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A METHOD FOR CONSTRUCTING NONELEMENTARY LINEAR REGRESSIONS 

BASED ON MATHEMATICAL PROGRAMMING  
 

M. P. Bazilevskiy  
 

Irkutsk State Transport University, Irkutsk, Russia  
 

 mik2178@yandex.ru 
 

 

Abstract. This paper is devoted to constructing nonelementary linear regressions consisting of 

explanatory variables and all possible combinations of their pairs transformed using binary min-

imum and maximum operations. Such models are formalized through a 0-1 mixed integer linear 

programming problem. By adjusting the constraints on binary variables, we control the structur-

al specification of a nonelementary linear regression, namely, the number of regressors, their 

types, and the composition of explanatory variables. In this case, the model parameters are ap-

proximately estimated using the ordinary least squares method. The formulated problem has 

advantages: the number of constraints does not depend on the sample size, and the signs of the 

estimates for the explanatory variables are consistent with the signs of their correlation coeffi-

cients with the dependent variable. Regressors are eliminated at the initial stage to reduce the 

time for solving the problem and make the model quite interpretable. A nonelementary linear 

regression of rail freight in Irkutsk oblast is constructed, and its interpretation is given. 
 

Keywords: nonelementary linear regression, ordinary least squares method, 0-1 mixed integer linear pro-

gramming problem, subset selection, coefficient of determination, interpretation, rail freight.  
 

 

 

INTRODUCTION  

In regression analysis [1, 2] based on economic da-

ta, special attention is paid to constructing production 

functions (PFs), i.e., mathematical relationships be-

tween production volumes (outputs) and production 

factors. Published in 1986, the monograph [3] was 

entirely devoted to the theory, methods, and applica-

tion of PFs. It considered the following PFs: linear, 

multi-mode, Cobb–Douglas, Leontief, Allen, CES 

(Constant Elasticity of Substitution), LES (Linear 

Elasticity of Substitution), and Solow. At present, new 

modifications of PFs appear; they are investigated and 

are actively used in econometric studies [4–6]. In this 

paper, we construct nonelementary regression models 

specified on the basis of the well-known Leontief PF 

 1 1 2 2min , ,...,i i i l il iy x x x      , 1,i n ,     (1) 

with the following notations: n  is the sample size; l  is 

the number of explanatory variables; iy , 1, ,i n
 
are  

the values of the independent variable y ; ijx , 1,i n , 

1, ,j l  are the values of the explanatory variables 1x , 

2x ,..., lx ; j , 1, ,j l  are unknown parameters; final-

ly, i , 1, ,i n  are approximation errors. In the theory 

of PFs, the variable y  in equation (1) is interpreted as 

the output, whereas 1x ,..., nx  are interpreted as the 

indicators of production factors. 

Note that the monograph [3] also identified the 

“parallel” Leontief function 

 
 

11 1 12 2 1

1 1 2 2

min , ,...,

min , ,..., , 1, .

i i i l il

k i k i kl il i

y x x x

x x x i n

    

     
 

This function reflects a process where the output is 

composed of the outputs of k  parallel production pro-

cesses with fixed proportions of factors using common 

resources. For two production factors 
1x  and

2x , the 

“parallel” Leontief function is called the linear pro-

gramming function. 

According to the monograph [7], the parameters of 

the Leontief PF (1) can be estimated using non-smooth

http://doi.org/10.25728/cs.2022.4.1
mailto:mik2178@yandex.ru
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optimization methods [8–10], which are often difficult 

to implement. Therefore, the exact estimation of the 

PF (1) was reduced in [7] to a 0-1 mixed integer linear 

programming problem (MILPP) using the least abso-

lute deviations (LAD) method. Note that 0-1 MILPPs 

are also called partially Boolean linear programming 

problems. At the same time, the author [7] proposed 

an approximate estimation method for the Leontief PF 

based on enumerating the estimates from a preformed 

domain. 

The paper [11] introduced a function with the op-

posite meaning to the PF (1): 

 1 1 2 2max , ,...,i i i l il iy x x x      ,  1,i n ,   (2) 

The paper [12] considered the symbiosis of the func-

tions (1) and (2): 

 
 

1 1 2 2

1 1 2 2

min , ,...,

max , ,..., , 1, .

i i i l il

i i l il i

y x x x

x x x i n

    

     
         (3) 

In [11] and [12], the exact estimation of the param-

eters of the regressions (2) and (3) was reduced to cor-

responding 0-1 MILPPs using the LAD method. In the 

modern scientific literature, there is increased attention 

to regression models based on mathematical pro-

gramming; for example, see the papers [13–15]. An 

explanation is recent advances in the technology for 

solving 0-1 MILPPs. 

This paper deals with estimating regression models 

specified based on the Leontief PF using the ordinary 

least squares (OLS) method [1, 2]. Such a problem 

was first formulated in [16] for the regression (1) with 

two explanatory variables. The paper [17] proposed a 

nonelementary linear regression (NLR) of the form 

2

1 2

0

1

, ,

1

min{ , } , 1, ,
l

j j

l

i j ij

j

C

j l i j i i

j

y x

x x i n



  


    

    




        (4) 

with the following notations: 1μ j  and 2μ j , 
21, lj C , 

are elements of the first and second columns of the 

index matrix 2 2lC 
Μ  (its rows contain all possible 

combinations of index pairs of the variables); α j ,

20, lj l C  , and λ j , 
21, ,lj C  are unknown param-

eters. By assumption, all variables in equation (4) have 

strictly positive values. 

Obviously, NLR belongs to the class of nonlinear 

parametric models. But if all parameters λ j , 

21, ,lj C  are assigned definite values, the regression 

becomes linear, and its parameters α j , 
20, ,lj l C   

can be easily estimated using the OLS method. As es-

tablished in the paper [17], the OLS-optimal estimates 

of the NLR parameters λ j , 
21, ,lj C  belong to the 

intervals 

 ( ) ( )

min max,j j

j    , 1,j l ,               (5) 

where 
1 1 1

2 2 2

1, 2, ,( )

min

1, 2, ,

min , ,...,
j j j

j j j

nj

n

x x x

x x x

  

  

     
  

 and 
( )

max

j   

1 1 1

2 2 2

1, 2, ,

1, 2, ,

max , ,...,
j j j

j j j

n

n

x x x

x x x

  

  

  
 
  

. The points 
( )

min

j

j    

and 
( )

max

j

j    cannot be used because of the perfect 

multicollinearity of the variables. 

Due to these properties, an approximate OLS esti-

mation method was proposed in [17] for the NLR (4). 

The method enumerates the values of the parameters 

λ j , 
21, ,lj C  from the intervals (5). 

Unfortunately, the total number of regressors 

grows significantly with increasing the number l  of 

explanatory variables in the NLR (4). Therefore, it 

becomes necessary to select a certain number of the 

most “informative” regressors [7]. Two strategies were 

developed for this purpose in [18]. Each strategy 

forms a set of alternative regressions according to a 

special algorithm; then the approximate OLS estima-

tion method [17] is implemented for each regression; 

finally, the model with the smallest sum of the squared 

residuals is selected. The main disadvantage of the 

NLR construction approach proposed in [18] is the 

exhaustive search of all possible alternatives: it can 

take too much time to select the most informative re-

gressors. A more promising approach involves 0-1 

MILPPs; see below. 

In the paper [19], the selection of the most in-

formative regressors in linear regression estimation 

using the OLS method was reduced to a 0-1 MILPP. 

An open issue in [19] was choosing a large positive 

number M affecting both the speed and solution of the 

problem. It was successfully settled in the next publi-

cation [20]: the 0-1 MILPP formulated therein allows 

constructing a linear regression with a given number 

of explanatory variables, in which the signs of the 

OLS estimates are consistent with the signs of the cor-

relation coefficients between the variables y  and jx , 

1j , l . In the course of computational experiments, 

the conclusion of the paper [21] was confirmed: such a 

problem with constraints on the signs of the coeffi-

cients is solved an order of magnitude faster than 

without them. In this paper, the main goal is to reduce 

the construction of the NLR to the 0-1 MILPP consid-

ered in the paper [20], which is efficiently solvable. 
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1. A METHOD FOR CONSTRUCTING      

NONELEMENTARY LINEAR REGRESSIONS 

The NLR equation (4) contains only one binary 

operation, the minimum. Hereinafter, the binary min-

imum (maximum) is a mathematical operation with 

two arguments that returns their minimum (maxi-

mum). Let us supplement this regression model with 

regressors with the binary maximum: 
2

1 2

2

2
1 2

0 , ,

1 1

, ,

1

min{ , }

max{ , } , 1, .

l

j j

l

j jl

Cl

i j ij j l i j i

j j

C

i j i ij l С
j

y x x x

x x i n

  
 

  


       

    

 


 (6) 

The total number of regressors in equation (6), 
22 ll C , is much greater than in equation (4). 

Equation (6) is introduced for the first time. There-

fore, we pose the following problem: formalize the 

procedure of constructing this model as a 0-1 MILPP. 

This can be done as follows. 

For each parameter λ j , 
21, ,lj C  from equation 

(6), we determine the intervals (5). Then we evenly 

divide each of these intervals by p  points, forming a 

matrix  *λ jk  , 
21, lj C , 1,k p . The element 

*λ jk  of this matrix shows the k th value of the parame-

ter λ j  for the j th pair of the variables. Replacing the 

unknown parameters λ j  in equation (6) with the 

known elements of the matrix   yields 

 

 

2

1 2

2

1 2

*

0 , ,

1 1 1

*

, ,

1 1

min ,

max , , 1, ,

l

j j

l

j j

C pl

i j ij jk i jk i

j j k

C p

jk i jk i i

j k

y x x x

x x i n


 

  


 

 

       

    

 


(7) 

where α jk


, 

21, lj C , 1,k p , are the unknown pa-

rameters for regressors with the binary minimum and 

α jk


, 

21, lj C , 1,k p , are the unknown parameters 

for regressors with the binary maximum. In model (7), 

the total number of regressors is 
22 ll pC , even ex-

ceeding that in model (6). For example, for 100l   

variables and 10p   partitions, the regression (7) has 

99 100 regressors. 

Substituting  
1 2

*

, ,min ,
j jijk i jk iz x x


    and 

 
1 2

*

, ,max ,
j jijk i jk iz x x


   , 1,i n , 

21, lj C , 

1, ,k p  into equation (7) gives the multiple linear 

regression model 

2

2

0

1 1 1

1 1

, 1, .

l

l

C pl

i j ij jk ijk

j j k

C p

jk ijk i

j k

y x z

z i n

 

  

 

 

      

   

 


            (8) 

Following [19], let us reduce the selection of the 

most informative regressors for the linear regression 

(8) with OLS estimation to a 0-1 MILPP. First, we 

normalize all variables of equation (8) using the well-

known rule: subtract from each value of the variable 

its arithmetic mean and divide the result by the stand-

ard deviation. 

For model (8), we write the standardized regres-

sion equation 
2 2

1 1 1 1 1

, 1, ,
l lC Cp pl

i j ij jk ijk jk ijk i

j j k j k

w q h h i n
   

    

            (9) 

where: w  is the normalized variable y ; jq , 1, ,j l  

are the normalized variables jx , 1,j l ; jkh


 and 

,jkh
 21, lj C , 1k , p,  are the normalized variables 

jkz


 and jkz


, 
21, lj C , 1k , p , respectively; β j , 

1, ,j l  and β jk


 and β jk


, 

21, lj С , 1k , p,  are un-

known standardized coefficients; finally, ξ i , 1, ,i n  

are new approximation errors. 

For model (9), the OLS estimates are given by 

1β XX YXR R
  ,                          (10) 

where 

xx xz xz

XX z x z z z z

z x z z z z

R R R

R R R R

R R R

 

    

    

 
 

  
 
 

 is a correlation 

block matrix of dimensions 
2 2( 2 ) ( 2 )l ll pC l pC   . 

This matrix consists of the following blocks:  

 
j kxx x xR r , 1,j l , 1,k l ; 

 
s jkxz x z

R r  , 1,s l , 21, lj C , 1,k p ; 

 
s jkxz x z

R r  , 1,s l , 21, lj C , 1,k p ; 

 
jk sz x z x

R r  , 21, lj C , 1,k p , 1,s l ; 

 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  

 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  

 
jk sz x z x

R r  , 21, lj C , 1,k p , 1,s l ; 

 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  
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 
1 2

,
s s kjz z z z

R r     
2

1 ,ls C  2 1, ,s p  21, ,lj C  1, ;k p  

 T

YX yx yz yz
R R R R   is the correlation block vector 

of dimensions  22 1ll pC   consisting of the blocks  

 
jyx yxR r , 1j , l ;  

jkyz yz
R r  , 21, lj C , 

1, ;k p
  

jkyz yz
R r  , 21, lj C , 1,k p . 

The coefficient of determination of model (9) is 

given by 
2 2

2

1 1 1 1 1

.
l l

j jk jk

C Cp pl

yx j jk jkyz yz
j j k j k

R r r r 
 

    

          (11) 

Then, using formulas (10) and (11), we state the 

problem of selecting the most informative regressors 

for the linear regression (8): 

2 max,R                              (12) 

 
2

2

1 1 1

1 1

1

(1 ) , 1, ,

l

j k j sk

l

jj sk

C pl

j x x k skx z
k s k

C p

sk yx jx z
s k

M r r

r r M j l







  



 

       

     

 


    (13) 

 
2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

1 1

1

(1 ) ,

l

s jk s s jk

l

s s jk jk

C pl

jk s s sx z z z
s s s

C p

s s jkz z yz
s s

M r r

r r M

  

  

 

  

 

 

       

    

 


 

(14)

 

21, ,lj C
 

1, ,k p  

 
2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

1 1

1

(1 ) ,

l

s jk s s jk

l

s s jk jk

C pl

jk s s sx z z z
s s s

C p

s s jkz z yz
s s

M r r

r r M

  

  

 

  

 

 

       

    

 


 

(15) 

21, ,lj C  1, ,k p  

j j jM M     , 1,j l ,               (16) 

jk jk jkM M
       , 

21, lj C , 1, ,k p     (17) 

jk jk jkM M
       , 

21, lj C , 1,k p ,    (18) 

δ {0, 1}j  , 1,j l ,                  (19) 

δ {0,1}jk

  , 
21, lj C , 1,k p ,          (20) 

δ {0, 1}jk

  , 
21, lj C , 1,k p ,          (21) 

2 2

1 1 1 1 1

,
l lC Cp pl

j jk jk

j j k j k

m
 

    

                 (22) 

where: m  is a given number of regressors; δ j ,

1, ,j l  are the Boolean variables specified by the rule 

1 if the th variable enters into the regression,
δ

0 otherwise;
j

j
 
  

δ jk


, 

21, lj C , 1, ,k p  are Boolean variables speci-

fied by the rule 

1 if the th binary minimum with

δ the th transformation enters into the regression,

0 otherwise;

jk

j

k



 



δ jk


, 

21, lj C , 1, ,k p  are Boolean variables speci-

fied by the rule

 1 if the th binary maximum with

δ the th transformation enters into the regression,

0 otherwise;

jk

j

k



 



finally, M  is a large positive number. 

An advantage of the 0-1 MILPP (12)–(22) is that 

the number of its constraints does not depend on the 

sample size n . 

In the 0-1 MILPP (12)–(22), the strategy for con-

structing the NLR is regulated by constraints on the 

binary variables. Consider the following strategies. 

Strategy 1. Selecting m  regressors in the linear re-

gression (7). 

Here, we simply need to solve problem (12)–(22). 

In this case, the final model may contain several re-

gressors with the same binary operation and with the 

same pair of variables but with different values of the 

parameter λ j . 

Strategy 2. Estimating the NLR (6) approximately 

using the OLS method (without selecting regressors). 

Here, we need to solve the problem with the objec-

tive function (12), the constraints (13)–(21) and 

1

δ 1
p

jk

k





 , 
1

δ 1
p

jk

k





 , 
21, lj C . 

(In other words, for each pair of the variables, each 

binary operation enters into the model with only one 

value of the parameter λ j .) 

Strategy 3. Selecting m  regressors in the NLR (6). 

Here, we need to solve the problem with the objec-

tive function (12), the constraints (13)–(22) and 

1

δ 1
p

jk

k





 , 
1

δ 1
p

jk

k





 , 
21, lj C .           (23) 

Note that by adjusting the constraints on the binary 

variables, we can control the type of regressors in the 
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NLR (6). For example, adding the constraints 
2

1 1

δ 0
lC p

jk

j k



 

   and 

2

1 1

δ 0
lC p

jk

j k



 

  to problem (12)–(22) 

yields the problem of selecting the most informative 

regressors for the linear regression; the constraints 

1

δ 0
l

j

j

  and 

2

1 1

δ 0
lC p

jk

j k



 

 , the same problem for the 

regression with binary minimum operations only; the 

constraints 
1

δ 0
l

j

j

  and 

2

1 1

δ 0
lC p

jk

j k



 

 , the same 

problem for the regression with binary maximum op-

erations only. 

Also, it is possible to control the composition of 

the variables in the model. For this purpose, we intro-

duce a binary matrix  ijV v , 
21, 2 li l pC  , 

1 ,j , l  in which 

1 if the th variable enters into 

the th regressor of model (7),

0 otherwise.

ij

j

v i


 



 

Then integrating the linear constraints 

2

2

2

, ( 1)

1 1 1

, ( 1)
1 1

1, 1, ,

l

l

l

C pl

ij j i l k p j jk

j j k

C p

jki l pC k p j
j k

v v

v i l


  

  


   

 

   

  

 


         (24) 

into problem (12)–(22) allows constructing the NLR 

with m  regressors into which each explanatory varia-

ble enters at most once. In this case, conditions (23) 

naturally hold. 

Unfortunately, for problem (12)–(22), it is not 

completely clear how to specify large numbers M . To 

settle this issue, we adopt the approach from [20]. Let 

us replace the constraints (13)–(18) by the following 

ones: 

 
2

2

1 1 1

1 1

1

(1 ) , 1, ,

l

j j k j sk

l

j jj sk

C pl

j u x x k skx z
k s k

C p

sk yx j ux z
s k

M r r

r r M j l





 

  

 

 

       

     

 


  (25) 

 
2

1 2
1 2

1 21 1 1

1
l

jk s jk s s jk

C pl

jk s s su x z z z
s s s

M r r   
  

  

          

2

1 2
1 2

1 21 1

(1 )
l

s s jk jk jk

C p

s s jkz z yz u
s s

r r M   
  

 

     ,      (26) 

21, lj C , 1,k p , 

 
2

1 2
1 2

1 21 1 1

1
l

jk s jk s s jk

C pl

jk s s su x z z z
s s s

M r r   
  

  

          

2

1 2
1 2

1 21 1

(1 )
l

s s jk jk jk

C p

s s jkz z yz u
s s

r r M   
  

 

     ,       (27) 

21, lj C , 1,k p , 

0
jj j M    , βj J

 ,                  (28) 

0
jj jM    , βj J

 ,                  (29) 

0
jk

jk jk M 
 


   , β

,j k J 
 ,              (30) 

0
jk

jk jkM 
 


   , ,j k J

 
 ,              (31) 

0
jk

jk jk M 
 


   , β

,j k J 
 ,              (32) 

0
jk

jk jkM 
 


   , β

,j k J 
 ,              (33) 

where: βJ


 and J

  are the index sets constructed 

from the set  1, 2,..., l  so that their elements satisfy 

the conditions 0
jyxr   and 0

jyxr  , respectively; β
J 


 

and β
J 


 are the index sets constructed from the set

      2 21, 2 ,..., 1, , 2, 1 ,..., {2, },..., { , 1},..., { , }l lp p C C p

so that their elements satisfy the conditions 0
jkyz

r    

and 0
jkyz

r   , respectively; β
J 


 and β
J 


 are the index 

sets constructed from the set     1, 2 ,..., 1, ,p

  2 22, 1 ,..., {2, },..., { , 1},..., { , }l lp C C p  so that their 

elements satisfy the conditions 0
jkyz

r    and 0
jkyz

r   ; 

finally, β 1/
j jyxM r , 1,j l , and β

1/
jk jkyz

M r   and 

β
1/

jk jkyz
M r  , 

21, lj C , 1,k p . 

To find 
juM


 in the constraints (25), we need to 

solve a series of l  linear programming problems with 

the objective functions minju   subject to the con-

straints 

0
jj M   , 

+

βj J ,                     (34) 

β 0
j jM   , βj J

 ,                      (35) 

0
jk

jk M 



  , β

,j k J 
 ,                  (36) 

0
jk

jkM 



  , β

,j k J 
 ,                   (37) 

0
jk

jk M 



  , β

,j k J 
 ,                  (38) 

0
jk

jkM 



  , β

,j k J 
 ,                   (39) 
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2

2

1 1 1

1 1

, 1, ,

l

j k j sk

l

jj sk

C pl

x x k skx z
k s k

C p

sk yx jx z
s k

r r

r r u j l







  



 

   

   

 


            (40)

 

2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

2

1 1

, 1, , 1, ,

l

s jk s s jk

l

s s jk jk

C pl

s s sx z z z
s s s

C p

s s jk lz z yz
s s

r r

r r u j C k p

  

  



  

 

 

   

    

 


 (41) 

2

1 2
1 2

1 2

2

1 2
1 2

1 2

1 1 1

2

1 1

, 1, , 1, ,

l

s jk s s jk

l

s s jk jk

C pl

s s sx z z z
s s s

C p

s s jk lz z yz
s s

r r

r r u j C k p

  

  



  

 

 

   

    

 


  (42) 

2 2

1 1 1 1 1

1
l l

j jk jk

C Cp pl

yx j jk jkyz yz
j j k j k

r r r 
 

    

        .    (43) 

To find 
juM


, we need to solve a series of l  linear 

programming problems with the objective functions 

maxju   subject to the constraints (34)–(43). Simi-

larly, the numbers 
jku

M 
 , 

jku
M 

 , 
jku

M 
 , and 

jku
M 

  are 

obtained by solving a series of 
2

lpC  linear program-

ming problems with the objective functions 

minjku
  , maxjku

  , minjku
  , and maxjku

  , 

respectively, subject to the constraints (34)–(43). 

Thus, by solving the 0-1 MILPP with the objective 

function (12) and the constraints (19)–(22), (25)–(33), 

we construct the linear regression (7) with m  regres-

sors in which the signs of the estimates of the parame-

ters β are consistent with those of the corresponding 

correlation coefficients of the regressors with the vari-

able y . In other words, the following inequalities 

hold: β 0
jj yxr  , 1,j l ; β 0

jk
jk yz

r 
  , β 0

jk
jk yz

r 
  , 

21, lj C , 1,k p . The NLR construction strategy in 

this problem is still regulated, e.g., by constraints (23) 

and (24) on the binary variables. 

As experimentally established in [20, 21], the 0-1 

MILPP (12), (19)–(22), (25)–(33) is solved an order of 

magnitude faster than problem (12)–(22). Moreover, 

since the signs of the estimates of the parameters β are 

consistent with those of the corresponding correlation 

coefficients, the absolute contributions of the variables 

to the total determination 
2

R  are given by 

abs abs

abs 2

β , 1, , β ,

β , 1, , 1, .

j j jk jk

jk jk

x yx j jkz yz

jk lz yz

C r j l C r

C r j C k p

 

 





  

      
   (44) 

They can be used to assess the effect of each regressor 

on the variable y . 

We make two important remarks about the solution 

of problem (12), (19)–(22), (25)–(33). 

Remark 1. As mentioned, the signs of the esti-

mates of the parameters β in the solution are consistent 

with those of the corresponding correlation coeffi-

cients. Hence, all signs of the correlation coefficients 

jyxr  must match the physical meaning of the variables. 

For this purpose, experts from the relevant subject area 

can be involved. Inconsistent variables should be ex-

cluded from consideration. Otherwise, the resulting 

regression will be difficult to interpret. 

Remark 2. For example, suppose that model (8) 

contains the regressor 11 1 2min{ , 8 }z x x
   at the pa-

rameter 11α
. After the transition to the piecewise rep-

resentation, the parameter 11α
 will have either the var-

iable 
1x  or the variable 

28x . If 
11

0
yz

r   , the estimate of 

the parameter 11α
 will surely be positive, and the vari-

ables 
1x  and 

28x  will affect y  with the plus sign. In 

this case, the correlation coefficients 
1yxr  and 

2yxr  

must be positive. (Otherwise, there is a problem with 

interpreting the model.) On the other hand, if 
11

0
yz

r   , 

the estimate of the parameter 11α
 will surely be nega-

tive, and the variables 
1x  and 

28x  will affect y  with 

the minus sign. In this case, the correlation coeffi-

cients 
1yxr  and 

2yxr  must be negative. Therefore, after 

agreeing on the signs of the correlation coefficients 

jyxr , 1,j l , with the experts, it is necessary to form 

the variables jkz


 and jkz


, 
21, lj C , 1,k p , find 

their correlation coefficients with the variable y , and 

eliminate those not satisfying the conditions 

( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
μ 2

0
j

yxr  )  

or ( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
μ 2

0
j

yxr  ),    (45) 

21, lj C , 1,k p ,  

( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
2

0
j

yxr

 )  

or ( 0
jkyz

r    and 
μ 1

0
j

yxr   and 
μ 2

0
j

yxr  ),    (46) 

21, lj C , 1,k p . 

Removing the contradictory variables will natural-

ly decrease the time to construct the NLR. This time 

can be considerably reduced further if we supplement 

the expressions (45) and (46) with the conditions 

jkyz
r r  , 

jkyz
r r  , 

21, lj C , 1,k p ,     (47) 
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where r  is a number chosen from the interval [0, 1]. 

The greater the number r  is, the smaller the number 

of variables will be, and the less time it will take to 

solve the problem. 

2. MODELING 

To construct an NLR, we collected annual statisti-

cal data on the horizon 2000–2020 for the dependent 

variable y  (freight forward by public railway 

transport in Irkutsk oblast, million rubles) and 62 vari-

ables 
1x , 

2x , ..., 
62x , presumably affecting y . First, 6 

variables with the absolute value of the correlation 

coefficient with y  not exceeding 0.2 were removed 

from the list. Then the values of correlation coeffi-

cients for the remaining 56 variables were given to 2 

experts representing the East Siberian Department of 

the Russian Railways. They were asked to eliminate 

the variables for which the signs of the correlation co-

efficients with y  did not correspond to the economic 

meaning of the problem. After the expertise procedure, 

8 factors remained under consideration: 

– the percentage of the working-age population, 

2 ;x   

– labor force (thousand people), 
3x ; 

– the number of pensioners (thousand people), 
5x ; 

– the number of private cars per 1000 people, 
8x ; 

– the number of enterprises and organizations, 
18x ; 

– organizations’ accounts payable (million rubles), 

20x ; 

– electricity production (billion kWh), 
22x ; 

– rail freight tariffs (c. u.), 
58x . 

The value of the variable 
58x  for 2001 was set 

equal to 1000 c. u. It was used to find the other values 

of the variable 
58x  using the known tariff indices. 

For the selected variables, the correlation coeffi-

cients with the variable y  were 
2

0 785yxr . , 

3
0 543yxr . , 

5
0 483yxr .  , 

8
0 446yxr .  , 

18
0 538,yxr .  

20
0 204yxr .  , 

22
0 476yxr . , and 

58
0 465yxr .  . 

These variables affect the variable y  as follows: 

 The growth of the labor force 
2x  and 

3x , as well 

as the growth of the number of enterprises and organi-

zations 
18x  and electricity production 

22x , increases 

the output of products in the region, causing a higher 

demand for rail freight. On the other hand, an increase 

in the variable 
5x  hinders economic development, re-

ducing the demand for rail freight. 

 The surplus of private cars 
8x  reduces the de-

mand for rail transportation (passenger and freight). 

 The growth of organizations’ accounts payable 

20x  has a negative impact on the regional economy: 

for example, it can lead to imposing various penalties. 

 Higher freight tariffs 
58x  naturally reduce the 

demand for rail freight. 

Then, the intervals (5) of the parameters λ j  were 

determined for each pair of the selected variables. To 

form the matrix  , we uniformly divided each inter-

val by four points. As a result, 
2

84 112С   variables jkz


, 

1,28j  , 1,4k  , were obtained with the binary min-

imum operation, and the same number of the variables 

jkz


, 1,28j  , 1, 4k  , were obtained with the binary 

maximum operation. From the 224 variables, we ex-

cluded those not satisfying conditions (45)–(47) with 

0 2r .  (140 variables in total). Thus, the final list in-

cluded 92 variables, of which 8 were explanatory and 

84 were transformed using the minimum and maxi-

mum operations. 

The NLR was constructed by solving the 0-1 

MILPP with the objective function (12) and the con-

straints (19)–(21), (25)–(33). We emphasize that the 

constraint (22) on the number of regressors was not 

applied. The constraints (24) were considered to en-

sure that each explanatory variable entered into the 

final model at most once. The LPSolve IDE solver 

was used to solve the 0-1 MILPPs, and a special pro-

gram in the Delphi environment was developed to 

form mathematical models of the problems for the 

solver. First, the unknown numbers in the constraints 

(25)–(27) were calculated by the program. For that 

purpose, 184 linear programming problems with the 

corresponding objective functions and the linear con-

straints (34)–(43) were solved. Then, the 0-1 MILPP 

problem (12), (19)–(21), (24)–(33) with 284 con-

straints, 92 real and 92 binary variables was formulat-

ed using the calculated numbers and the developed 

program for the LPSolve solver. It was solved on a PC 

with an Intel Core i5 processor (3.40 GHz, 4 cores) 

and 8 GB RAM. As a result, the following NLR was 

constructed in approximately 30 s: 

 

 

(0 6427)

2 18
(13 98)

(0 1129)

5 20
( 3 361)

(0.0843)

8 58
( 2 182)

(0 1063)

3 22
(3 859)

24 5274 1 1895min , 0 000933

0 0196min , 0 006754

0 0323min{ , 0 11725 }

0 0254max{ , 23 079 }.

.

.

.

.

.

.

.

y . . x . x

. x . x

. x . x

. x . x





   




(48) 

Here, the numbers in parentheses below the coeffi-

cients are Student’s t-test values, and the numbers in 
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parentheses above the coefficients are the absolute 

contributions of the regressors to the total determina-

tion (formulas (44)). All regressors were significant by 

Student’s t-test with the significance level α 0 05. . 

The mathematical apparatus proposed in this paper 

does not control the significance of NLR coefficients 

by Student’s t-test or the absolute contributions of the 

variables during the regression construction procedure. 

For significance control, we expect to integrate special 

linear constraints into the 0-1 MILPP in the future. 

The coefficient of determination of the NLR (48) is 
2 0 946183R . , indicating of high quality of the mod-

el. 

The variance inflation factors for the regressors of 

the model (48) do not exceed 10 (no multicollinearity). 

Note that multicollinearity in the 0-1 MILPP cannot 

yet be controlled either. 

Thus, the model (48) is quite interpretable. 

The model (48) in the piecewise form is presented 

in the table. 

 

The equations of model (48) for different ranges of variables 

The NLR equation Ranges of variables 

18 20 58 324.527 0.0011 0.00013 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 20 58 2224.527 0.0011 0.00013 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 20 8 324.527 0.0011 0.00013 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 20 8 2224.527 0.0011 0.00013 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 58 324.527 0.0011 0.0196 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 58 2224.527 0.0011 0.0196 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 8 324.527 0.0011 0.0196 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

18 5 8 2224.527 0.0011 0.0196 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 58 324.527 1.1895 0.00013 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 58 2224.527 1.1895 0.00013 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 8 324.527 1.1895 0.00013 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 20 8 2224.527 1.1895 0.00013 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 58 324.527 1.1895 0.0196 0.0038 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 58 2224.527 1.1895 0.0196 0.0038 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 8 324.527 1.1895 0.0196 0.0323 0.0254y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     

2 5 8 2224.527 1.1895 0.0196 0.0323 0.5857y x x x x       5 8 32

18 20 58 22

0.000933, 0.00675, 0.117, 23.08
x x xx

x x x x
     
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According to the table, the composition of the var-

iables affecting y  changes depending on the condi-

tions satisfied, and the parameter estimates

4 1λ 0 000933, .
  , 16 2λ 0 00675, .

  , 22 2λ 0 117, .
  , and 

12 3λ 23 08, .
   play the role of switching points for the 

following four automatically generated indicators: 

– the ratio of the percentage of the working-age popu-

lation ( 2x ) to the number of enterprises and organiza-

tions ( 18x ); 

– the ratio of the number of pensioners ( 5x ) to organi-

zations’ accounts payable ( 20x ); 

– the ratio of the number of private cars per 1000 peo-

ple ( 8x ) to the rail freight tariffs ( 58x ); 

– the ratio of labor force ( 3x ) to electricity production 

( 22x ). 

Then the following interpretation is valid. 

 If the indicator x2/x18 is not smaller than 

0.000933, the number of enterprises and organizations 

x18 will affect freight forward, whereas the percentage 

of the working-age population x2 will have no effect. 

For example, increasing the number of enterprises and 

organizations x18 by 1 (under fixed values of the other 

variables) raises the freight forward y by 0.0011 mil-

lion rubles on average. However, if the indicator x2/x18 

is less than 0.000933, the percentage of the working-

age population x2 will affect freight forward, whereas 

the number of enterprises and organizations x18 will 

have no effect. For example, increasing the percentage 

of the working-age population x2 by 1% (under fixed 

values of the other variables) raises the freight forward 

y by 1.1895 million rubles on average. 

 If the indicator x5/x20 is not smaller than 0.00675, 

organizations’ accounts payable x20 will affect freight 

forward, whereas the number of pensioners x5 will 

have no effect. For example, increasing organizations’ 
accounts payable x20 by 1 million rubles (under fixed 

values of the other variables) reduces the freight for-

ward y by 0.00013 million rubles on average. Howev-

er, if the indicator x5/x20 is less than 0.00675, the num-

ber of pensioners x5 will affect freight forward, where-

as organizations’ accounts payable x20 will have no 

effect. For example, increasing the number of pen-

sioners x5 by 1000 people (under fixed values of the 

other variables) reduces the freight forward y by 

0.0196 million rubles on average. 

 If the indicator x8/x58 is not smaller than 0.117, 

the rail freight tariffs x58 will affect freight forward, 

whereas the number of private cars x8 per 1000 people 

will have no effect. For example, increasing the rail 

freight tariffs x58 by 1 c.u. (under fixed values of the 

other variables) reduces the freight forward y by 

0.0038 million rubles on average. However, if the in-

dicator x8/x58 is less than 0.117, the number of private 

cars x8 per 1000 people will affect freight forward, 

whereas the rail freight tariffs x58 will have no effect. 

For example, increasing the number of private cars x8 

per 1000 people by 1 (under fixed values of the other 

variables) reduces the freight forward y by 0.0323 mil-

lion rubles on average. 

 If the indicator x3/x22 is not smaller than 23.08, 

the labor force x3 will affect freight forward, whereas 

the electricity production x22 will have no effect. For 

example, increasing the labor force x3 by 1 thousand 

people (under fixed values of the other variables) rais-

es the freight forward y by 0.0254 million rubles on 

average. However, if the indicator x3/x22 is less than 

23.08, the electricity production x22 will affect freight 

forward, whereas the labor force x3 will have no effect. 

For example, increasing the electricity production x22 

by 1 billion kWh (under fixed values of the other vari-

ables) raises the freight forward y by 0.5857 million 

rubles on average. 

Thus, the interpretative characteristics of the NLR 

are richer and more diverse than those of the tradition-

al linear regression model. Moreover, depending on 

the chosen construction strategy, the approximation 

characteristics of the NLR should in most cases ex-

ceed the same characteristics of linear regressions, 

which are only a particular case of the NLR. The pro-

posed NLR are valuable: besides forecasting, they ex-

tract new interpretable mathematical laws to improve 

the efficiency of managerial decisions in various sec-

tors of the economy. 

Also, note that the NLR better suits modeling un-

der multicollinearity conditions than the traditional 

linear regression. The more binary operations the NLR 

has, the higher the number of its degrees of freedom 

will be as compared to the linear regression. This 

means that the NLR can “accommodate” more varia-

bles with fewer regressors than the linear regression. 

For example, the NLR (48) contains only 4 regressors 

but 8 variables, so the chance of its multicollinearity is 

a priori lower compared to a linear regression with all 

8 variables. 

CONCLUSIONS 

This paper has considered the NLR with the binary 

minimum and maximum operations. We have pro-

posed an NLR construction method based on solving a 

0-1 MILPP. The solution of this problem yields the 

structural specification of the NLR and its approxi-

mate OLS estimates. As shown, the structural specifi-

cation of the NLR is regulated through constraints on 

the binary variables. The contradictory variables have 

been eliminated at the initial stage to reduce the solu-
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tion time of the problem and make the NLR quite in-

terpretable. The proposed method has been applied to 

model rail freight in Irkutsk oblast; the resulting NLR 

has revealed new rail freight regularities not available 

within classical linear regression analysis. 

The method proposed above is universal and can 

be used to construct NLRs in any subject area based 

on statistical data with positive variables only. The 

parameter partitioning procedure forms a 0-1 MILPP; 

for a sufficiently large number of partitions, its opti-

mal solution gives estimates slightly differing from the 

optimal OLS estimates of the NLR. Naturally, increas-

ing the number of partitions requires more time to 

solve the problem. Nevertheless, as demonstrated in 

[20, 21] on the linear regression example, such a 0-1 

MILPP is solved an order of magnitude faster com-

pared to standard enumeration procedures. The speed 

of constructing NLRs for different-size samples using 

the proposed method will be tested in subsequent pub-

lications. 
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Abstract. We propose a simple upper bound on trajectory deviations for an affine family of 

discrete-time systems under nonzero initial conditions subjected to bounded exogenous disturb-

ances. It involves the design of a parametric quadratic Lyapunov function for the system. The 

apparatus of linear matrix inequalities and the method of invariant ellipsoids are used as tech-

nical tools. The original problem is reduced to a parametric semidefinite programming problem, 

which is easily solved numerically. Numerical simulation results demonstrate the relatively low 

conservatism of the upper bound. This paper continues the series of our previous publications 

on estimating trajectory deviations for linear continuous- and discrete-time systems with para-

metric uncertainty and exogenous disturbances. The results presented below can be extended to 

various robust formulations of the original problem and also the problem of minimizing trajec-

tory deviations for an affine family of discrete-time control systems under exogenous disturb-

ances via linear feedback. 
 

Keywords: linear discrete-time system, trajectory deviations, parametric Lyapunov function, bounded 

exogenous disturbances, linear matrix inequalities, invariant ellipsoids.  
 

 

 

INTRODUCTION  

When investigating transients in linear systems, the 

behavior of the entire system trajectory is of great 

interest. In this case, the maximum deviation of the 

trajectory from zero is a crucial characteristic of 

transients. 

There exist different methods for estimating 

trajectory deviations for a dynamic system; for 

example, see a survey in the paper [1]. In particular, a 

regular approach was proposed therein to estimate the 

maximum deviation for a linear continuous-time 

system; also, an approach was developed to minimize 

trajectory deviations via a static linear state feedback 

law based on linear matrix inequalities (LMIs). The 

latter approach was extended in [2] to discrete-time 

systems with structured matrix uncertainty. 

Another important and promising line of research 

in this area concerns the localization method for 

invariant compact sets. Here, we mention the works of 

Russian researchers, A.P. Krishchenko, A.N. 

Kanatnikov, and S.K. Korovin; for example, see the 

papers [3–6]. 

The case where uncertain parameters are matrix 

elements is not common in practice: usually, the 

matrix coefficients have no direct physical meaning 

and depend on the parameters in a more sophisticated 

way. Affine uncertainty is the simplest model of such 

a dependent uncertainty structure; see the monograph 

[7] for details. 

Discrete-time systems with parametric uncertainty 

were studied in [8–10]. From a technical point of 

view, the cited works involved the approach from 

[11]. This approach allows separating the system 

matrix and the Lyapunov function matrix in a matrix 

inequality expressing a sufficient condition for the 

stability of the family under consideration. At the 

same time, less conservative estimates are obtained by 

designing a parametric quadratic Lyapunov function. 

http://doi.org/10.25728/cs.2022.4.2
mailto:khlebnik@ipu.ru
mailto:yanakvinto@mail.ru
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Also, note the publications [12, 13] devoted to a close 

topic. 
In this paper, we continue the described line of 

research to derive upper bounds on trajectory 

deviations for an affine family of discrete-time 

systems with nonzero initial conditions subjected to 

bounded exogenous disturbances. The main technical 

tool is the apparatus of LMIs [14, 15]. 

The following notations are used below:   

means the spectral norm of a matrix and the Euclidean 

norm of a vector; 
T
 is the transpose symbol; I denotes 

an identity matrix of appropriate dimensions. All 

matrix inequalities are understood in the sense of sign 

definiteness of corresponding matrices. 

 

1. PROBLEM STATEMENT AND SOLUTION APPROACH 

Consider a linear discrete-time dynamic system 

described by  

 1 (α)k k kx A x Dw                        (1) 

with the state vector xk  ℝn
, a nonzero initial 

condition x0, and an exogenous disturbance wk  ℝm
 

satisfying the constraint  

 1, 1, 2, ...kw k                      (2) 

Here D  ℝnm
, and Schur matrices A()  ℝnn

 

belong to the convex family  

 1 1
(α) : (α) α , α 1, α 0 .N N

i i i ii i
A A A

 
      (3) 

As is well known, a sufficient condition for the 

robust quadratic stability of a linear system consists in 

the existence of a common quadratic Lyapunov 

function  

T 1( ) , 0.V x x P x P   

According to [8–10], the approach based on designing 

a parametric quadratic Lyapunov function  

T 1( ) (α) , (α) 0,V x x P x P   

yields significantly less conservative estimates. In 

addition, the following assertion was established in [8] 

for system (1)–(3). 

Theorem 1.  Assume that there exist matrices  
0 < Pi = Pi

T  ℝnn and G  ℝnn such that  

T T T

T

μ( ) 0 0, 1, ..., ,
0 (1 μ)

i i

i i

P AG D

G A G G P i N

D I

 
     
  

 

for some 0 < < 1. 

Then system (1)–(3) has a parametric quadratic 
Lyapunov function with the matrix  

1
(α) α .N

i ii
P P


  

This paper mainly aims at estimating from above 

trajectory deviations for the family (1) under the 

exogenous disturbance (2). 
For a discrete-time system, the maximum deviation 

of the trajectory from zero in transients is given by  

01 2 1
max max*

k
k , , x

x .
  

    

Estimation of the value *
 is very difficult [1], but the 

method of invariant ellipsoids with the technique of 

LMIs yields simple upper bounds on this value. 
Recall the following well-known result. A matrix  

P > 0 of a quadratic Lyapunov function for some 

dynamic system defines the so-called invariant 
ellipsoid  

  T 1: 1 , 0.nx x P x P  =  

In other words, a system trajectory starting at any 

point of the invariant ellipsoid will remain there. 

Hence, for any initial condition from the ball 

    1{ : }nx x    contained in the ellipsoid, we 

have the upper bound  

 maxλkx P P   

for any time instant. 

In view of this fact, our aim is to find a minimum 
invariant ellipsoid associated with the matrix P = P() 

of the parametric quadratic Lyapunov function for the 

family under consideration. 
Since 

1 1

1

(α) α α

α max max ,

N N

i i i ii i

N

i i ii i i

P P P

P P

 



  



 


 

within the proposed approach we will minimize the 

upper bound on the major semiaxis of the invariant 

ellipsoid with the matrix P(), i.e., the value  

max i
i

P . 

Further, the condition   is equivalent to the 

requirement  

(α)P I  

and is ensured by Pi  I, i = 1, ..., N. Indeed,  

1 1
(α) α α .N N

i i ii i
P P I I

 
     
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According to Schur’s complement lemma, the 

matrix inequality 

 
 

T T T

T

0 0

0 1

i i

i i

P AG D

G A G G P

D I

 
 

    
    

 

can be equivalently written as 

 

T

T T T

1

1 0
i i

i i

P DD AG

G A G G P

    
    

. 

Due to the upper bound 

 
1

max ,k i
i .,N

x P P
 

    

we therefore arrive at the following assertion. 

Theorem 2. Let *
iP , i = 1, ..., N, be the solution of 

the convex optimization problem 

1,...,
min max i

i N
P


 

subject to the constraints 

 

T

T T T

1

1 0
i i

i i

P DD AG

G A G G P

    
    

, 

Pi  I, i = 1,...,N, 

with respect to the matrix variables Pi = Pi
T  ℝnn

 and 

G ℝnn and the scalar parameter 0 < < 1, where the 
matrices ,iA   D  are given by(1), (3). 

Then the solutions of system (1) under all 
admissible exogenous disturbances (2) have the upper 
bound  

1
max *

k i
i , ,N

x P
 

 . 

The optimization problem in Theorem 2 is a 

parametric semidefinite programming problem. It can 

be easily solved numerically through one-dimensional 

optimization by varying the parameter  within the 

range (0, 1). In particular, the CVX package [16] can 

be effectively used in MATLAB. 

2. AN EXAMPLE 

Consider the system from [8] in a slightly modified 

form: 

1

0.0061 0.2630 0.2748

0.1266 0.1242 0.3029 ,

0.5100 0.4678 0.9712

A

 
   
   

 

2

0.1330 0.2009 0.1672

0.1224 0.5987 0.3100 ,

0.5235 0.0297 0.4784

A

 
   
   

 

3

0.2733 0.1868 0.0077

0.0253 0.2828 0.6112 ,

0.2412 0.0844 0.8024

A

   
    
    

 

0.4

0.5 .

0.2

D

 
   
 
 

 

Solving the one-dimensional optimization problem 

in Theorem 2 yields (for  = 0.873) the matrices  

*

1

4.0127 0.4418 2.1495

0.4418 4.3296 0.6922 ,

2.1495 0.6922 2.8445

P

 
   
  

 

*

2

2.7515 0.7640 1.2374

0.7640 4.8052 0.1782 ,

1.2374 0.1782 2.2964

P

 
   
   

 

*

3

2.2435 1.9108 0.7729

1.9108 3.9362 1.1877

0.7729 1.1877 1.4804

P

 
   
   

 

of the parametric Lyapunov function and the matrix  

*

2.7991 0.0704 1.4510

2.2860 5.1487 0.6981 .

1.0359 0.2141 1.9738

G

  
   
  

 

Hence,  

*

1 2.3791,P  *

2 2.2774,P   3 2 3791,*P .  

and finally we have the upper bound  

 1 2 3 1max 2.3791* * * *
kx P , P , P P   . 

For comparison, the common quadratic Lyapunov 

function for this system, found according to [5], has 

the matrix 

*

27.1113 9.3697 23.8293

9.3697 76.0285 6.4098 ,

23.8293 6.4098 47.9982
comm

P

  
   
  

 

yielding more than triple the rough estimate:  

9 0666*
k commx P .  . 
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Figure 1 shows the projections of the ellipsoids 

with the matrices P1
*
, P2

*
, and P3

*
 (the thin solid lines) 

and the invariant ellipsoid with the matrix Pcomm (the 

thick dashed line) on the plane (x2, x3); the dotted line 

corresponds to the projection of a unit sphere.  

 
          

 

 
Fig. 1. The projection of ellipsoids on the plane (x2, x3). 

 

Figure 2 shows the central part of Fig. 1 and the 

projection of the system trajectory under the initial 

condition  

0

0

0.1391

0.9903

x

 
   
  

, 0 1,x   

and the admissible exogenous disturbance  

sign(sin( /4)cos( /7)), 1, 2, ...kw k k k   

(the dotted line).  
 

       

 

 
Fig. 2. The projection of ellipsoids and system trajectory on the plane 

(x2, x3). 

Fig. 3 shows the dynamics of the value kx  (the 

solid line) and its upper bound (the dashed line).  

 
     

 

 

Fig. 3. Dynamics of kx  and its upper bound. 

 

3. CONCLUSIONS 

This paper has presented a simple upper bound on 

a crucial characteristic of transients––the maximum 

trajectory deviation from zero––for an affine family of 

discrete-time systems with nonzero initial conditions 

subjected to bounded exogenous disturbances. 

Developing our previous research works, the 

estimation approach proposed above involves the 

design of a parametric quadratic Lyapunov function 

for the system under consideration. The apparatus of 

linear matrix inequalities and the method of invariant 

ellipsoids are used as technical tools. The original 

problem has been reduced to a parametric semidefinite 

programming problem, which is easily solved 

numerically, particularly in MATLAB using the CVX 

package. 

We expect to extend these results to various robust 

formulations of the original problem and the problem 

of minimizing trajectory deviations for an affine 

family of discrete-time control systems under 

exogenous disturbances via linear feedback. 
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Abstract. The types of rock destruction at the bottom hole under different loads on the drilling 

bit are considered, and well-known domestic and foreign models of the penetration rate are ana-

lyzed. As shown, they have no optima as power-type functions, being unsuitable for drilling 

optimization. In addition, they can be used for quick drilling control by adjusting only one pa-

rameter (the load on the bit). A mathematical model based on a sinusoid curve is constructed. 

This model allows the simultaneous control of three drilling mode parameters, namely, the axial 

load on the bit, its rotation frequency, and the mud flow rate for flushing the well. The adequacy 

of the model to the drilling process is verified, and its software implementation is performed. 

This model automatically recognizes the rock at the bottom hole during drilling, adapts to it, 

and calculates the optimal control parameters for destructing the traversed rock. The model is 

intended for an intelligent optimal adaptive control system for oil and gas well drilling.  
 
Keywords: analysis of mathematical models of drilling rate, the optimum of a function, a model with 

three control parameters, optimal adaptive control, adequacy of the model.  
 

 

 

INTRODUCTION  

The main drilling process in well construction is 

the mechanical destruction of the rock with a bit at the 

bottom hole. This process is described by the equation 

of the mechanical penetration rate υm. Numerous fac-

tors affect the penetration rate; among them, note the 

load and torque on the bit, bit rotation frequency, mud 

flow rate and pressure, the rheological properties of 

the mud, and the lithological characteristics of the rock 

at the bottom hole.  

On a large array of field and experimental drilling 

data, M.G. Bingham (the USA) studied in detail the 

function υm = f( G ), where G  is the specific axial 

load on the bit [1, 2] (the load reduced to the bottom 

hole area Sbot = πDbit
2
/4, where Dbit is bit diameter). As 

he concluded, this function is of power type, unimod-

al, and has the form of an S-shaped curve (Fig. 1). The 

qualitative  relation  of  the  function  with  physical  and  
 

                 

 

 

Fig. 1. Bingham’s S-curve. 
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mechanical properties of the rock formation and pa-

rameters of flushing fluid was also established by 

Bingham. Domestic and foreign drilling practice con-

firms his conclusions; see [2–9] and other publica-

tions. 

According to Bingham, the penetration rate func-

tion υm has several zones: 

 zone I, where axial loads are low, the rock is de-

structed insignificantly (surface abrasion), and bit 

teeth pressure on the rock is smaller than its 

strength limit; 

 zone II, where the contact pressure of bit teeth on 

the bottom hole increases and small pieces of the 

rock break off, causing a considerable increase in 

the penetration rate υm  according to a nonlinear 

power-type law; 

 zone III, where the load G exceeds the rock 

strength, causing the significant volumetric de-

struction of the rock according to an almost-linear 

law with a slope much greater than in zone I; 

 zone IV, where the flushing fluid does not carry 

the drilled rock to the surface in due time; the cut-

tings are deposited on the bottom hole and are re-

milled. In addition, the penetration rate υm 

achieves maximum at the axial load Gm and then 

decreases. 

The mathematical model of the drilling rate should 

reliably reflect these rock destruction zones and have 

an optimum for calculating the optimal values of the 

mode parameters. It is also important to determine the 

model’s control parameters.  

1. DRILLING MODELS 

Many mathematical models of the penetration rate 

have been developed to describe the rock destruction 

process, both in Russia and abroad; see [1–3, 5–8, 10–
12]. The basic (and typical) models and curves for the 

mechanical penetration rate are combined in Table 1. 

 

Table 1 

Mathematical models and graphs of the mechanical drilling rate 

Models Graphs 

 

 

The VNIIBT model [6, 7]:  

 

υm = kdril G
δ
n

α
, 

where kdril is the rock drillability coefficient, which depends on bit type and rock 

and mud properties; n is the bit rotation frequency, rpm; finally, δ and α are the 

slope parameters of the curve. 

        

 

 

 

The Pogarskii model [5–7]:   

υm =

2α

441

а n G

b G
,  

where  a is the drillability coefficient; α is an index affecting the curve steep-

ness; finally, b is a coefficient depending on the mud flow rate. 

         

 

 

vm, m/h  

25 

20 

15 

10 

5 

0 
1       3      5      7      9  G, kN 

vm, m/h  

30 

25 

20 

15 

10 

5 

0 
  1      3       5       7      9   G, kN 



 

 
 

 

 

 

19 CONTROL SCIENCES   No. 4 ● 2022 

CONTROL OF TECHNICAL SYSTEMS AND INDUSTRIAL PROCESSES 
 

Table 1 (continued) 

 

 

The Tenneco Oil Company model (the USA) [2, 7]: 
α

dril 0
m 

( )

( )

k G G n

f h


  , 

where G0  is the critical load on the bit for the teeth to penetrate into the rock; 

f(h) is a function characterizing the bit condition. 

            

 
 

 

 

The Galle–Woods–Lubinski model (the USA) [2, 7]: 

dril

3[ ( )]b

dh G r
k

dt a D


β

, 

where β is the power index at the axial load; r is a function depending on the bit 

rotation frequency n, calculated separately for rocks of different hardness;  

a(D3) is the wear function of the bit armament; D3 is the relative wear degree of 

the bit armament; finally, b is the power index for the function a(D3).  

                

 

 

 

According to analysis results, these models de-

scribe bit operation with different accuracy mainly 

within the linear zone III of Bingham’s curve and have 

no maximum. Therefore, they are unsuitable for opti-

mization. Moreover, in drilling practice, penetration 

rate control based on these models often adjusts the 

axial load G only: the parameters n and Q remain 

fixed during the trip. As a result, drilling modes are 

not optimal. 

The contribution of the axial load G to the penetra-

tion rate reaches 43%; for the bit rotation frequency n 

and the mud flow rate Q, the corresponding figures are 

up to 14% and 7%, respectively [13]. Hence, they 

should be considered when calculating the optimal 

drilling parameters.  

2. A DRILLING MODEL WITH THREE PARAMETERS 

As a regression equation, Bingham’s curve υm = 

f(G) can be represented as a fragment of a sinusoid 

shifted to quadrant I of the coordinate plane (Fig. 2):  

            

 

 
Fig. 2. A fragment of sin(x - π/2) + 1 shifted to quadrant I. 
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the graph should be raised by one on the y axis and 

shifted to the right by 1.57 rad on the x axis. 

In drilling modes, depending on rig power and well 

depth, the axial load G on the bit varies from 0 to 40 

N, and the drilling rate may reach 10–14 m/h and 

higher [4–8, 10–12, 14]. To match the argument x with 

the load G and the function y with the real drilling rate 

υm, we have to rescale them by introducing appropriate 

coefficients into the equation: 

– the constant CG to convert the radian measure of 

the argument x into the units of the load G, N; 

– the proportionality factor kυ to scale the function 

y vertically.  

As a result, the dependence υm = f(G) takes the 

form 

υm = kG sin(CG G – 1.57) + 1.  

According to [3, 10–12] and others, the functions 

υm = f(n) with G = const and Q = const and υm = f(Q) 

with G = const and n = const are also unimodal. Their 

graphs are presented in Fig. 3 and can also be approx-

imated by sinusoid fragments.  

The curve υm = f(n) is described by the equation υm 

= kn sin(Cn n), and the curve υm = f(Q) by the equation 

υm = kQ (sin(CQ Q – 0.7) + 0.645), where the values kn, 

kQ, Cn, and CQ have the same meaning as kG and CG 

for the curve of the load on the bit. The operating 

ranges for wells are as follows: the bit rotation fre-

quency, from 10 to 120 rpm; the mud flow rate, from 

20 to 80 l/s [4–8, 10–12, 14]. 

The full mathematical model of the drilling rate υm 

= f(G, n, Q) as a function of the three parameters for 

optimal control of the drilling process has the form of 

their product: 

υm = kυ (sin(CG G – 1.57) + 1) × 

sin(Cn n)×(sin(CQ Q – 0.7) + 0.645),         (1)  

where kυ  = kG kn kQ is the total coefficient of the curve 

shape, equivalent to the drillability coefficient of the 

rock traversed by the bit at the bottom hole.  

We verified the reliability of this model and its ad-

equacy to real drilling conditions using drilling report 

data for completed wells in the Krasnodar region: 

Vostochno-Pribrezhnaya no. 9, Peschanaya no. 7, and 

Krupskaya no. 1 (wells nos. 1–3 in Fig. 4, respective-

ly). The average deviations of the experimental data 

from the data based on model (1) were 12%, 13%, and 

23%, respectively, which is a good outcome: the wells 

were drilled according to the drilling project documen-

tation (not in optimal modes). The closest-to-optimal 

results were obtained for Vostochno-Pribrezhnaya no. 

9 (well no. 1).  

The graphs of the function (1) and its components 

and the drilling data for the three wells are shown in 

Fig. 4. 

To plot the four-dimensional function υm = f(G, n, 

Q) on the two-dimensional coordinate plane, we repre-

sented the argument x in Fig. 4 in relative units, with x 

= G for the function υm = f(G), x = n/6 for the function 

υm = f(n), and x = Q/4 for the function υm = f(Q). 

As a result, the following conclusions can be made. 

 The data obtained from the drilled wells confirm that 

the drilling model (1) accurately enough, with aver-

age errors of 12–23%, describes the mechanical de-

struction of rocks. Note that the wells were drilled on 

the parameter values recommended by the projects, 

which are compiled according to the results of the 
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Fig. 3. The graphs of functions: (a) υm = f(n) and (b) υm = f(Q).  
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Fig. 4. The graphs of functions υm  = f(G), υm = f(n), υm = f(Q), and υm = 

f(n, G, Q). 

 

neighboring wells. For a new well, they are practical-

ly not optimal. 

 During drilling, the optimal modes were achieved 

only at some depth intervals, mainly for well no. 1.  

 The experimental and model-based data confirm that 

Bingham’s curve is S-shaped. 

3. ASSESSING THE ADEQUACY OF THE MODEL 

As recommended in [15], generally accepted statis-

tical criteria should be used for assessing the adequacy 

and quality of mathematical models and quickly esti-

mating their main parameters. These recommendations 

were developed for transport networks. However, sta-

tistical criteria are universal and can be applied to 

models of any processes and objects. 

Following the recommendations [15], we em-

ployed five criteria to assess the models:  

– the absolute mean error δa, 

– the relative mean error δp,  

– the standard deviation ϑa, 

– the relative standard deviation ϑp, 

– the coefficient of correlation r. 

At present, there are no precise values of these cri-

teria under which a model is considered reliable. For 

applications, however, the relative criteria should not 

exceed 10%, and the coefficient of correlation should 

not be smaller than 0.9; for details, see [15].  

The values of the adequacy criteria for model (1) 

are presented in Table 2. 

According to the results, the model correlates well 

with real drilling processes and is suitable for optimal 

well control; the model’s coefficient of correlation 

with drilling data is close to 1.  

Table 2 

Values of the adequacy criteria 

Criterion Well no. 1 Well no. 7 Well no. 9 

δa 0.33 0.16 0.38 

δp 10.01% 9.08% 18.40% 

ϑa 2.02 0.93 1.21 

ϑp 6.13% 5.59% 5.85% 

r 0.98 0.74 0.89 

 

4. PARAMETER OPTIMIZATION 

The model was tested using the method of Bryansk 

partisans [16], i.e., an intelligent global optimization 

method for functions of several variables. This method 

includes two stages as follows. At the first stage (re-

connaissance), the domain of the function is divided in 

half for each argument, and up to 30 agents are ran-

domly initialized in each zone; then, the optimum of 

each zone is found, and the zone with the best opti-

mum is selected. At the second stage (diversion), up to 

500 agents are initialized in the selected zone, their 

optima are calculated, and the best optimum of the 

function is selected. We developed a Python program 

for optimum search and launched it with the following 

parameters: the number of partitions at the first stage, 

from 1 to 4; the number of reconnaissance agents, 

from 10 to 50; the number of diversion agents, from 

200 to 500. The numerical results coincide; see Fig. 5 

for one scenario of calculating the maximum drilling 

rate. 

 

 

 

Fig. 5. The interface of the optimum search program. 

 

The maximum mechanical penetration rate υm max = 

5.58 m/h is achieved for Gopt = 16 N, nopt = 31 rpm, 

and Qopt = 23 l/s, which corresponds to the real param-

eters of drilling process control.  
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5. AN ADAPTIVE DRILLING METHOD 

Model (1) is intended for the adaptive procedure of 

optimal drilling control.  

The paper [17] described a methodology for adapt-

ing computer systems to exogenous impacts (intru-

sions) through their classification. It includes five 

modules (stages): input data (impact) processing, input 

data transformation (autocoding), searching for ana-

logs in the database, classification, and feedback (de-

veloping the system response to the exogenous im-

pacts). For the drilling process, this adaptation princi-

ple was modified as follows: 

 – With a chosen step of the penetration interval 

(e.g., every 0.3 m), the current values of the drilling 

parameters G, n, and Q and the resulting penetration 

rate υm are entered into the model.  

– The model coefficients k and C are recalculated 

for the current values of G, n, Q, and υm. Therefore, 

the model is adapted to the rock at the bottom hole. 

The model automatically recognizes the type of rock 

traversed by the bit. 

– The optimal values of the parameters Gopt, nopt, 

and Qopt are calculated on the adapted model. (The 

optimality criterion is υm = max.) 

– The parameter values Gopt, nopt, and Qopt are set 

on the oil rig, and the next interval of 0.3 m is execut-

ed in the optimal mode. 

This cycle (entering the new values of G, n, Q, and 

υm; recognizing the rock; adapting the model to it; cal-

culating the optimal parameters; drilling in the optimal 

mode) is repeated until the well depth is reached, or 

the bit is worn. The described procedure has an obvi-

ous advantage: there is no need to identify the rock 

drilled at the bottom hole with the one in the lithologi-

cal database of the well and classify it. (Note that the 

rock is not necessarily included in the database.)  

 

CONCLUSIONS 

As shown by the analysis, the widespread drilling 

models mainly involve the linear zone of Bingham’s 

curve, adjust only one control parameter, have no op-

timum, and therefore are not suitable for optimization. 

The new drilling model based on the sinusoidal 

curve allows the simultaneous optimal control of three 

drilling parameters (the load on the bit, the bit rotation 

frequency, and the mud flow rate) and has a common 

optimum for them. Moreover, the reliability of this 

model has been confirmed by the practical results ob-

tained on the drilled wells: the model’s coefficient of 

correlation with the drilling data is close to 1. 

The optimal parameters calculated using the opti-

mum search program have confirmed the suitability of 

the model for the optimal control of oil and gas well 

drilling. 
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Abstract. Forming optimal motion control laws for unmanned vehicles (UVs) by analyzing 
sensory data about the choice environment is an integral part of designing their situational con-
trol systems. The weakly predictable variability of the UV operating environment and the im-
perfection of measuring means reduce the possibility of obtaining comprehensive information 
about the environment state. Therefore, routing to minimize travel time and the probability of an 
accident is performed under uncertainty. An effective way to solve this problem is using logi-
cal-probabilistic and logical-linguistic models and algorithms. This paper is intended to develop 
new optimal routing methods for UVs with estimating the probability of an accident based on 
the logical-linguistic classification of route segments. For this purpose, the rows of parameters 
and characteristics of reference route segments are created and compared with the logical-
probabilistic and logical-linguistic parameters and characteristics of classified route segments 
considering their significance for routing. After processing sensory and statistical data, the pro-
posed logical-probabilistic and logical-linguistic methods are used to estimate the probabilities 
of accidents and minimize a performance criterion. As a consequence, the accuracy and speed 
of optimal routing for UVs are both increased. The results of this research can be used in the 
central nervous system of intelligent robots to classify route segments obtained by analyzing 
sensory and statistical data, which will improve the quality of motion control in an uncertain 
environment. 
 

Keywords: optimization, control laws, the probability of an accident, sensory and statistical data, the at-
tributes of reference route segments, logical-probabilistic and logical-linguistic analysis and classification.   
 

 
 

INTRODUCTION  

The development of unmanned vehicles (UVs), in-

cluding unmanned aerial vehicles (UAVs), has recent-

ly become in high demand [1, 2]. The R&D works on 

UVs are determined by the following key problems: 

1) extending the duration of autonomous operation; 

2) improving navigation systems;  

3) increasing payload; 

4) raising the degree of autonomy based on artifi-

cial intelligence.  
 
 

________________________________ 
1 

This work was supported by the Ministry of Science and High-

er Education of the Russian Federation within the State order 
under contract No. FFNF-2021-00081281112500304-4.  

The fourth problem has recently been associated 

mainly with using neural network technologies [3–7]. 

Among their significant drawbacks, note the con-

troversial problems of choosing a sufficient learning 

sample without overtraining the neural network and 

the problem of covering as many choice situations in 

decision-making as possible [8]. In addition, when 

forming control principles and algorithms, researchers 

and engineers consider information security problems 

for UVs [9] but often neglect motion safety issues of 

optimal routing [10, 11]. However, the prevention of 

accidents is the main operating principle of motion 

control systems for UVs and other robotic devices ca-

pable of moving in an automatic mode [12]. To im-

plement this principle, it is necessary to develop algo-

http://doi.org/10.25728/cs.2022.4.4
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rithms for estimating the probability of an accident on 

a route and select the safest route under the existing 

constraints. Moreover, when solving the motion con-

trol problem, it is necessary to consider additional 

complexities due to the coordination of all motion par-

ticipants: each participant must satisfy the correspond-

ing kinematic equations and the existing state-space 

constraints, including dynamic constraints [13, 14] to 

minimize the probability of collision and related risks.  

Risk assessments are predictive in nature since 

their uncertainty is associated with many factors that 

cannot be accurately estimated. The uncertainty of 

predictable risks causes situations reducing the proba-

bility of UV’s accident-free motion along a route.  

Qualitative and quantitative methods [15–17] are 

used to assess risks under uncertainty. The qualitative 

approach consists in determining all possible types of 

accident risks on a route and identifying their areas of 

occurrence and sources [18]. Further, this approach 

can serve for obtaining quantitative risk assessments. 

The quantitative approach allows calculating the value 

of individual risks on route segments and the entire 

route [19, 20].  Note that methods of probability theo-

ry and mathematical statistics are often used. In this 

case, it is necessary to study scenarios that simulate 

and analyze the simultaneous consistent change of all 

factors on route segments considering their interde-

pendence. The conditions of implementing UV control 

algorithms are described by an expert through scenari-

os (e.g., pessimistic, optimistic, and most probable 

ones) or a system of constraints on the main parame-

ters of the route and the corresponding indicators 

characterizing the probability of an accident. 

This approach involves expert assessments ob-

tained by complex procedures [21], starting with the 

selection of the number and qualification levels of ex-

perts. The results of the multi-step procedure are pro-

cessed by statistics and qualitative analysis methods. 

Regression and correlation analysis tools are used for 

comprehensive risk analysis, and methods of the logi-

cal-probabilistic approach are employed for detailing 

and analyzing structurally complex routes [22]. 

In risk prediction under limited statistical data, it is 

reasonable to create a database of reference route 

segments that contains their qualitative attributes and 

quantitative expert assessments (the values of their 

membership functions and the values of their signifi-

cance factors), as proposed in the logical-linguistic 

classification [23]. Within the scenario approach, 

which uses fuzzy set methods to calculate the values 

of the membership functions, it is then possible to rank 

the set of admissible routes by comparing a given 

route with the reference routes from the database [24]. 

In this case, the probability of an accident on reference 

route segments can be estimated by simulating UV’s 
motion under uncertainty [25] and the available statis-

tical data. Simulation modeling generates hundreds of 

possible accident combinations. After analyzing the 

simulation results and statistical data, it is possible to 

obtain distributions of the probabilities of accidents on 

reference route segments and give an integral assess-

ment of the control efficiency and intelligence level of 

the UV [26] after optimal routing. In particular, this 

approach has been applied to determine the probabili-

ties of accidents on reference route segments when 

forming the reference database in the proposed logi-

cal-linguistic method. The problem is to develop a 

method for an automatic control system (ACS) to se-

lect an optimal route of the vehicle that moves under 

uncertainty using logical-linguistic classification of 

route segments to certain reference models with the 

risk assessments or probabilities of accidents deter-

mined previously. 

1. THE ROUTES RANKING PROBLEM 

When searching for the best combinations of UV’s 

motion control laws, the common problem is to find 

an optimal control minimizing the performance crite-

rion 

Ji = kTTi + kRPi, 

where: Ti = tif – ti0 is the time to transfer the ith UV 

(i=1,2,...) located at the time instant t0 in an initial 

point si of a bounded space L3 E
3 to a target point fi 

of this space by the time instant tf; E
3 denotes the 

three-dimensional Euclidean space; kT is the signifi-

cance factor of the goal achievement rate, adjusted by 

an expert or a group of experts; Pi is the estimated 

probability of an accident involving the ith  UV while 

moving along the route during the time Ti; finally, kР  

is the significance factor of the estimated probability 

of an accident, also adjusted by an expert or a group of 

experts. 

In the proposed ACS, it is first necessary to deter-

mine UV’s travel time on all possible routes. Under 
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the existing logical-probabilistic, logical-linguistic, 

and other constraints, to calculate the product J(R) = 

kTTi on each UV’s route Rv, the ACS should evaluate 

the functional [3] 

  ,

, , ,

τij ij

v T i j

i j i j i jij ij

L
J R k a b c

V W

 
    

 
   ,     (1) 

where: a, b, and c are preference coefficients; Vij and 

Wij are the linear and angular velocities, respectively, 

which depend on the environment (e.g., air humidity 

and temperature); ij is the delay time at an intersec-

tion depending on its type and load; Ψij are the turning 

angles at an intersection; finally, Lij are the lengths of 

segments between intersections. 

As shown in [23], (i,j) is an element of the ordered 

set describing a given route from the starting point to 

the terminal point. 

After evaluating the functional (1) for all possible 

UV’s routes from point si to point fi, the routes can be 

ranked by the time of arrival to point fi. However, the 

fastest route may also turn out to be the most accident-

prone. Therefore, the next step in optimal routing 

should be ranking of the routes Rv by the probability of 

an accident, Pi(Rv). 

2. THE DATABASE OF REFERENCE ROUTE SEGMENTS 

Within the proposed method, when determining 

the probability of accidents on UV’s routes and the 

product kRPi, we apply a logical-linguistic classifica-

tion algorithm of route segments, which attributes a 

given route segment to a reference one. As shown in 

[23], this algorithm has high speed and efficiency. For 

implementing the algorithm, a database of reference 

route segments is created when developing the ACS 

for the UV. This database contains rows with the pa-

rameters (attributes) of reference route segments and 

the probabilities of an accident on such segments, de-

termined in advance based on simulation modeling 

and statistical data. The presence of an attribute is in-

dicated by one and its absence by zero.  

Each route contains one or several segments at an 

intersection and one or several segments between in-

tersections. Therefore, the database includes rows 

characterizing motion at an intersection and between 

intersections. Tables 1–8 show an example of refer-

ence rows from the database. 

2.1. The Database of Reference Rows for Intersections 

Table 1 

Intersections 

Database row Type  
of intersection,  

direction  
of motion 

Probability 
of  

accident 

C1 = /10000000000/ ┤ with passage  
to the right 

PC1 = 0.12 

C2 = / 
01000000000/ 

┤ with passage  
to the left 

PC2 = 0.15 

C3 = /00100000000/ ┬ with passage 
straight 

PC3  = 0.13 

C4 = /00010000000/ ┬ with passage  
to the right 

PC4 = 0.11 

C5 = /00001000000/ ┴ with passage 
straight 

PC5 = 0.14 

C6 = /00000100000/ ┴ with passage  
to the left 

PC6 = 0.17 

C7 = /00000010000/ ┼ with passage 
straight 

PC7 = 0.18 

C8 = /00000001000/ ┼ with passage  
to the right 

PC8 = 0.16 

C9 = /00000000100/  ┼ with passage  
to the left 

PC9 = 0.20 

C10 = 
/00000000010/ 

L with passage  
to the left 

PC10 = 0.10 

C11  = 
/00000000001/ 

Γ with passage  
to the right 

PC11 = 0.09 

 

Table 2 

Turning angles 

Database row Angle and direction 
of turn 

Probability 
of accident 

Ψ1  = /100000000/ –180º (left) PΨ1 = 0.11 

Ψ2  = /010000000/ –135º (left) PΨ2 = 0.12 

Ψ3  = /001000000/ –90º (left) PΨ3 = 0.13 

Ψ4  = /000100000/ –45º (left) PΨ4 = 0.14 

Ψ5  = /000010000/ 0º (straight) PΨ5 = 0.06 

Ψ6  = /000001000/ +45º (right) PΨ6 = 0.10 

Ψ7  = /000000100/ +90º (right) PΨ7 = 0.09 

Ψ8  = /000000010/ +135º (right) PΨ8 = 0.08 

Ψ9  = /000000001/ +180º (right) PΨ9 = 0.07 

 
Table 3 

Angular velocities 

Database row Angular  
velocity, deg/s 

Probability of 
accident 

W1  = /1000/ 2  PW1 = 0.10 

W2  = /0100/ 4  PW2 = 0.11 

W3  = /0010/ 6  PW3 = 0.12 

W4  = /0001/ 8  PW4 = 0.13 
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      Table 4 

Number of lanes 

Database row Number of lanes Probability of 
accident 

S1  = /1000/ 1 PS1 = 0.10 

S2  = /0100/ 2 PS2 = 0.12 

S3  = /0010/ 3 PS3 = 0.13 

S4  = /0001/ 4 PS4 = 0.14 

 

2.2 The Database of Reference Rows for Route Segments 

between Intersections 

Table 5 

Linear velocities 

Database row Linear velocity, 
m/s 

Probability of 
accident 

V1 = /1000/ 5 PV1 = 0.10 

V2  = /0100/ 10 PV2 = 0.11 

V3 = /0010/ 15 PV3 = 0.12 

V4 = /0001/ 20 PV4 = 0.13 

 
Table 6 

Number of lanes     

Database row Number of lanes Probability of 
accident 

S1  = /1000/ 1 PS1 = 0.10 

S2 = /0100/ 2 PS2 = 0.12 

S3 = /0010/ 3 PS3 = 0.13 

S4  = /0001/ 4 PS4 = 0.14 

 

Table 7 

Time of day    

Database row Time of day Probability of 
accident 

T1  = /10000/ 0 to 6 hours PТ1 = 0.10 

T2  = /01000/ 6 to 10 hours PТ2 = 0.13 

T3  = /00100/ 10 to 15 hours PТ3 = 0.15 

T4  = /00010/ 15 to 20 hours PТ4 = 0.14 

T5  = /00001/ 20 to 24 hours PТ5 = 0.20 

 
Table 8 

Route segment length      

Database row Route segment 
length 

Probability of 
accident 

L1  = /10000/ very short, 200 m PL1 = 0.10 

L2  = /01000/ short, 400 m PL2 = 0.12 

L3  = /00100/ medium, 600 m PL3 = 0.13 

L4  = /00010/ large, 800 m PL4 = 0.14 

L5  = /00001/ very large, 1000 m PL5 = 0.15 

3. DETERMINING THE PROBABILITY OF AN ACCIDENT 

ON A ROUTE 

To rank the routes Rv by the probability of an acci-

dent Pi(Rv), the ACS of the UV first creates a list of 

intersections for each route. Next, for each list of in-

tersections, the sensing system of the ACS determines 

the approximate values of their parameters corre-

sponding to the attributes of the reference rows and 

fuzzifies these values to find the membership func-

tions for the attributes of the corresponding reference 

rows. Then the ACS classifies the rows for intersec-

tions by comparing them with the reference rows from 

the database according to the algorithm described in 

[23]: it assigns values for the probabilities of accidents 

corresponding to the identified reference rows and 

calculates the probabilities of accidents at all intersec-

tions and the total probability of accidents at intersec-

tions along the entire route. 

For example, a certain intersection is characterized 

by the following parameters (attributes): intersection 

┴ with passage straight, 1 lane, turning angle 30º, and 

angular velocity 5.6 deg/s. 

In this case, the row characterizing intersections 

has the form /00001000000/; classification using the 

logical-linguistic algorithm [23] attributes it to the ref-

erence row C5 with the probability of an accident PC5 

= 0.14. The row /1000/ characterizing the number of 

lanes is classified as the reference row S1 with the 

probability of an accident PS1 = 0.10. After fuzzifica-

tion, the row characterizing the turning angle takes the 

form /0 0 0 0 0 0 0.3 0.7 0 0 0 0/, being classified as 

the reference row Ψ6 with the probability of an acci-

dent PΨ6 = 0.10. After fuzzification, the row character-

izing the angular velocity takes the form                   

/0 0 0.3 0.7 0/, being classified as the reference row 

W3 with the probability of an accident PW3 = 0.12. 

When passing an intersection, accidents are possi-

ble under one of the following events: Ci  (i = 1, 2, ...), 

or Ψj (j = 1, 2,...), or Wq (q = 1, 2, ...), or Sg (g = 1, 2, 

...). They correspond to the probabilities of an accident 

PCi, PΨi, PWq, and PSg, respectively. According to the 

rules for calculating the probability of a logic function, 

the logic function F1,2,…,n in the Zhegalkin algebra [27] 

has the form  

F1,2,…,n ↔ f1 ♀ f2 ♀ f3 ♀... ♀ fn, 

where f1, f2, f3, ..., fn are logical functions or variables 

(events), ♀ denotes addition modulo 2, and ↔ denotes 
equivalence. According to the paper [24], the probabil-

ity of an accident when passing such an intersection 

(n = 4) is given by 
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Р = (–2)0(PСi  + PΨ j + PWq  + PSg) + 

(–2)1(PСi PΨ j + PСi PWq +PСi PSg  +  

PΨ j PWq + PΨ j PSg  + PWq PSg) +  

(–2)2( PСi PΨ j PWq  + PСi PΨ j  PSg +  

PСi PWqPSg + PΨ j PWqPSg ) + 

(–2)3(PСi  PΨ j PWqPSg). 

 
 

(2) 

For a large number of logical functions (n > 8), it 
is possible to calculate the probability approximately, 
being restricted to 8–10 row members; for details, see 
[24]. If there are N intersections on the route, fuzzifi-
cation, classification, and formula (2) will be used to 
calculate the probabilities of an accident for each in-
tersection; after that, formula (2) gives the probability 
of an accident PN at all intersections of the route. 

Then for each route, the ACS of the UV first cre-
ates a list of segments between intersections. Next, for 
each list of segments between intersections, the ACS 
determines the approximate values of their parameters 
corresponding to the attributes of the reference rows 
and fuzzifies these values to find the membership 
functions for the attributes of the corresponding refer-
ence rows. Then the ACS classifies the rows for seg-
ments between intersections by comparing them with 
the reference rows from the database according to the 
algorithm described in [24]: it assigns values for the 
probabilities of accidents corresponding to the identi-
fied reference rows and calculates the probabilities of 
accidents on segments between intersections and the 
total probability of accidents on all segments between 
intersections along the entire route. 

For example, a certain segment between intersec-
tions is characterized by the following parameters (at-
tributes): 1 lane, travel time 8 hours, linear velocity 
12.7 m/s, length 500 m. 

In this case, the row characterizing the number of 
lanes has the form /1000/, being classified as the refer-
ence row S1 with the probability of an accident PS1 = 
0.10. The row /01000/ characterizing travel time is 
classified as the reference row T2 with the probability 
of an accident PТ2 = 0.13. After fuzzification, the row 
characterizing the linear velocity takes the form         
/0 0.45 0.55 0/, being classified as the reference row 
V3 with the probability of an accident PV3 = 0.12. After 
fuzzification, the row characterizing the segment 
length takes the form /0 0.5 0.5 0 /, being equally clas-
sified as the reference row L2 with the probability of 
an accident PL2 = 0.12 or reference row L3 with the 
probability of an accident PL3 = 0.13. Therefore, the 
probability of an accident due to the length of the 
segment between intersections can be estimated by the 
average value (PL2 + PL3)/2 = 0.125.  

When passing a segment between intersections, 
accidents are possible under one of the following 
events: Ti  (i = 1, 2, ...), or Vj (j = 1, 2,...), or Lq (q = 1, 

2, ...), or Sg (g = 1, 2, ...). They correspond to the 
probabilities of an accident PTi, PVi, PLq, and PSg, re-
spectively. According to [12], the probability of an 
accident on such a segment (n = 4) is given by 

Р = (–2)0(PTi  + PVj  +  PLq  + PSg) +  

(–2)1(PTi PVj  + PTi PLq + PTi PSg  + PVj PLq + PVj 

PSg + PLq PSg) + (–2)2(PTi PVj PLq +  

PTi PVj PSg + PTiPLqPSg + PVjPLqPSg) + 

(–2)3(PTiPVjPLqPSg). 

 
 

(3) 

If there are M segments between intersections on 
the route, fuzzification, classification, and formula (3) 
will be used to calculate the probabilities of an acci-
dent for each segment between intersections; after 
that, formula (3) gives the probability of an accident 
PM on all segments between intersections of the route. 

Finally, the probability of an accident on all routes 
Rv is calculated by the formula 

P(Rv) = PN(Rv) + PM(Rv) – 2PN(Rv)PM(Rv). 

4. RANKING AND OPTIMIZATION OF ROUTES 

Due to the uncertain environment of the UV mov-
ing on a route, when calculating the performance crite-
rion (1), it is necessary to consider the constraints in 
the form of logical and probabilistic modulo 2 equa-
tions [25]. As shown in [14], these constraints can be 
reduced to logical-interval ones. In this case, two val-

ues of the performance criterion (1), min J(R) and 

max J(R), are obtained for each route Rv. For the cho-
sen values of the significance coefficient kp, we calcu-
late the two values below for each route to rank the 
routes Rv: 

minJv = {min{kT JT(Rv)} + min{kPP(Rv)}};     (6) 

maxJv = {max{kT JT(Rv)} + max{kPP(Rv)}}.    (7) 

Usually, the values min{kPP(Rv)} and 
max{kPP(Rv)} coincide whereas min{kT JT(Rv)} and 
max{kPP(Rv)} do not. Therefore, the ranking is per-
formed by the minimum and maximum or the average 
value 

Jv= 1/2(maxJv + minJv). 

The choice of an optimal route for the UV may de-
pend on the opinion of an expert or a group of experts. 

CONCLUSIONS 

When selecting an optimal route for unmanned ve-
hicles, it is necessary to minimize the probability of an 
accident. For this purpose, various algorithms are de-
veloped to assess accident risks at each route planning 
stage considering the “observed” area of the terrain.    
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Risk assessments are predictive in nature since 

their uncertainty is associated with many factors that 
cannot be accurately estimated. Therefore, when creat-

ing a database of reference route segments, the proba-

bilities of an accident on such segments are deter-
mined at the ACS design stage based on simulation 

modeling and statistical data. Under limited statistical 
data, it is reasonable to predict accident risks using 

logical-linguistic and logical-probabilistic methods. 

For this purpose, databases of reference route seg-
ments are created, containing the qualitative attributes 

of segments and the probabilities of an accident ob-
tained after modeling. 

When the ACS of the UV determines the probabil-

ity of an accident on a route, its sensory system ob-
tains the quantitative values of attributes on route 

segments. After their fuzzification, the ACS finds the 
values of the membership functions for the specified 

attributes and creates rows similar to the reference 

rows of the database. For each route segment, the ACS 
identifies the closest reference row from the database 

and assigns to this segment the probability of an acci-
dent corresponding to the reference row. Using these 

probabilities of accidents on route segments, the ACS 

calculates the probability of accidents on the entire 
route using appropriate rules (calculating the probabil-

ity of logical OR functions). 
When selecting an optimal route, a trade-off be-

tween travel time and the probability of an accident 

must be observed by minimizing the following per-
formance criterion: the sum of travel time and the 

probability of an accident, multiplied by given signifi-
cance factors. These significance factors are adjusted 

by experts and entered into the ACS database at the 

formation stage. Usually, the performance criterion 
has an interval value, so the choice of an optimal route 

will depend on the expert’s preferences. 
Along with traditional approaches, the problems 

under consideration will require artificial intelligence 

technologies for determining the probabilities of acci-

dents on reference segments. We emphasize that pre-

viously, optimal routing problems were considered 
without the probabilities of accidents.  
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16TH INTERNATIONAL CONFERENCE ON STABILITY  

AND OSCILLATIONS OF NONLINEAR CONTROL SYSTEMS 

(PYATNITSKIY'S CONFERENCE) 
 

 

The 16th International Conference on Stability and 

Oscillations of Nonlinear Control Systems (Py-

atnitskiy’s Conference) took place on June 1–3, 2022, 

at Trapeznikov Institute of Control Sciences, Russian 

Academy of Sciences (ICS RAS). The conference was 

organized by ICS RAS with the technical co-

sponsorship of IEEE Russia Section. Chairman of the 

Organizing Committee was V.N. Tkhai, Chief Re-

searcher of Laboratory No. 16 (Dynamics of Nonline-

ar Control Processes) named after E.S. Pyatnitskiy 

(ICS RAS). 

The conference was devoted to presenting and dis-

cussing new results obtained by Russian and foreign 

researchers in the following areas: 

 General problems of stability and stabilization; 

 Nonlinear oscillations: general problems and 

methods; 

 Lyapunov functions methods; 

 Smooth and nonsmooth dynamics; 

 Problems of controllability and observability; 

 Robust control problems; 

 Control in mechanical and electromechanical 

systems; 

 Control in mechatronic systems and robotic 

control; 

 Oscillations, stability, and stabilization in the 

network and coupled systems; 

 Stability and control of hybrid and switched 

systems. 

The event was held online using Russian video 

conferencing software. During the three days, there 

were 14 sessions, including 2 plenary ones. In total, 4 

plenary talks and 137 section talks were delivered at 

the conference. The event was attended by researchers 

from Armenia, France, Germany, Kazakhstan, Kyr-

gyzstan, Russia, and Uzbekistan. Russian participants 

represented scientific organizations and universities 

from 19 cities. 

At the first plenary session (June 1, 2022), two 

talks were presented. The first talk by S. Dashkovskiy 

(the Institute of Mathematics, the University of 

Wuerzburg, Germany) was devoted to the paradigm of 

input-to-state stability. Its origin as a natural extension 

of classical Lyapunov stability to systems with input 

was considered. Different applications of the paradigm 

were described, within which the theory of small-gain 

systems was developed. As noted by the author, the 

theory of input-to-state stability for finite-dimensional 

systems has now acquired a complete form. Recent 

results of this theory were surveyed, in particular, ex-

tensions to delayed systems, hybrid and switched sys-

tems, and infinite-dimensional systems. Finally, some 

open problems of the theory were outlined. 

The second talk of that plenary session, entitled 

“Use of Feedback in Control Problems as an Optimi-

zation Problem,” was presented by B.T. Polyak and 

M.V. Khlebnikov (ICS RAS and Moscow Institute of 

Physics and Technology). The talk dealt with an ap-

proach to linear control systems from an optimization 

point of view. In the classical linear-quadratic control 

problem, one can consider the linear feedback matrix 

as a variable and reduce the problem to minimizing a 

performance index by this variable. This approach 

goes back to the works of R. Kalman in the 1950s. In 

addition to the linear-quadratic control problem, the 

authors studied other problems from the same posi-

tions: the suppression of nonrandom bounded external 

disturbances by constructing a static linear output-

feedback law and using a dynamic output-feedback 

law with an observer. For each of the three problems 

mentioned, a gradient method for finding the feedback 

law was described and justified. Several illustrative 

examples with simple and double pendulums were 

provided. 

The second plenary session, held on June 2, 2022, 

also included two talks. The first one, entitled “Theory 

of Homogeneous Dynamical Systems and Their Ap-

plication,” was presented by D. Efimov from the Na-

tional Institute for Research in Digital Science and 

Technology (INRIA, Lille, France). The author over-

viewed the theory of homogeneous dynamical systems 

and briefly described new results and applications for 

different classes of models, including those given by 

delayed or partial differential equations, and discrete-

time systems. Also, connections of homogeneity with 

http://doi.org/10.25728/cs.2022.4.5
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finite- or fixed-time convergence and input-to-state 

stability were explained. 

In the second talk, “Attracting Cycle in a Con-

trolled Mechanical System,” V.N. Tkhai (ICS RAS) 

described the stabilization of oscillations of a con-

trolled mechanical system by constructing an orbitally 

asymptotically stable cycle. He presented a general 

principle to stabilize arbitrary conservative systems 

through control actions based on self-oscillator sig-

nals. The control system is treated as a coupled sys-

tem, and a Van der Pol oscillator is used as a genera-

tor. It acts on the mechanical system admitting a fami-

ly of nondegenerate oscillations by one-way coupling 

control. The control system consists of electrical and 

mechanical parts with a mechatronic scheme to stabi-

lize oscillations: the cycle is attracted in large. 

The program of section sessions was made accord-

ing to the scientific topics of the conference. 

Sessions devoted to general problems of stability 

and stabilization concerned both theoretical problems 

and problems related to control, stability, and stabili-

zation of particular objects, e.g., control problems in 

cerebral blood flow autoregulation modeling (A.E. 

Golubev, Ishlinsky Institute for Problems in Mechan-

ics RAS), HIV infection models (A.N. Kanatnikov, 

Bauman Moscow State Technical University, and O.S. 

Tkacheva, ICS RAS), models of markets (A.M. Kotyu-

kov, ICS RAS, and N.G. Pavlova, RUDN University), 

etc. Among theoretical problems, note the application 

of the theory of matrix inequalities to stability analysis 

(V.A. Kamenetskiy, ICS RAS), stability of periodic 

differential inclusions (M.V. Morozov, ICS RAS), sta-

bility and stabilization of systems with delay (A.Yu. 

Aleksandrov, St. Petersburg State University), state 

estimation of a continuous system by output discrete 

measurements (A.I. Malikov, Kazan National Research 

Technical University-Kazan Aviation Institute), and 

others.  

Problems of control and stability of oscillations 

were considered at two section sessions, namely, (1) 

Nonlinear oscillations: general problems and (2) Os-

cillations, stability, and stabilization in the network 

and coupled systems. Among the objects of research 

were Hamiltonian systems at different resonances 

(O.V. Kholostova, Moscow Aviation Institute), self-

oscillations of an aerodynamic pendulum (D.V. Belya-

kov, Moscow Aviation Institute), chaotic and periodic 

attractors (I.M. Burkin, Tula State University, and N.V. 

Kuznetsov and T.N. Mokaev, St. Petersburg State Uni-

versity), coupled conservative systems (I.N. Bara-

banov and V.N. Tkhai, ICS RAS), and multi-agent sys-

tems (R.P. Agaev and D.K. Khomutov, ICS RAS). 

A large group of talks was devoted to control prob-

lems in mechanical, electromechanical, and mecha-

tronic systems. The problems considered include con-

trol of string vibrations (V.R. Barseghyan, Yerevan 

State University, and S.V. Solodusha, Melentiev Ener-

gy Systems Institute SB RAS), stabilization of artifi-

cial Earth satellite rotations (A.Yu. Aleksandrov and 

A.A. Tikhonov, St. Petersburg State University), con-

trol of different manipulator robots (Yu.F. Dolgui and 

I.A. Chupin, Ural Federal University; V.A. Sobolev 

and E.A. Shchepakina, Federal Research Center 

“Computer Science and Control” RAS and Samara 
State University; A.S. Andreev and O.A. Peregudova, 

Ulyanovsk State University; and others). Also, optimal 

control problems for mechanical systems were consid-

ered, in particular, optimal damping of flexible rotor 

vibrations in electromagnetic bearings (D.V. Balandin 

and R.S. Biryukov, Lobachevsky State University of 

Nizhny Novgorod, and M.M. Kogan, Nizhny Novgo-

rod State University of Architecture and Civil Engi-

neering), the time-optimal movement of a platform 

with oscillators (O.R. Kayumov, Omsk State Pedagog-

ical University), and others. 

A separate session united talks on different control 

aspects for spacecraft and unmanned aerial vehicles. 

In particular, the following problems were discussed: 

control of a space robot-manipulator (Ye.I. Somov, 

S.A. Butyrin, and S.E. Somov, Samara State Technical 

University), attitude control of a geostationary satellite 

(Ye.I. Somov, S.A. Butyrin, and T.E. Somova, Samara 

State Technical University), control of space flight 

with a solar sail (E.N. Polyakhova and V.S. Korolev, 

St. Petersburg State University; A.V. Rodnikov, Mos-

cow Aviation Institute; D.V. Shimanchuk, A.S. 

Shmyrov, and V.A. Shmyrov, St. Petersburg State Uni-

versity), and trajectory planning, stabilization, and 

attitude control for unmanned quadcopters (V.A. Ale-

xandrov and I.G. Rezkov, ICS RAS; A.I. Glushchenko 

and K.A. Lastochkin, ICS RAS; I.S. Trenev, ICS 

RAS), etc. 

The conference program and proceedings can be 

found on the conference website: 

https://stab22.ipu.ru/. 

Note the high level of scientific discussion at the 

sessions as well as the high level of interest of the con-

ference participants. 

With the online format chosen by the Organizing 

Committee due to the epidemic situation, many organ-

izational issues for the organizers and participants of 

the event were simplified. It was easier for researchers 

from far Russian cities (Blagoveshchensk, Khaba-

rovsk, Irkutsk, Novosibirsk, etc.) and foreign countries 

to take part in the sessions. At the same time, in the 

final general discussion, it was declared that the im-

proving epidemic situation would, hopefully, soon 

allow the traditional format of the conference to over-

https://stab22.ipu.ru/
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come the deficit of live communication between re-

searchers. 

The conference talks recommended by the Pro-

gram Committee were published as extended papers in 

English; see Proceedings of 2022 16th International 

Conference on Stability and Oscillations of Nonlinear 

Control Systems (Pyatnitskiy’s Conference) in the 

IEEE Xplore electronic library: 

https://ieeexplore.ieee.org/xpl/conhome/9807427/proc

eeding.  

All conference proceedings were electronically 

published in Russian and are freely available on the 

conference website: https://stab22.ipu.ru/sites/default/ 

files/news/Stab_2022_Rus%20%281%29.pdf. 
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