malization [6], and others. In some cases, such meth-

ods may have a significant positive effect; in particu-

lar, see rendezvous solutions developed to find initial 

approximations for indirect methods [3, 7, 8]. Accord-

ing to the literature survey, relevant studies in this area 

focus on particular problems. At the same time, more 

and more efforts of the global research community are 

applied to develop algorithms that will be effective in 

choosing initial approximations [1–3, 5, 6]. 

This paper presents research on the statistical anal-

ysis of data vectors obtained in the course of mathe-

matical modeling. The analysis is aimed at identifying 

and analyzing correlations between the values of key 

parameters of a typical optimization problem. The 

analysis results are then interpreted to refine the opti-

mization algorithm: we specify several laws to facili-

tate the choice of initial approximations in order to 

ensure convergence of the numerical solution method 

and achieve the optimum for typical problems. The 

results of a computational experiment confirm the ap-

plicability and effectiveness of this approach in typical 

optimization problems (an optimal spacecraft trajecto-

ry design between near-Earth orbits as one example).  

1. THE ALGORITHM FOR SOLVING TYPICAL PROBLEMS 

1.1. Mathematical Formalization of the Optimal Inter-

Orbital Spacecraft Transfer Problem  

Consider the problem of designing an optimal 

spacecraft transfer trajectory between near-Earth ellip-

tical orbits with coinciding apsidal lines. This problem 

http://doi.org/10.25728/cs.2023.4.5
mailto:petrakowae@mail.ru
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statement is used at the first stage to verify the hy-

pothesis that there exist relationships between the val-

ues of the conjugate variables vector in the optimal 

solution. The next stage of the analysis involves a sim-

ilar study for a set of problems with orbits lying on 

different planes. Such orbits are in potential demand 

when forming an orbital service system. (For example, 

we mention geostationary orbits, solar-synchronous 

orbits, and the Molniya orbit.) 
The general problem statement is as follows. We 

consider a spacecraft on a given initial near-Earth or-
bit. The spacecraft includes a chemical booster with 
some known characteristics. This booster must transfer 
the spacecraft to a working near-Earth orbit with spec-
ified characteristics. 

It is required to find a rational transfer scheme be-
tween the orbits. As an optimality criterion, we choose 
the spacecraft mass inserted into the working orbit: the 
mass is maximized. The transfer time is not limited. 

We fix the following parameters and conditions for 
all cases under consideration: the mass of the space-
craft at the initial instant is 5000 kg; the thrust of the 
rocket engine is 5 kN (unregulated, the number of 
switching on is unlimited); the specific impulse is 330 
s. The spacecraft transfer is limited to one revolution. 
The orbits belong to the same plane, and their apsidal 
lines coincide.  

We vary the following parameters: the perigee alti-

tude of the initial orbit and its apogee altitude; the per-

igee altitude of the final orbit and its apogee altitude.  

Parameters of the transfer scheme, which should be 

selected: the moment of the spacecraft motion start 

from the reference orbit; the duration of active and 

passive sections of the trajectory and their location on 

the transfer trajectory; the pitch angle program on each 

active section; the end point on the transfer. 

Spacecraft transfer model 
The mathematical model of the spacecraft motion 

includes the vector of its phase coordinates with five 

components: the radial velocity  rV  , the normal ve-

locity nV  , the radius r  and the polar angle β  , space-

craft mass m  . Then, the spacecraft motion can be de-

scribed by a system of differential equations (DE) 

2
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The notations are as follows: 

P  is the engine thrust;   is the Earth’s gravitational 
parameter; q  is the mass flow rate of the engine (a 

known value); δ  is the thrust function taking only two 

values: δ = 1 (ignition) and δ = 0 (cutoff); finally, φ  is 

the pitch angle of the spacecraft. Note that  δ t  and 

 φ t  are the control functions to be optimized. 

Pontryagin’s maximum principle, the bounda-

ry-value problem 

We introduce the vector of conjugate variables, 

further called the conjugate vector: 

.
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The Hamiltonian is given by 
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According to the maximum principle, the chosen 

control law maximizes the Hamiltonian, i.e., the opti-

mal control functions (δ(t) and φ(t)) can be found from 

the maximum conditions for the Hamiltonian [9]. 

In addition, it is possible to show that 

 opt optcos(φ )    , sin φ     ,n rV V

V V

 
 
 

 

where 

2 2λ     λ λ ,
r nV V V   

opt

1 if Ψ 0
δ    

0 if Ψ 0,


 
 

Ψ    λ λ   or Ψ    λ λ .V m V m

P W
q

m m
     

Here, Ψ denotes the engine switching function and 

W is the exhaust velocity. The subscript “opt” means 
that the corresponding relations are derived by maxim-

izing the Hamiltonian. 
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The obtained pitch angle program is as follows: 

2 2

2 2

λ
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Considering the optimal control laws (the pitch an-

gle program and the optimal thrust function), the equa-

tions of system (1) take the form 
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Due to the maximum principle, the conjugate vari-

ables satisfy the system of differential equations 
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In the first stage of the analysis, we fix the start 

and end points of the transfer with motions at the ini-

tial orbit perigee and the final orbit apogee, respective-

ly. 

The boundary-value problem of the maximum 

principle 

It is required to find the components of the conju-

gate vector at the start point,    0 0, ,
r nV Vt t 

     0 0 0, ,r mt t t   , and a transfer time ft  that 

satisfy one initial condition (6) and five final condi-

tions (7): 
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where fp  and fe  are the focal parameter and eccen-

tricity of the final transfer orbit. 

Now we introduce transversality conditions to un-

bind the start and end points of the transfer from the 

initial orbit apogee and final orbit perigee, respective-

ly. 

The transversality conditions at the start and 

end points of the transfer trajectory 

The transversality condition expresses the perpen-

dicularity of the vector   (2) to all tangent vectors of 

the boundary manifold. Thus, the optimality condi-

tions for the start point are given by the perpendicular-

ity of the vector   (2) and the tangent vector. The 

transversality conditions were derived in the paper [9] 

(the implementation and results of the initial stage of 

this study). In the case under consideration, this condi-

tion can be written as follows: 
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where 0e  is the initial orbit eccentricity, 0  is the true 

anomaly of the start point, and 0p  is the focal parame-

ter of the initial orbit. 

The condition for optimizing the end point is ob-

tained by analogy: 
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where f  is the polar angle at the end point of the 

transfer. 

 

1.2. Data Preparation for Correlation Analysis Based on 

Iterating the Parameter Values 

Consider five statements with the following values 

of varying orbital parameters: 

1. 400-km perigee altitude and 1400-km apogee al-

titude (the initial orbit), and 1900-km perigee altitude 

and 9900-km apogee altitude (the final orbit).  

2. 400-km perigee altitude and 1400-km apogee al-

titude (the initial orbit), and 2000-km perigee altitude 

and 10 000-km apogee altitude (the final orbit). 

3. 400-km perigee altitude and 1400-km apogee al-

titude (the initial orbit), and 2100-km perigee altitude 

and 10 100-km apogee altitude (the final orbit). 

4. 500-km perigee altitude and 1500-km apogee al-

titude (the initial orbit), and 2000-km perigee altitude 

and 10 000-km apogee altitude (the final orbit). 

5. 600-km perigee altitude and 1600-km apogee al-

titude (the initial orbit), and 2000-km perigee altitude 

and 10 000-km apogee altitude (the final orbit). 

The preliminary search range for problem state-

ments 1–5 was formed based on the solution of the 

reference problem (statement 4 in subsection 1.1). 

This range was used to iterate the parameter values 

and obtain value sets for further statistical (correlation) 

analysis. The search range and the data sample for fur-

ther analysis and solution within problem statements 

1–5 were described in the paper [9].  

Table 1 shows the resulting values of the required 

characteristics (problem statements 1–5) that ensure 

the optimal transfer.  

Thus, the iterative search inside the selected pa-

rameter ranges improved the result for the reference 

problem (statement 4) by 365 g relative to the solution 

previously obtained using the random search [1]. 

This stage of the study was presented in detail in 

the paper [9]. 

 

Table 1 

The optimal transfer characteristics in problem statements 1–5 (analysis within the data grid) 

Characteristics Statement 1 Statement 2 Statement 3 Statement 4 Statement 5 

0  -0.608528181266 -0.687262955509 -0.58694862445 -0.58063271537992 -0.67460422765 

λ
rV  -0.065265825615 -0.075257944004 -0.06564653582 -0.06466045327036 -0.06339073139 

λ
nV  1.3623340777782 1.3653869345017 1.364158466294 1.36474044140864 1.357648817782 

λr  1.4200011568480 1.4207257561587 1.421069918027 1.42243156356652 1.40764863211 

Tf 6.7321648922778 7.0228415355241 12.30599404742 12.48386539989280 5.855669428846 

βf 3.1311300732552 3.166796288751 5.127686975088 5.33807657900554 2.859452408788 

mf , kg 3227.339 3182.552 3181.12 3204.153 3247.748 
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2. CORRELATIONS BETWEEN KEY PROBLEM 

PARAMETERS 

2.1. Special Mathematical and Algorithmic Support for 

Data Analysis and Processing 

The presence and significance of mathematical re-
lationships between the problem parameters that en-
sure convergence of the numerical method for solving 
the boundary-value problem and optimization of the 
resulting solution are checked using a Python program 
[11]. This program is a special mathematical and algo-
rithmic support tool for the data analysis and pro-
cessing system. It is implemented based on pandas, 
scipy, and numpy, the libraries for data analysis and 
mathematical programming. 

The program algorithm includes the following 
steps. 

1. Data are loaded; parameters for the analysis 
and their relationships are selected. 

2. Normality is tested based on frequency statis-
tics to verify the absence of large deviations from the 
mean values in the data. It can be performed by many 
methods, e.g., the Shapiro–Wilk test [12–14] or the 
Kolmogorov–Smirnov test [13, 15]. The program in-
volves the Shapiro–Wilk test to check the probability 
of a random difference: if this probability is small, the 
difference is considered statistically significant [12–
14]. 

3. The closeness of a correlation in the Evans 
sense and its significance by Fisher’s criterion are as-
sessed [16, 17]. They are needed to establish whether 
the variability of one characteristic depends on the 
variability of another (and the relevance of this de-
pendence) [16, 17]. 

4. The significance of the difference between the 
linear and nonlinear correlations by Fisher’s criterion 
is assessed [17]. 

 

2.2. Program results 

The program searched over 4.145 million varia-
tions of the initial approximations for each problem 
statement within the selected range in order to identify 
fluctuations between the values of key parameters and 
the estimated degree of convergence. Thirteen groups 
of parameters and their correlations were analyzed. 
The analysis covered only those parameter values that 
ensured convergence of the numerical method and the 
spacecraft insertion into the specified final orbit. 

Within the range under consideration, the varia-

tions of the true anomaly 0  (the transfer start point) 

were revealed to have no effect on the other compo-
nents of the vectors analyzed. At the same time, for 
constant values of the other parameters, a larger varia-

tion in the true anomaly caused an increase in the final 
mass. (Within the range of υ0, this difference between 
the left and right boundaries was 1 kg on average.) 

As it was established, the spacecraft is inserted into 
the final orbit under the following values of the ratio 

/r Vn   (depending on the distance between the initial 

and final orbits and (or) the distance between the ref-
erence orbit and the Earth): 

– For problem statement 1 (the initial orbit is the 
lowest, and the distance corresponds to that of the ref-
erence problem), 1.001397624,..., 1.042397661; 

– For problem statement 2 (the initial orbit is the 
lowest, and the distance is increased compared to the 
reference problem by 100 km), 1.001397624,..., 
1.030802292; 

– For problem statement 3 (the initial orbit is the 
lowest, and the range is increased by 200 km com-
pared to the reference problem), 1.007127584,..., 
1.025531915; 

– For problem statement 4 (this is the reference 
problem, and the initial orbit is 100 km above the low-
est orbit): 0.987421384,..., 1.037090909; 

– For problem statement 5 (the highest initial orbit 
is 200 km higher than the lowest, and the shortest dis-
tance is 100 km less than that of the reference prob-
lem), 0.983146067,..., 1.038207201. 

Beyond these ranges, either convergence is not 
achieved or the spacecraft does not reach the specified 
orbit (i.e., it is inserted into a lower or higher orbit). 
As was discovered, the best solutions by mass are lo-
cated inside the ranges, far from their left and right 
bounds. 

Also, the transfer time and polar angle have a di-
rect relationship: they should be tuned commensurate-
ly to ensure a solution under preliminarily calculated 
values of the other missing characteristics. An increase 
in the polar angle should be commensurate with the 
increase in the transfer to maximize the final mass of 
the spacecraft in the orbit effectively. 

According to the testing results, there is an Evans-

significant linear correlation between the values of λ
nV  

and λr  (a significance level of 0.95, a linear correla-

tion coefficient of 0.9678). Figure 1 demonstrates no 
outliers for the dependent parameter, the normality of 
the data distribution, and the linear dependence.  

The analysis revealed a moderately significant lin-
ear relationship (in the Evans sense) between the orbit 
variation index 

0

0

f

fb b

e e
Q

p p





, 

where fbp  and 0bp  are the focal parameters of the 

final and initial orbits, respectively, reduced to dimen-

sionless form (Fig. 2), and the ratio λ / λ
nr V . 
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Fig. 1. The results of correlation analysis for λ
nV  and λ r . 

 

 
 

 

 

Fig. 2. The results of correlation analysis for Q and /λ λ
nr V . 

 

A moderately significant linear correlation be-

tween the ratio λ / λ
nr V  and the parameter λ

rV  was 

identified. An Evans-strong nonlinear correlation was 

established between the polar angle βf  (the transfer 

end point) and the inter-orbital transfer time Tf. An 

Evans-strong correlation was found between the ratios 

Tf /βf and λ / λ
nr V . However, it was not possible to 

clarify the nature of this relationship (probably, due to 

insufficiently many cases under analysis and the nar-

row initial range). 

The presence of a significant relationship between 

the true anomaly 0  (the start point in the initial orbit) 

and the ratio Tf /βf was not confirmed. 

2.3. Applying the Results to the Reference Problem to 

Improve the Solution 

The results obtained during this study using a Py-

thon program may serve to correct search ranges for 

initial approximations. Hence, the procedure for find-

ing the optimum can be potentially simplified for typi-

cal optimization problems. 

The initial values of the parameters are refined to 

improve the optimization result for the reference prob-

lem using the conclusions described in subsection 2.2. 

More precisely, the values initially found for the con-

jugate variables λ
rV , λ

nV , and λr  remain fixed where-
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as the true anomaly υ0 decreases and goes beyond the 

selected range with the simultaneous increase of the 

polar angle  βf  by 1.7 times commensurately with the 

transfer time Tk. Next, the residuals are calculated to 

correct the vector values. 

As a result, we obtain a value set of the vector 

components that solves the problem (Table 2).  

Thus, the final result is significantly improved to 

reach 3206.884 kg. (The final mass at the end point of 

the transfer is increased by 2.731 kg compared to the 

result in subsection 2.1.2.) 

Figure 3 shows the optimized transfer scheme for 

the reference problem.  
 

Table 2 

The value vector ensuring the optimal transfer within 

the reference problem 

Characteristic  Value 

0  –0.5733590707938522 

λ
rV  –0.06418827063171273 

λ
nV  1.3652318375612795 

λr  1.4233117301910392 

Tf 12.066799357615691 

βf 5.062132315335388 

 

 

 
Fig. 3. The optimized transfer scheme for the reference problem 

(statement 4). 

 

2.4. Discussion and Further Research 

This study has been carried out using programs in 

Mathcad 15 and Python 3.9. The results confirm the 

effectiveness of the proposed approach to choosing 

initial approximations based on the correlation analy-

sis of key problem parameters (inter-orbital spacecraft 

transfer optimization). 

In the course of this study, we have revealed sever-

al relationships between the vector components ensur-

ing the convergence of the numerical solution for typi-

cal optimization problems (inserting a spacecraft into a 

given orbit). The analysis conclusions have been veri-

fied in a computational experiment for the reference 

problem. According to the experiment’s results, the 
approach is effective: the spacecraft mass in the final 

orbit has been increased. Also, the search range for the 

optimum has been refined for typical problems with 

small deviations in the transfer distance and initial or-

bit altitude. 

Further research will expand these problems in or-

der to refine the current results and formalize them as 

an algorithm for choosing initial approximations in 

inter-orbital spacecraft transfer optimization. In par-

ticular, the following cases will be investigated: 

 many-revolution orbit transfer; 

 transition between orbits in different planes; 

 transfers with other types of engines (e.g., an 

electric rocket engine with regulated thrust). 

 

CONCLUSIONS  

This paper has extended the applicability of math-

ematical programming for designing an optimal 

spacecraft transfer trajectory between near-Earth ellip-

tical orbits. We have described an approach facilitat-

ing the choice of effective initial approximations in 

inter-orbital spacecraft transfer optimization. The re-

sults of a computational experiment have confirmed 

the effectiveness of this approach in the problem 

statement under consideration. 

The results of the study are as follows: 

 For the first time, we have revealed the rela-

tionship between the parameters of the optimal inter-

orbital spacecraft transfer between two elliptical near-

Earth orbits. The nature of this relationship has been 

established using special mathematical and algorith-

mic support (a Python program) developed for the data 

analysis and processing system. 

 Based on the revealed relationships, we have 

significantly improved the primary solution (yielded 

by the Bard method) as well as the solution obtained 

in the paper [9] (by iterating parameter values within 

the data grid) for the reference problem (inter-orbital 

spacecraft transfer optimization). 

REFERENCES 

1. Bard, Y., Nonlinear Parameter Estimation, New York–London: 

Academic Press, 1979.  

2. Kitrell, J.R., Mezaki, R., and Watson, C.C., Estimation of 

Parameters for Nonlinear Least Squares Analysis, Industrial & 

Engineering Chemistry, 1965, vol. 57, pp. 18–27. 



 

 
 

 

 
 

50 CONTROL SCIENCES  No. 4 ● 2023  

CONTROL OF MOVING OBJECTS AND NAVIGATION  

3. Wu, D., Cheng, L., Gong, S., and Baoyin, H., Approximate 

Time-Optimal Low-Thrust Rendezvous Solutions Between 

Circular Orbits, Aerospace Science and Technology, 2022, vol. 

131, part A, art. no. 108011. 

4. Petukhov, V.G., Optimization of Interplanetary Trajectories for 

Spacecraft with Ideally Regulated Engines Using the Continua-

tion Method, Cosmic Research,  2008, vol. 46, no. 3, pp. 219–
232. 

5. Hofmann, C., and Topputo, F., Embedded Homotopy for 

Convex Low-Thrust Trajectory Optimization with Operational 

Constraints, Proceedings of 2022 AAS/AIAA Astrodynamics 

Specialist Conference, Charlotte, NC, USA, 2022, pp. 1–16. 

6. Jiang, F., Baoyin, F., and Li, J., Practical Techniques for Low-

Thrust Trajectory Optimization with Homotopic Approach, 

Journal of Guidance, Control and Dynamics,  2012, vol. 35, no. 

1, pp. 245–258. 

7. Wu, D., Wu, C., Lin, F., et al., Analytical Costate Estimation by 

a Reference Trajectory-Based Least-Squares Method, Journal 

of Guidance, Control and Dynamics, 2022, vol. 45, pp. 1–9. 

8. Wu, D., Wu, Ch., Lin, F., and Baoyin, H., An Atlas of Optimal 

Low-Thrust Rephasing Solutions in Circular Orbit, 

arXiv:2209.07418v1, 2022. DOI: 10.48550/arXiv.2209.07418. 

9. Savvina, E.V., Inter-orbital Spacecraft Transfer: Trajectory 

Design by Iterating Parameter Values within a Data Grid, 

Control Sciences, 2023, no. 2, pp. 56–63. 

10. URL: https://www.mathcad.com/ (Accessed May 15, 2023.) 

11. URL: https://www.python.org/ (Accessed May 15, 2023.) 

12. Shapiro, S.S. and Wilk, M.B., An Analysis of Variance Test for 

Normality (Complete Samples), Biometrika, 1965, vol. 52, no. 

3/4, pp. 591–611.  

13. Mohd Razali, N. and Yap, B.W., Power Comparisons of 

Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-

Darling Tests, J. Stat. Stat. Model. Analytics, 2011, vol. 2, no. 

1, pp. 20–33. 

14. Rahman, M. and Zakkula, G., A Modification of the Test of 

Shapiro and Wilk for Normality, Journal of Applied Statistics, 

1997, vol. 24, pp. 219–236. 

15. Simard, R.J. and L’Ecuyer, P., Computing the Two-Sided 

Kolmogorov-Smirnov Distribution, Journal of Statistical 

Software, 2011, vol. 39, pp. 1–18. 

16. Kobzar’, A.I., Prikladnaya matematicheskaya statistika. Dlya 

inzhenerov i nauchnykh rabotnikov (Applied Mathematical 

Statistics. For Engineers and Researchers), Moscow: Fizmatlit, 

2006. (In Russian.) 

17. Afifi, A.A. and Azen, S.P., Statistical Analysis: A Computer 

Oriented Approach, London–New York: Academic Press, 

1979. 

 
This paper was recommended for publication  

by L.B. Rapoport, a member of the Editorial Board.  

 
Received February 13, 2023,  

and revised July 4, 2023. 

Accepted July 18, 2023.  

 
Author information 
 

Savvina, Elena Valer’evna. Applicant for a degree, Moscow, 

Russia 

 petrakowae@mail.ru 
ORCID iD: https://orcid.org/0009-0007-7083-8617 

 

Cite this paper 
Savvina, E.V., Inter-orbital Spacecraft Transfer Optimization: 

Choosing Initial Approximations Based on Correlation Analysis of 

Key Parameters. Control Sciences 4, 43–50 (2023). 

http://doi.org/10.25728/cs.2023.4.5  

 
 

Original Russian Text © Savvina, E.V., 2023, published in Prob-

lemy Upravleniya, 2023, no. 4, pp. 48–56. 

 

 

This article is available under the Creative Commons Attribution 
4.0 Worldwide License. 

Translated into English by Alexander Yu. Mazurov,  

Cand. Sci. (Phys.–Math.),  

Trapeznikov Institute of Control Sciences, Russian Academy of 

Sciences, Moscow, Russia 

 alexander.mazurov08@gmail.com

 

http://dx.doi.org/10.48550/arXiv.2209.07418
https://www.mathcad.com/
https://www.python.org/
mailto:petrakowae@mail.ru
https://orcid.org/0009-0007-7083-8617
http://doi.org/10.25728/cs.2023.4.5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:alexander.mazurov08@gmail.com
http://creativecommons.org/licenses/by/4.0/

