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Abstract. The existing and newly proposed methods for estimating the state of integral models 

with fuzzy uncertainty are reviewed. A fuzzy integral model with the limit transition defined in 

the Hausdorff metric is introduced. This model is used to formulate the state estimation problem 

for the models described by fuzzy Fredholm–Volterra integral equations. Several fuzzy methods 

for solving this problem are considered as follows: the fuzzy Laplace transform, the method of 

“embedding” models (transforming an original system into a higher dimension system and solv-

ing the resulting problem by traditional linear algebra methods), the Taylor estimation of the 

degenerate kernels under the integral sign that are represented by power polynomials, and the 

estimation of the nondegenerate kernels by degenerate forms using the Taylor approximation. 

As shown below, in some cases, the estimation results are related to the solution of fuzzy sys-

tems of linear algebraic equations. Test examples are solved for them. 
 

Keywords: fuzzy Riemann integral, fuzzy integral model, fuzzy methods for estimating integral models.  
 

 

 

INTRODUCTION  

The models described by integral equations, fur-
ther referred to as the integral models, are widespread 
in different branches of applied physics, mechanics, 
economics, and other areas dealing with mathematical 
descriptions of various objects. In the theory of differ-
ential equations, the existence and uniqueness of a 
solution is proved using the principle of contraction 
mappings, when an original problem is written as an 
equivalent integral model [1]. 

In control theory, integral models often represent 
control systems with feedback [2]. The integral Wie-
ner–Hopf models are used to describe the perturba-
tions affecting a system, an approach to model uncer-
tainty in the processing of current information from an 
object [3]. The Fredholm and Volterra integral equa-
tions are used in the theory of elasticity, gas dynamics 
and electrodynamics, and ecology, i.e., in all areas 
obeying the laws of conservation of mass, momen-
tum, and energy. In all cases mentioned, the unknown 
variables are under the integral sign. 

In real conditions, control systems are subjected to 
various kinds of perturbations. They are represented 
by various mathematical models, which are being in-
tensively developed on the theoretical basis and ac-

tively used in various applications. Among the most 
widespread theoretical approaches for these purposes, 
we mention the theory of intervals [4, 5], the theory of 
fuzzy sets [6], the theory of possibilities [7], hybrid 
probability theory, the theory of fuzzy mathematical 
statistics and fuzzy random processes [8], etc. 

This paper describes the uncertainties within the 
theory of fuzzy sets, which is the most adequate and 
universal representation for various kinds of perturba-
tions. As is easily demonstrated, the models discussed 
above follow from the general model of the theory of 
fuzzy sets. For example, in the paper [9], a fuzzy sys-
tem of linear equations (FSLE) was solved, and one of 
the solution’s coordinates was obtained in the form of 
a fuzzy membership function. However, fixing its 
base, we obtain a solution for this coordinate in the 
interval form. 

Similar reasoning can be adopted to construct so-
lution intervals for fuzzy differential equations. In the 
theory of possibilities, the membership function is 
interpreted as a certain probability density that, how-
ever, does not satisfy the probability axioms accepted 
in the traditional statistical theory. Therefore, the the-
ory of possibilities is supposed to describe not mass 
phenomena but the possibilities of an individual ob-
ject. 

http://doi.org/10.25728/cs.2021.1.1
mailto:dnp@bmstu.ru
mailto:mochalov2501@yandex.ru
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Hybrid probability theory represents the traditional 

probability space for random variables with traditional 

probability densities with initial or central moments in 

the form of fuzzy variables with given membership 

functions (usually triangles). Concerning traditional 

stochastic processes, the hybrid theory for fuzzy Mar-

kov stochastic processes operates with fuzzy states 

obtained by enlarging crisp states. This approach re-

duces the dimension of the transition matrix and, con-

sequently, the corresponding computational difficul-

ties during its inversion. 

Generally speaking, the modern theory of fuzzy 

sets is a kind of core that groups various models of 

uncertainties. 

Based on the foregoing, this paper aims to present 

various methods, both the existing and newly pro-

posed ones, for estimating integral models under 

fuzzy uncertainty. 

The scientific novelty of this paper consists in new 

state estimation methods developed by the authors for 

integral models, such as the method of degenerate 

kernels, the fuzzy least squares method, and the fuzzy 

Galerkin method. As shown below, “strong/weak” 

estimation results can occur when the estimation pro-

cedure yields fuzzy systems of linear algebraic equa-

tions. The authors first investigated this effect when 

solving the FSLE and then applied to estimate integral 

models. 

Below, fuzzy integral models in the form of the 

Fredholm–Volterra equations are introduced, and 

some methods to solve them are considered.  

1. BASIC DEFINITIONS 

The basic definitions of the theory of fuzzy sets 

were given in [6]. Let us introduce the definitions 

used in this paper. The notations are the following: 

fuzzy variables (numbers) have the subscript “fuz,” 

e.g., xfuz is a fuzzy variable (element), yfuz(x) is a 

fuzzy function of many variables, where x = (x1, x2,…, 

xn)
Т
, 

fuz 
( )

ix
y x  is the fuzzy derivative with respect to 

the variable xi, and 
fuz ( )tx  is the fuzzy time derivative 

of a vector xfuz.  

The belonging of an element x to some set X (

) is formalized by a membership function , 

[0,1]r , x = fuzx X for a fuzzy element хfuz:  

=
( ) [0, 1],

( ) [0, 1],

r x

r x





 

where  is a multivalued function with left r(x) 

and right  branches with respect to 
 
= 1.  

The function  is often written in the level 

representation – the inverse mapping 
 
= x(r) = 

(x(r), | [0, 1]r ). A collective {xfuz} defines a 

fuzzy set Xfuz. For xfuz, the chain of equivalent repre-

sentations is sometimes used: fuz ( )x r x , [0, 1]r

(r(x), | r, [0, 1]r  (x(r), | 

[0, 1]r ), etc.  

Fuzzy function (mapping) yfuz(x) of fuzzy varia-

bles. Let  be the set of all fuzzy variables with a 

given membership function ( ), [0, 1],r x r x R  . 

Then fuz ( ) :y x R E  defines a fuzzy-valued func-

tion, and the following parametric representation 

holds: 

fuz ( ) ( , ) ( ( , ), ( , ) [0, 1]).y x y x r y x r y x r r     

The Banach space of fuzzy variables is introduced 

using the conventional approach of functional analysis 

[10]. A collection {xfuz} with the addition and multi-

plication operations and the existence of an inverse 

element forms a vector (linear) space . In the space 

, the following metric and norm are defined:  

d(xfuz i, xfuz j) = 
[0,1]

sup
r

× 

×{max[| }, 

||xfuz i – xfuz j|| = d(xfuz i, xfuz j). 

A fuzzy Cauchy sequence is a sequence of the 

form   

{xfuz n}: fuz fuz ,{ ( , ) 0}n m n md x x  , 

and the space E is complete if 

fuz fuz ,n
n

х x

 f .x Е  

These definitions lead to the Banach space of 

fuzzy variables ( , d). The pair ( , d) forms a com-

plete metric space. 

Fuzzy continuity at a point is defined using the lo-

cal limit at this point, which is treated in the 

Hausdorff metric. Fuzzy continuity on an interval is 

defined as fuzzy continuity for all values of the inter-

val. 

According to the general approach, the fuzzy de-

rivative of a function with respect to its crisp variable 

is found by defining the following operations for 

some fuzzy function described above: subtraction or 

the existence of an opposite element, multiplication 

by a constant, passage to the limit in a given metric. 

This paper uses two types of fuzzy derivatives: the 

Seikkala derivative fuz ( )Sy x and the Buckley–Feuring 

derivative fuz ( )BFy x . The following statement holds: if 

the fuzzy derivatives exist and are continuous at a 

point *x x , then they are equal to each other at this 

point.  

Xx )(xr

)(xr

)(xr

)(xr )(xr

)(xr

)(1 xr 

)(rx

 )(xr  )(rx

E

E
E

|])()(||,)()( rxrxrxrx jiji 

E E
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A fuzzy integral is understood in the fuzzy Rie-
mann sense [11].  

Consider a fuzzy mapping 
fuz :[ , ]f a b R E  , 

where E  is a fuzzy set. If for each partition 

0 n{ ,..., } [ , ]P t t a b   and 
1[ , ]i i it t  , 1,i n , there 

exists the representation fuz 1

1

( )( )
n

p i i i

i

R f t t 



    and 

 1max , 1,i it t i n    , then the fuzzy Riemann 

integral of fuz ( )f t  is given by  

fuz
0

( ) lim

b

p

a

f t dt R


 ,                        (1) 

where the limit is defined in the Hausdorff metric 

 ,d u v : for , ( , ) sup max ( )u v E d u v u r   

( ) , ( ) ( ) ,v r u r v r    where [0,1]r R  , and 

, , ,u u v v  are the nonparametric representations of 

the fuzzy variables ,u v . 

Under (1), a function fuz ( ) ( , ) ( ( ,f t f t r f t 

), ( , ) | [0, 1])r f t r r  continuous in the Hausdorff 

satisfies the relations  

 and ,  

[0, 1]r R  , where underline and overline indicate 

the lower and upper value objects, respectively.  

If a fuzzy variable fuz ( )z t , t∈[a, b]⊂R, is under 

the fuzzy integral sign, it satisfies the fuzzy integral 
equation  

fuz fuz( ) ( , ) ( ) ( ).

b

a

z t K t z d f t      

By analogy with the traditional classification, 
there are fuzzy integral models described by the 
Fredholm–Volterra equations of the first and second 
kinds: 

     
2

1

fuz fuz,

t

t

K t z d u t     is a fuzzy integral 

model described by the Fredholm equation of the first 

kind, where , and K(t, τ) is a crisp or 

fuzzy kernel;  
2

1

fuz fuz fuz( ) ( , ) ( ) ( )

t

t

z t K t z d u t      is a fuzzy in-

tegral model described by the Fredholm equation of 

the second kind, where K  is a parameter.  

The limits of integration can be finite or infinite. 

The variables satisfy the inequality 1 2, ,t t t 

whereas the kernel K(t, τ) and the free term 
fuz ( )u t  

must be continuous or satisfy the Fredholm condi-

tions.  

In the general case, the fuzzy Fredholm equations 

of the first and second kinds imply the fuzzy Volterra 

equations of the first and second kinds. The Volterra 

equations differ from the Fredholm equations by a 

variable limit of integration:  

1

fuz fuz( , ) ( ) ( )

t

t

K t z d u t    , t1 ≤ t ≤ t2, is a fuzzy in-

tegral model described by the Volterra equation of the 

first kind, where K(t, τ) is a crisp or fuzzy kernel;  

1

fuz fuz fuz( ) ( , ) ( ) ( )

t

t

z t K t z d u t       is a fuzzy inte-

gral model described by the Volterra equation of the 

second kind.  

The Volterra integral equation can be considered a 

special case of the Fredholm equation with a properly 

completed kernel. The Volterra equations have sever-

al important properties that are not inherent in the 

Fredholm equations and cannot be derived from them. 

In view of this aspect, we will use only the general 

properties of the Fredholm and Volterra equations 

below. 

Sufficient conditions for the existence of a unique 

solution of fuzzy Fredholm–Volterra integral equa-

tions of the second kind were given in [12–14]. For 

the sake of definiteness, consider a fuzzy Volterra 

equation of the second kind. For the existence of a 

fuzzy solution, the method of successive fuzzy ap-

proximations is used under the assumption that fuzzy 

approximations are defined in the rectangle П = [τ, t], 

on which they have fuzzy continuity and a bounded 

Seikkala derivative. Then the sequence of fuzzy ap-

proximations converges in the Hausdorff metric to a 

fuzzy solution. Moreover, due to the boundedness of 

the derivative, convergence in t follows: the sequence 

of fuzzy approximations converges uniformly to the 

desired fuzzy variable, which is taken as a fuzzy solu-

tion of the original fuzzy integral equation. The 

uniqueness of a fuzzy solution is proved by contradic-

tion. 

The fuzzy Fredholm–Volterra equations of the 

first and second kinds (see above) can be represented 

in a short (operator) form [15]:  

fuz fuz fuz( )( ) ( ) ( )Kz t z t u t   and 

fuz fuz fuz[ ( )( )] ( ) ( )I Kz t z t u t  ,           (2a) 

where 

2

1

fuz fuz( )( ) ( , ) ( )

t

t

Kz t K t z d             (2b) 

is the operator for the fuzzy Fredholm equations, 

   , ,

b b

a a

f t r dt f t r dt     , ,

b b

a a

f t r dt f t r dt 

 1 2,t t t R 
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1

fuz fuz( )( ) ( , ) ( )

t

t

Kz t K t z d              (2c) 

is the operator for the fuzzy Volterra equations of 

the first and second kinds, and I is an identity opera-

tor.  

2. PROBLEM STATEMENT 

There is a fuzzy model described by the integral 

equation (2a), (2b), or (2c). It is required to consider 

different fuzzy estimation methods for its state. 

3. FUZZY ESTIMATION METHODS 

3.1. Estimation by fuzzy Laplace transform 

The definition of the fuzzy Laplace transform and 

its properties were described in detail in the papers 

[16, 17]. Also, some examples of applying this trans-

formation to find solutions of various fuzzy Volterra 

integral equations of the convolution type with crisp 

and fuzzy kernels were considered therein. The prob-

lem was generalized to the case of a fuzzy partial dif-

ferential component in a fuzzy integral equation. As a 

result, the fuzzy Laplace transform method was ex-

tended to the case of fuzzy linear second-order partial 

differential equations of the parabolic and hyperbolic 

types.  

 

3.2. Estimation by embedding 

Consider a fuzzy model described by the 

Fredholm integral equation of the second kind:  

fuz fuz fuz( ) ( ) ( , ) ( ) .

b

a

x s f s K s x d                (3) 

The existence of a unique solution, the conditions 

imposed on the functions fuzf  and ( , )K s  , the def-

inition of a solution for the equation with fuzzy pa-

rameters, the space of functions to find a solution, and 

the conditions under which equation (3) exists were 

thoroughly considered in [13, 14].  

The exact fuzzy solution of equation (4) is con-

structed in the form of the infinite series [13]  

fuz fuz 

1

( ) ( ),i i

i

x s a h s




                          (4) 

where { ( )ih  } is a sequence of functions in the space 

2( , )L a b , and afuz i are fuzzy coefficients.  

An approximate solution of equation (4) can be 

represented as the finite series 

fuz fuz fuz 

=1

( ) ( ) ( ),
n

n i i

i

x s x s a h s  

where fuz ia  are the fuzzy coefficients for estimation, 

and ( )ih s  are known functions. To find them, we 

substitute the expression for fuz ( )nx s  into equation 

(3) instead of xfuz. Proceeding in this way, we obtain 

an equation of the form (3), and the solution is 

fuz fuz fuz 

1 1

( ) ( ) ( , ) ( )

bn n

i i i j i

i i a

a h s f s a K s h d
 

       . (5) 

Equation (5) contains n unknown fuzzy variables 

fuz 1 fuz ,..., na a . To calculate them, we need n equations 

and therefore use n points . The re-

sulting fuzzy system of linear equations for the coeffi-

cients fuz ia  is 

fuz fuz 

1 1

( ) ( ) ( ( ,

bn n

i j i i j j

i i a

h s a f s K s
 

   

fuz ) ( ) ) , 1, .i ih d a j n     

In the matrix form, it can be written as 

fuz fuz fuzAa f Ba  ,                    (6) 

where ( )ijA a  and ( )ijB b  are matrices with the 

crisp elements  and ijb 

( , ) ( )

b

j i

a

K s h d    , ; 
fuza  = fuz 1 fuz ( ,..., )T

na a  

and 
T

fuz fuz 1 fuz( ( ),..., ( ))nf f s f s  are vectors with fuzzy 

components.  

The matrix equation (6) reduces to the standard 

form  

fuz fuz ,Aа f А А В   ,                      (7) 

and the resulting system is solved by the method of 

embedding [9, 18].   

According to this method, equation (7) is trans-

formed to the extended (embedded) system:  

(2 2 ) fuz (2 2 ) fuz (2 2 ) ,n n n n n nS X Y     

where 
T

fuz 1 1( ,..., ,..., )n nX a a a a  and fuz 1( ,...,Y f

T
1,..., ) .n nf f f   

The matrix S has a block structure: 

. The matrix  is obtained from the 

matrix (A – B) by zeroizing all negative elements. To 

construct the matrix , we should replace all nega-

tive elements in the matrix (A – B) by their absolute 

values and all other elements by zeros:  

, , ; 

 1,..., ,ns s a b

 ij i ja h s

, 1,i j n

1 2

2 1

S S
S

S S

 
  
 

1S

2S

ij ij ijs a b  ,i n j n ij ijs a b    0ij ija b 
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, , 

. 

If  (  is nonsingular), then  

1

fuz fuzX S Y , 

where , 
1

1 20.5[( )U S S     

1

1 2( ) ],S S    and 
1 1

1 2 1 20.5[( ) ( ) ]V S S S S     .  

The case of a singular matrix S was considered in 

detail in the papers [19, 20].  

The accuracy of the approximate solution can be 

estimated as follows.  

The residual  and error εn vectors are deter-

mined via the Hausdorff metric:  
T

fuz fuz fuz fuz 1 fuz fuz ( , ) ( ( , ),..., ( , ))n nr D f Lx d f Lx d f Lx  , 

T

fuz fuz fuz fuz 1 fuz fuz ( , ) ( ( , ),..., ( , ) ,n nD x x d x x d x x     

where  

L = I – K and fuz fuz( )( ) ( , ) ( ) .

b

a

K Kx s K s x d       

The following upper bound on the approximate so-

lution accuracy was derived in [21]:  

1[1 ]n nr K      for . 

Example 1. Consider an integral equation of the form 
1

fuz fuz fuz

1

( ) ( ) ( 1) ( )x s f s s x d


     , 

where a = –1, b = 1, and  
3 2

fuz ( ) ( , ) ( ( , ) ( ), ( , )f s f s r f s r s r r f s r      

3 3(4 ) [0, 1]), 1 , 1.s r r r s          

It is required to estimate the state by the method of em-

bedding.  

Solution. We choose  and , as-

suming that 
1 1s    and . Then the elements of 

equation (5) take the following form:  
2 2

1 2 1( ) ( ), ( ) ( ), ( )f s r r f s r r f s     

3 3

2(4 ), ( ) (4 );r r f s r r        

; 

1 1

3

11 12

1 1

1 1

3

21 22

1 1

( 1 1)1 ( 1 1)( 1)

(1 1)1 (1 1)1

b d b d

B

b d b d

 

 

 
         

 

 
       
 

 

 

, 

0 0 1 1

4 0 3 1
B A A B

   
        

   

1 0 0 1

0 1 3 0

0 1 1 0

3 0 0 0

S

 
 
   
 
 
 

 

1

1

1 2

1 1 1 1
( ) 0.5 ,

3 1 3 1
S S




   

      
   

 

1

1

1 2

1 1 1 1
( ) 0.5

3 1 3 1
S S




   

      
   

 

⟹

2
1

2
2

3
1

3
2

0.5 0 0 0.5 ( )

0 0.5 1.5 0 ( )

0 0.5 0.5 0 (4 )

1.5 0 0 0.5 (4 )

a r r

a r r

a r r

a r r

      
    

     
        
    

        

; 

1 1

1 2 1 2

0 0.5
0.5[( ) ( ) ]

1.5 0
V S S S S   
      

 
. 

Therefore,  
2

1

2
2

3
1

3
2

0.5 0 0 0.5 ( )

0 0.5 1.5 0 ( )
,

0 0.5 0.5 0 (4 )

1.5 0 0 0.5 (4 )

a r r

a r r

a r r

a r r

      
    

     
        
    

        

  

3 2

1fuz 1 1

3 2

3 2

2fuz 2 2

3 2

( ( ), ( )) (0.25 0.25 0.5 1,

0.25 0.25 0.5 1| [0,1]),
(8)

( ( ), ( )) (0.25 0.75 0.5 1,

0.75 0.25 0.5 3 | [0,1]).

a a r a r r r r

r r r r

a a r a r r r r

r r r r

     

    


    


    

The approximate estimate of the state is   

1
3

2

fuz fuz 2 fuz 1 1

3
( ) 1fuz 2 2 fuz 1 fuz 2
( )

( ) ( ) ( )

( ) ,

n

h

h s

x s x s a h s

a h s a a s



 

 



  
 

where afuz 1 and afuz 2 are given by (8).  

This estimate can be strong or weak; see the method 

proposed by the authors in the paper [19, 20]. ♦ 

 

3.3. Taylor estimation 

In the general form, this method is often consid-

ered for a fuzzy system of integral equations [21]. For 

the sake of simplicity, we will implement a particular 

case of this system described by a single Fredholm 

equation of the second kind:  

fuz fuz fuz( ) ( ) ( , ) ( )

b

a

x s f s K s x d     ,             (9) 

where , τa s b  ; K(s, τ) is a given crisp kernel dif-

ferentiable by both variables on the interval [a, b]⊂R; 

хfuz(s) is a fuzzy unknown found from equation (9).  

 ,i j n ij ijs a b     ,i n j ij ijs a b   

0ij ija b 

0S  S

1
U V

S
V U

  
  
 

nr

1K 

 1 1h s    3

2h s s

2 1s 

   

   
1 1 2 1

1 2 2 2

1 1

1 1

h s h s
A

h s h s

   
    

  
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Let ffuz(s) and xfuz(s) have the parametric represen-

tations  

fuz ( ) ( , ) ( ( , ), ( , ) [0,1])f s f s r f s r f s r r   , 

fuz ( ) ( , ) ( ( , ), ( , ) [0,1])x s x s r x s r x s r r   . 

Then equation (9) can be written in the parametric 

form  

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ,

b

a

b

a

x s r f s r U r d

x s r f s r U r d


   





   







           (10) 

[0,1],r    

where  

( , ) ( , ), ( , ) 0,
( , )

( , ) ( , ), ( , ) 0;

K s x r K s
U r

K s x r K s

   
  

   
 

( , ) ( , ), ( , ) 0,
( , )

( , ) ( , ), ( , ) 0.

K s x r K s
U r

K s x r K s

   
  

   
 

Assume that the following inequalities hold on the 

interval [a, b] ⊂ R:  

( , ) 0, ,

( , ) 0, .

K s a c

K s c b

    


    
 

Then the system of equations (10) can be reduced 

to   

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ,

(11)

( , ) ( , ) ( , )

( , ) ( , ) ( , ) .

c

a

b

c

c

a

b

c

x s r f s r K s x

r d K s x r d

x s r f s r K s x

r d K s x r d


   



      




   



      










 

Now we expand the integrand functions ( , ),x r  

( , )x r in (11) into the Taylor polynomials of degree 

. For a fixed point τ = z, we obtain  

( )

0

( )

0

( )

0

( )

0

1
( , ) ( , ) ( , ) ( , )( )

!

1
( , ) ( , )( ) .

!
(12)

1
( , ) ( , ) ( , ) ( , )( )

!

1
( , ) ( , )( ) ,

!

c N
i i

ia

b N
i i

ic

c N
i i

ia

b N
i i

ic

x s r f s r K s x r z d
i

K s x r z d
i

x s r f s r K s x r z d
i

K s x r z d
i


















       



      




       




     










 

 ( ) ( , )
( , )

i
i

i

z

x r
x r



 
 


 and ( ) ( , )

( , ) .
i

i

i

z

x r
x r



 
 


  

Differentiating both of equations (12)  

times with respect to the variable s yields:   

( ) ( ) ( )( )

0

( ) ( )

0

( ) ( ) ( ) ( )

0

( )( )

0

1
( , ) ( , ) ( , ) ( , )

!

1
( ) ( , ) ( , )( ) ,

!

1
( , ) ( , ) ) ( , ( , )

!

1
( ) ( , ) ( , )(

!

cN
p p ip

s ss
i a

bN
i p i i

s

i c

cN
p p p i

s s s

i a

N
ii p

s

i

x s r f s r K s x r
i

z d K s x r z d
i

x s r f s r K s x r
i

z d K s x r z
i

















    

         

    

        

 

 

 



(13)

) ,

b

i

c

d

 

where 
( ) ( , )

( , ) ( )
p

p

s p

x s r
x s r

s





, ( ) ( , )

( , ) ( )
p

p

s p

x s r
x s r

s





, 

and
( ) ( , )

( , ) , 0,
p

p

s p

K s
K s p n

s

  
   

 
.  

Interchanging the integral and sum signs, we write 

the system of equations (13) as  

( ) ( ) ( )( )

0

( ) ( )

0

( ) ( ) ( ) ( )

0

( )( )

0

1
( , ) ( , ) ( , ) ( , )

!

1
( ) ( , ) ( , )( ) ,

!

1
( , ) ( , ) ) ( , ) ( , )

!

1
( ) ( , ) ( , )(

!

cN
p p ip

s ss
i a

bN
i p i i

s

i c

cN
p p p i

s s s

i a

N
ii p

s

i

x s r f s r K s x r
i

z d K s x r z d
i

x s r f s r K s x r
i

z d K s x r
i

















    

         

    

        

 

 

 



(14)

) .

b

i

c

z d

 

Denoting  

1 ( )1
( , )( )

!

c

p i

pi s

a

S K s z d
i

     , 

2 ( )1
( , )( )

!

b

p i

pi s

c

S K s z d
i

     , 

we reduce equations (14) to  

( ) ( ) ( )1

0

2 ( )

0

( ) ( ) 1 ( )

0

( )2

0

( , ) ( , ) ( , )

( , ) ( , ),

( , ) ( , ) ( , )

( , ) ( , ),

N
p p i

s pis
i

N
i

pi

i

N
p p i

s s pi

i

N
i

pi

i

x s r f s r S s x

r S x r

x s r f s r S s x

r S x r

















   

   

   

   









 . (15) 

Introducing the vectors  
(0) ( ) T (0) ( ) T( , ) ( ,..., ) , ( , ) ( ,..., )

n n

s s s sX s r x x X s r x x  ,  

n

0,p n

0,p n
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(0) ( ) T (0) ( ) T( , ) ( ,..., ) , ( , ) ( ,..., )
n n

s ss s
F s r f f F s r f f   

and the matrices 

, , ,  

for s, z = a
*[a, b] we finally write (15) in the matrix 

form  

, 
T( , )X X X , 

T( , )F F F . (16) 

The solution is  

1 2

*

2 1

1

( )

( ) , 0.

S S
S S I X F X

S S

S I F S I

 
       
 

    

 

The convergence of the solution  to the exact 

solution  was proved in [22].   

Example 2. Consider an integral equation of the form 

2

2

fuz fuz fuz

0

( ) ( ) (1 ) ( )x s f s s x d      ,   (17) 

where  

2

fuz

14
( ) ( , ) ( , ) , ( , ) ( 2)

3
f s f s r f s r sr f s r s r

  
      

  

and 1[0,1]r R  . 

It is required to determine 
fuz ( ) ( , )x s x s r

 ( , ), ( , )x s r x s r .  

To find the solution, we write equation (17) in the par-

ametric form: 
2

2

0

2

2 2

0

( , ) (1 ) ( , ) ,

14
( , ) ( 2) (1 ) ( , ) .

3

x s r sr s x r d

x s r s r s x r d

     

 
      
 





       (18) 

In these expressions, the kernel is K(s, τ) = s
2
 (1 + τ) ≥ 

≥ 0 [0,2] , where the interval [0,2] defines the limits 

of integration in equation (18). Therefore, this interval does 

not contain the partition point с present in the system of 

equations (12).  

We expand the unknown integrand functions 

( , ), ( , )x r x r   in (17) into the Taylor polynomials of 

degree , letting  for simplicity. For [0,2]z   , 

we obtain:   

( , ) 1 ( ),

( , ) 1 ( ), 0 , 2, [0,1].

z

z

x
x r z

x
x r z z r





 
     

 

 
         

 
 

Since , each of equations (18) should be differen-

tiated with respect to , p = 0 and p = 1 times: 

0

0

2

2

0

2

2 2

0

0

( , ) (1 ) ( , ) ,

14
( , ) ( 2) (1 ) ( , ) ,

3

p
s

x s r sr s x r dr

x s r s r s x r d


  




    


 


      







1

1

2

0

2

2

0

1

( , ) 2 (1 ) ( , ) ,

28
( , ) ( 2) (1 ) ( , ) .

3

s

s

p
s

x s r r s x r dr

x s r s r s x r d


  




    


 


      






  

Next, we consider the vectors X and F and the elements of 

the matrix S:  

* *

* * T

( , ), ( , );

( , ) , ( , )

s

s

X x s a r x s a r

x s a r x s a r

  

 
  

is the vector of fuzzy variables to be determined; 
* [ , ]a a b ; 

 * * *

T

*2 *

( , ) , 1 ; ( ,

14 28
) ( 2), ( 2)

3 3

s

s

F f s a r a r f r f s a

r a r f a r

     


    



 

is a given vector of fuzzy variables.  

The elements  of the matrix  are 0 since the in-

terval [0,2] does not contain the partition point с. There-

fore, . The elements  of the matrix  

are  
2

1 ( )

0

1
( , )( )

!

p i

pi sS K s z d
i

      = 

2

* 2 ( ) *

0

1
[( 0) (1 )] ( 0)

!

p i

ss a z a d
i

          = 0, 

, 0,1p i  . 

Hence, , and consequently,  

. 

Then equation (16) gives  

. 

As a result, the matrix equation   

 1 1

piS S  2 2

piS S  , 0,p i n

 1 2X F S S X  

*X

 *

n
X X X




n 1n 

1n 

s

2

piS
2S

 2 2 0piS S  1

piS
1S

 1 1 0piS S 

1 2

2 1

0 0

0 0

S S
S

S S

  
  

  

0s
S I I


  
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takes the form   

2

fuz

2

1 0 0 0 1

0 1 0 0 14
( , )( 2)

0 0 1 0 3

0 0 0 1 28
( 2)

3

14
( , ) , ( , ) ( 2) [0, 1] .

3

s

a s

ar

x r

x
x x s ra r

x

x
a r

x s r sr x s r s r r

 
 

                                   
  

  
      

  

 

In the general case, it is necessary to define the fuzzy 

set of integral equations [22, 23]   

fuz fuz fuz 

1

( ) ( ) ( , ) ( )

bm

i i ij i

j a

x s f s K s x d


     , 

.                                (19) 

In this system, , τa s b  , and ( , τ), ,ijK s i j  , 

1, m , are given crisp kernels differentiable by both vari-

ables on the interval ; ffuz i are given fuzzy functions; 

xfuz i(s) = (xfuz 1(s), …, xfuz m(s))
T
 is the fuzzy vector to be 

determined. The fuzzy variables ffuz i(s) and xfuz i(s) are writ-

ten in the parametric form  

fuz ( ) ( , ) ( ( , ), ( , ) [0,1]),i if s f s r f s r f s r r      

fuz ( ) ( , ) ( ( , ), ( , ) [0,1]), 1, .i i i ix s x s r x s r x s r r i m       

Next, the sequential transformations described above 

(see the one-dimensional case) are used: the interval of 

integration  is partitioned using the points , 

; the unknown variables  are 

expanded into the Taylor polynomials of degree  at an 

arbitrary point [ , ]z a b R    ; each of equations (19), 

written in the parametric form, is differentiated  

times with respect to s; the symbols ∫ and Σ are inter-

changed; the corresponding notations are introduced for the 

vectors and matrices involved.  

These transformations yield fuzzy systems of linear 

equations of the form (16):  

,                                  (20) 

where  
T

( ) ( ) ( ) ( )

1 1( ) ( ), ( ),..., ( ), ( )n n n n

m mX x x x x       is the 

unknown vector of fuzzy variables;  indicates 

;  is the number of the derivative and the 

degree of the Taylor polynomial; 
( ) ( )n

kx  

 
T

( )( ),..., ( )n

k kx x   ;  
T

( ) ( )( ) ( ),..., ( ) , 1, ,n n

k k kx x x k m      

are the components of the vector ;   

 
T

( ) ( ) ( ) ( )

1 1( ) ( ), ( ),..., ( ), ( )n n n n

m mF f f f f       is a given 

vector of fuzzy variables;  

 
T

( ) ( )( ),..., ( )n n

k k kf f f    ;  
T

( ) ( )( ),..., ( )n n

k k kf f f    ;  

(1,1) (1, )

( ,1) ( , )

m

m m m

S S

S

S S

 
 

  
 
 

 is a matrix with matrix ele-

ments  

( ) ( )

( , ) ( )11 12

11( ) ( )

21 22

( ) ( )

00 0

( )

22

( ) ( )

0

;

1

;

1

ij ij

i j ij

ij ij

ij ij

n

ij

ij ij

n nn

S S
W S

S S

S S

S

S S

 
  
 

 
 

   
  

*( ) *( )

00 0

( ) ( )

12 21

*( ) *( )

0

.

ij ij

n

ij ij

ij ij

n nn

S S

S S

S S

 
 

   
 
 

 ♦ 

Example 3. Let:  

2 3 2 2 4

1

2 2 3

1

2 4

5 2 3

2

2 3 4

2 3

2

2 3

27 14 1
( , ) ( 2) ( 2);

4 3 4

14 3
( , ) ( 2) ( 2)

3 4

9
( 2) ( 2);

4

( , ) ( 2 ) 14.1( 2) ( 2)

8
( 1) 0.3( 2) ( 2);

3

8
( , ) ( 1)( 2) (3 6)

3

0.9( 2) (

f s r s r s r s r s r r

f s r s r s r

s r s r r

f s r s s r s r

s r s r r

f s r s r s r

s r

      

    

   

     

    

     

   42) 4.7( 2) ( 2).s r r  

The collection of kernels is  
2

11 12

2 2 2

21

( , ) (1 ); ( , )

(1 ), ( , ) (1 ) ,

K s s K s

s K s s

     

      
 

and 
3

22 ( , ) ( 2)(1 ),K s s     where 0 ≤ s and τ ≤ 2. 

Solution. Choosing the point  for the Taylor ex-

pansion, we obtain:  

;  

 
0S

S I X F IX F


     

1,i m

 ,a b

 ,a b ijc

, 1,i j m    , , ,i ix s r x s r

n

0,p n

SX F

 

 ,s a r  n

X

0z 

     1,1 1,2

,

1 0 0 0

0 1 0 0
; 0 , , 1,4

0 0 1 0

0 0 0 1

i j
W W i j

 
 

   
 
 

 
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; 

(2,1)

94
2 1.2 11

5

94
3 2.2 11

5

94
11 2 1.2

5

94
11 3 2.2

5

W

 
  

 
  
 

  
  
 
 
  
 

. 

Solving the fuzzy system of linear equations (20) gives  

, 

where 
* * * * T

1 1 1 1 2 2 2 2( 0, ) ( , , , , , , , ) ;X X a r x x x x x x x x  
1 5 3 T(0, , 0, 2 , 0, 2 , 0, 6 )S F r r r r r     . ♦ 

 

3.4. Estimation by method of degenerate kernels 

Let the equation kernel be a finite sum in which 

each term is the product of some function of τ by 

some function of s. In this case, equation (19) with the 

kernel 
1

( , ) ( ) ( )
n

i i

i

K s a s b


    is a fuzzy Fredholm 

integral equation with a crisp nondegenerate kernel 

[22, 23]. Like before (see subsection 3.2), the follow-

ing assumptions are made to ensure the existence of a 

unique fuzzy solution by the method of successive 

approximation: ( )ia s  is defined, piecewise continu-

ous in the Hausdorff sense, and bounded by the first 

Seikkala derivative for s ∈ [a, b]⊂R; (τ)ib  satisfies 

the same constraint for τ ∈ [0, t] ⊂ R.  

We modify the well-known method for solving 

traditional (crisp) equations with degenerate kernels to 

solve the corresponding fuzzy equation [24].  

Consider a fuzzy integral equation (19) with the 

kernel  

1

( , τ) ( ) (τ)
n

i i

i

K s a s b


 . 

Assume that the following inequalities hold on the 

interval of integration [a, b]:  

1 1

( ) ( ) 0, ( ) ( ) 0,
( ) : ( ) :

; ;

n n

i i i i

i i

a s b a s b
i ii

a b a b

 

 
    

 
       

 
 

 

1

1

( ) ( ) 0,

,
:

( ) ( ) 0,

.

n

i i

i

n

i i

i

a s b

a c
iii

a s b

c b






 


  


  



  




 

In case , the system of equations (19) satisfies 

the relations  

fuz fuz fuz( ) ( ) ( , ) ( )

b

a

x s f s K s x d      

1

1

( , ) ( , ) ( ) ,

( , ) ( , ) ( ) ,

( ) ( ) ,

( ) ( ) .

n

i i

i

n

i i

i

b

i i i

a

b

i

a

x s r f s r a s x

x s r f s r a s x

x b x d x

b x d






 




 


 
     




   










         (21) 

Multiplying the expressions (21) by bi(τ) and inte-

grating them on the interval [a, b], we obtain:  

1 1

1

, ( ) ( ) , ( ) ( ) ,

b bn

i i ij i i i ij i j

i a a

x f a x f f b d a b a d


           

1 , ( ) ( ) , 1, .

b

i i ij i i i

a

x f a x f f b d i n       

These relations lead to the fuzzy system of linear 

equations 

Xfuz = AХfuz + Ffuz, 

where 
T

fuz ( )X X X ; ;

T

fuz ( )F F F , 

Ffuz= ( | )F F ; 
1

( ,..., )
n

F f f , 1( ,..., )nF f f ; 

1

1

0

0

A
A

A

 
  
 

; 1 1( )ijA a , 

1 ( ) ( ) , , 1, .

b

ij i j

a

a b a d i j n      

It can be written in the traditional fuzzy calculus 

form [19, 20]:  

fuz fuz( )I A X F  , where  denotes an identity 

matrix.                             (22) 

The case |I – A| = 0 was studied in the papers [19, 

20].  
Example 4. Consider an integral equation of the form 

(21):  

 2,1

8
2 0 0

3

0 0 0 0

8
0 0 2

3

0 0 0 0

W

 
 
 
 

  
 
 
 
 

1X S F

 i

   1 1,..., ; ,...,n nX x x X x x 

I
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0.5

fuz fuz fuz

0

( ) ( ) ( )x s f s s x d      , [0, 0.5]s , 

where 

fuz ( ) ( , ) ( ( , ), ( , ) [0,1]);

( , ) 0, ( ) , ( ) .i i

f s f s r f s r f s r r

K s s a s s b

  

       
 

The solution is found from the fuzzy matrix equation 

(22) with the matrix elements  
T

fuz 1 1 fuz

T
0.5 0.5

1 1

0 0

( , ) ( ) ; ( , )

( ) ( ) ;

X X s r x x F F s r

f f d f f d

   

 
         
 

 
 

0.50.5 3
1 2 1

11

0 0

1 1 23
; 1 1 .

3 24 24 24
ija d I A a


            

Hence,  
0.5

1

0

24
( )

23
x f d    , 

0.5

1

0

24
( )

23
x f d     , 

and the solution has the form 

fuz ( ) ( ( , ), ( , ) | [0,1])x s x s r x s r r  , 

where  

1( , ) ( , )x s r f s r sx  , 1( , ) ( , )x s r f s r sx  . 

In case , the calculations similar to case  yield  

T T( ) ( )X X IX IX   , 

due to the multiplication rule of fuzzy variables x, 

( , ), 0, ,

( , ), 0.

k x kx k k R
kx

kx k x k

 
 


  

After trivial transformations, we finally obtain: 

1

1

1

1

fuz fuz

0

0

0

0

( ) .

X X F XA

AX X F X

IX IFA

A IX IF

I A X F

        
           
        

     
      

     

    

  

 

3.5. Estimation by method of nondegenerate kernel ap-

proximated by degenerate one 

Consider the relation (21), and let the kernel be 
K(s, τ) = K(s · τ). According to the Taylor expansion, 
for ( ) 0s   we obtain  

1 1

( ) ( ) ( ) ( ).
n n

i

i i i

i i

K s e s a s b
 

         

Hence, the equation  

fuz fuz fuz( ) ( ) ( , τ) (τ) τ

b

a

x s f s K s x d     

is solved using the method described in subsection 
3.4.  

Example 5. Consider the integral equation  

0.5

fuz fuz fuz

0

( ) ( ) sin( ) ( )x s f s s x d      . 

Applying the Taylor approximation of the kernel 

( ) ,K s s  we can use the results of Example 4.  

Under the approximation 

3
2

1
3

1 2

3
3

31 1 2 2 1

3

1
( ) ( )

3
a

a
b b

K s s s a b a b 

  

        ,  

this equation can be also solved using the method from 
subsection 3.4. ♦ 

CONCLUSIONS  

Based on the definition of a fuzzy Riemann inte-

gral, the problem of estimating the states of models 

described by fuzzy Fredholm–Volterra integral equa-

tions has been formulated under the assumed exist-

ence of their unique solutions. 

Various state estimation methods for fuzzy inte-

gral equations have been considered, namely, the 

fuzzy Laplace transform, the method of “embedding” 

models, the Taylor estimation of the degenerate ker-

nels, and the estimation of the nondegenerate kernels 

by degenerate forms. Test examples have been solved 

for them. As shown above, in some cases, the estima-

tion results are related to the solution of fuzzy systems 

of linear algebraic equations. 

In part II of the survey, other state estimation 

methods for linear and nonlinear fuzzy integral mod-

els will be considered, namely, the least squares 

method and its modifications, the Galerkin and Che-

byshev methods, and sinc functions.  
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Abstract. This survey covers the literature related to information communities in mutually 

complementary areas: the formation of information communities in social networks and some 

applied aspects of identifying and analyzing information communities in social networks. First, 

mathematical models describing the formation of information communities under uncertainty 

are considered. Among these models, the most relevant ones are the mathematical models of 

opinion/belief dynamics reflecting any changes in the beliefs of nodes under the influence of 

other network nodes and significant effects (in particular, the preservation of differences in be-

liefs and the divergence of beliefs) that lead to the formation of information communities. In 

part I of the survey, the concept of an information community is first presented. Then infor-

mation processing and decision-making by an agent in a social network under external uncer-

tainty are outlined. The factors influencing the formation of information communities in the 

network are highlighted, and the basic models of Bayesian agents and their extensions are in-

vestigated.  

 
Keywords: social networks, information community, formation of information communities, analysis of 

information communities, belief formation.  
 

 
 

INTRODUCTION  

The Internet and online social networks have 

opened up great opportunities for the efficient produc-

tion, distribution, and consumption of information in 

society and, therefore, opportunities for rational dis-

cussion of various issues and the formation of bal-

anced opinions on them. However, as it turned out, the 

availability and diversity of information sources and 

the corresponding alternative points of view do not 

automatically improve the quality of the information 

received and the competence of people in socially im-

portant issues. On the contrary, the ideas on many is-

sues in society diverge, and separate communities are 

formed with different or even exact antipodes of opin-

ions on the same issues. This phenomenon can be ex-

plained as follows: social network participants are not 

completely rational agents effectively aggregating  
________________________________ 
1This work was supported by the Russian Foundation for Basic 

Research, project no. 19-17-50225. 

information on issues of interest to them since social 

and psychological factors significantly influence the 

processing of information by individuals. 

In many application areas, an important problem 

is identifying and studying information communities in 

social networks (the sets of individuals with similar 

and stable ideas on a certain issue). For example, so-

cial and political scientists believe that the formation 

of isolated communities (information bubbles and echo 

chambers) poses a threat to society. Empirical research 

shows a rich variety of information communities in 

society (for example, polarized communities of Repub-

licans and Democrats in the United States). In such 

studies, various aspects were analyzed: the exposure of 

a user to alternative information depending on the 

preferences of his contacts in the network and online 

social network algorithms [1], the interaction of com-

munities with different beliefs [2], the informational 

roles of users [3], etc. Statistical methods, machine 

learning methods (for example, correlation and cluster 

mailto:dmitry.a.g@gmail.com
mailto:zyxzy@protonmail.ch
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analysis methods), and social network analysis meth-

ods based on the phenomenon of homophily
2
 are often 

used [1–5]. Such methods require preliminary data 

processing and subsequent interpretation of the results. 

In other words, a researcher must have an idea of the 

opinion dynamics in social networks and the existence 

of information communities in them. Features of in-

formation processing by an individual are explored in 

cognitive science, psychology, and social psychology; 

for example, see the book [8]. Formal microlevel mod-

els of boundedly rational agents are developed to de-

scribe the belief dynamics in networks taking these 

features into account. For example, we refer to [9–13]. 

In practice, applying these models to identify commu-

nities is not easy due to the simplifications and as-

sumptions accepted, the complexity of identifying the 

model parameters, and the absence of a clearly formu-

lated concept of information communities. 

This survey aims to consider the formation mod-

els of information communities in social networks 

(which have microeconomic, cognitive, or socio-

psychological foundations) and methods for their iden-

tification. The survey is divided into three parts, and 

part I has the following structure. In Section 1, we de-

fine an information community. In Section 2, we brief-

ly describe the process of information processing and 

decision-making by an agent in a social network under 

an external uncertainty; also, we highlight the factors 

affecting the belief dynamics in a social network and, 

consequently, the formation of information communi-

ties in the network. In Section 3, we briefly discuss 

formal models of the belief dynamics with Bayesian 

agents leading to the formation of information com-

munities.  

1. CONCEPT OF INFORMATION COMMUNITY  

Community is a rather vague concept often used 

informally. Here are some of the definitions available. 

Community is “an association of humans, peoples, or 

states with common interests or goals” [14]. A com-

munity can be viewed: 

 as an association of individuals, i.e.,  

– as a group of people with common characteris-

tics or interests, living together within a larger society,  

– as a set of individuals with common interests, 

distributed throughout society,  

                                                           
2 Homophily is actively studied in sociology. In particular, the 

evidence of and reasons for this phenomenon are considered; for 

example, see [6, 7]. This paper does not cover the results obtained 
in sociology.  

– as an association of people or nations with a 

common history or common social, economic, and 

political interests;  

 as a society as a whole [15].  

Examples are scientific communities and lan-

guage communities. 

According to these definitions, the characteristics 

of all individuals within a community are common. 

This effect is closely related to homophily, the inclina-

tion of individuals to form relations based on common 

characteristics [6, 7]. From this point of view, there is 

a direct connection with the definition adopted in the 

theory of complex networks, where a community is a 

set of nodes connected with each other rather than with 

the nodes of other communities [16]. As such charac-

teristics, we will be concerned with the beliefs of indi-

viduals (private beliefs) about some issues (problems). 

Therefore, we will understand the information commu-

nity as a set of individuals—social network mem-

bers—united by common stable beliefs
3
 about given 

issues; see the formal definition of a community intro-

duced in the paper [17].  

For describing and explaining the formation dy-

namics of information communities in social networks, 

appropriate models of the dynamics of private beliefs 

are needed. Let us distinguish between two types of 

significant dynamic processes in social networks (Fig. 

1): the process of changing the beliefs of network indi-

viduals (the network state) within a fixed topology and 

the process of changing the network topology when 

the network state “affects” the topology (like-minded 

people begin to interact more with each other). It is 

usually assumed that the topology dynamics occur in 

slow time, whereas the state dynamics in fast time. The 

most interesting and complex situations are when both 

processes influence each other, thereby affecting the 

formation of information communities in a social net-

work. 

 

 

Fig. 1. Mutual influence of network state and topology.   

 

                                                           
3 The terms “belief” and “opinion” are considered synonyms.  
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This survey considers dynamic models of beliefs 

in networks with a fixed structure (in some cases, with 

changing weights of links), where individuals try to 

eliminate the uncertainty regarding a given issue via 

social interactions. The common final beliefs of indi-

viduals are the condition for forming information 

communities in the network. These models are dis-

cussed further in parts I and II of the survey.  

2. FORMING BELIEFS IN SOCIAL NETWORK  

Participants of social networks exchange infor-
mation to eliminate the uncertainty on some issue, 
forming their beliefs. (In mathematical models, issues 
are usually formalized by the values of some parame-
ters.) In control of socio-economic systems, a common 
assumption is that rational individuals (agents) have 

beliefs about the state of the world θ ∈ Θ (also called 
the state of nature). The agent’s individual preferences 
are defined on the set of activity results, which particu-
larly depend on the agent’s actions and the state of the 
world. Under the hypothesis of rational behavior, each 
agent chooses an action yielding the best result for 
him. The information he possesses regarding the state 
of the world is essential here. A rational agent seeks to 
eliminate the existing uncertainty and make decisions 
under complete information (the hypothesis of deter-
minism) [18]. This paper primarily considers the elim-
ination of an external objective uncertainty (the uncer-
tain state of the world). It is assumed that a rational 
formation about the state of the world while interacting 
with his neighbors (whose actions reveal their private 
information), changing his beliefs according to some 
updating mechanisms (or information processing 
rules); see Fig. 2. Rational agents calculate their poste-
rior beliefs by Bayes’ rule.  

However, individuals are not completely rational. 
As noted by psychologists [19–21], individuals have 
bounded rationality due to various cognitive limita-
tions (primarily, limited memory and limited computa-
tional capabilities) and mental characteristics; see men-
tal components in Fig. 2 and their detailed description 
in [22]. Moreover, individuals make systematic errors 
that affect information processing (cognitive biases). 
Therefore, heuristic updating methods can be consid-
ered here, which are based on empirical laws and 
demonstrate the socio-psychological effects observed 
in practice. In particular, the social influence on the 
private beliefs was described in the classical DeGroot 

model [9]: an agent updates his belief based on the 

information about the beliefs of his trusted environ-
ment in a social network. In meaningfully richer mod-
els (for example, those presented in [10–12]), the 
strength of the influence of neighbors depends on how 

much their beliefs agree with the agent’s belief: the 
individual’s inclination to confirm his point of view is 
taken into account. This effect can lead to the emer-
gence of communities in which the agents support the 
same beliefs. 

Generally speaking, the dynamics of private be-

liefs in a social network are influenced by the follow-

ing factors (Fig. 2): 

 The state of the world θ ∈ Θ regarding which 

individuals form their beliefs (for example, the shape 

of the Earth or a currency exchange rate for tomor-

row). 

 The individual’s belief about the state of the 

world. The belief can be defined, in particular, using 

some point estimate or distribution of subjective prob-

abilities on the set Θ. The individual’s beliefs are lim-

ited by memory and may depend on his beliefs about 

other issues. 

 The updating mechanism for beliefs. Control of 

socio-economic systems rests on the assumption that 

the agents are rational and act according to Bayes’ 

rule. However, boundedly rational individuals can ap-

ply heuristic rules. 

 The individual’s action, which reflects his be-

liefs. Actions from discrete sets are usually less in-

formative than those from continuous ones due to an 

insufficiently good reflection of the agent’s beliefs. 

 The individual’s preferences, defined on the set 

of his activity results, or a preferences-induced objec-

tive function that depends on the individuals’ actions 

and the state of the world. 

 The social network structure. Obviously, the 

network structure influences the formation of the pri-

vate beliefs. Here are some examples of network ef-

fects: disconnected networks rarely lead to the coordi-

nated beliefs of individuals; individuals with an advan-

tageous position in the network structure usually have 

a significant impact on the opinions of others, etc. 

Each of these factors concerns the mental charac-

teristics of individuals and determines various infor-

mation effects in a social network. The models of be-

lief dynamics describe the following information ef-

fects: 

– the emergence of a true or false consensus of 

beliefs in the network and, consequently, the formation 

of a global information community (see the definitions 

in Section 1); 

– the emergence of some disagreement in the net-

work and, consequently, the formation of various in-

formation communities in the network. 

The mathematical models of belief dynamics for 

network agents (see below) incorporate the factors 

listed above and demonstrate these information effects 
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and, therefore, the possibility of forming information 

communities in the network. A primary approach is to 

divide the models, according to the intellectual capa-

bilities of network agents and the updating method for 

their beliefs, into the models with rational Bayesian 

agents and the models with boundedly rational agents 

guided by heuristic belief updating rules.  

 

Fig. 2. Information processing and decision-making by agent in social network. 

 

3. FORMING INFORMATION COMMUNITIES IN MODELS 

WITH BAYESIAN AGENTS 

3.1. Forming Private Beliefs 

In models with Bayesian agents, the main ques-

tion is whether the agents can form true beliefs about 

the state of the world in a network. For the state of the 

world, the set of admissible values Θ is given, like the 

set of agents having probability distribution-based be-

liefs about the state of the world. The agent’s learning 

occurs by processing his available information about 

the state of the world: a private signal and, possibly, 

the actions of his neighbors. In the latter case (the 

agent receives information about the actions of his 

neighbors), learning is called social. For being in-

formative, a signal s must depend on the state of the 

world θ. However, generally speaking, it does not 

completely reveal the state of the world, representing a 

random variable. Information processing obeys Bayes’ 

rule: the incoming information is used to update the 

individual’s prior beliefs and form his posterior be-

liefs:  

 
 

   

( | θ) θ
θ| ,

|θ θ θ

s f
f s

s f d





 

where f(θ) denotes the prior density function of θ; 

 (s|θ) and f(θ|s) are the conditional density functions 
of the parameters s and θ given θ and s, respectively.  

In classical learning models, all agents know the 
model structure: the prior probabilities of the admissi-

ble states of nature and the private signals (their condi-

tional distributions given different states of nature). 
This information is common knowledge: 

1) Each agent knows this structure. 
2) All agents know fact 1); 

3) All agents know fact 2), and so on, ad infini-
tum. 

However, each agent knows neither the realiza-
tions of the state of the world nor the realizations of 

the other agents’ private signals. The common 
knowledge assumption is quite strong, being weakened 

in several studies; for example, see the papers [23, 24]. 
Further, we discuss two basic updating models for 

the agent’s beliefs, in which particular assumptions 
about the agent’s awareness structure are introduced, 

and there is no information interaction between differ-
ent agents.  
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3.2. Basic Updating Models for Agent’s Beliefs 

Consider two basic updating models for the 

agent’s beliefs. They can be briefly described as fol-

lows. In the elementary binary model, the state of the 

world takes two values (the state is discrete), and each 

agent receives a binary signal about the state of the 

world; in the Gaussian model, the state of the world 

and private signals are realizations of Gaussian random 

variables. 

In the binary model, the set of admissible states is 
 ∈        , where      ; in the elementary state-

ment, θ ∈ {0, 1}. The probability distribution is char-

acterized by one number–the probability of state 1. 

Private signals take the value 1 or 0 with the probabili-

ties P(s = 1|θ = 1) = q and P(s = 0 | θ = 0) = q. A pri-

vate signal is called symmetric if q = q. In this case, 

the parameter q is called the signal accuracy. (A con-

ventional assumption is q > ½.)  

For the binary model, Bayes’ rule can be written 

as the likelihood ratio  

 

 

θ 1(θ 1| ) ( | θ 1)
.

(θ 0 | ) ( | θ 0) θ 0

PP s P s

P s P s P

 
 

  
 

In the binary model, the signal leads to a bounded 

change of beliefs. If μ is the subjective belief about 

state 1, its variance is μ(1 – μ). This means that new 

information can increase the variance and decrease the 

confidence in the resulting estimate. For a sequence of 

signals {st} with the same accuracy q, Bayes’ rule is 

applied sequentially. As    , the agent’s belief 

    , and the variance of the estimate tends to 0. 

In the Gaussian model, the state of the world is a 

realization of a Gaussian random variable or vector. In 

the simple case,         
  . The distribution accura-

cy is denoted by        
 . The private signal 

s = θ + ϵ obeys the Gaussian distribution, where the 

noise is ϵ          . After receiving signal s, the 

updated distribution θ remains Gaussian N(m, 1/ρ) 

with the parameters  

ρ = ρ + ρϵ,  

            , where       ⁄ .  

Consequently, in the elementary Gaussian learn-

ing model, observations lead to an increase in the accu-

racy of the agent’s beliefs (decrease in the variance); 

the posterior expectation of θ is the weighted sum of 

the signal and the prior expectation (with weights re-

flecting the accuracy). 

Thus, in the basic learning models, an agent receives a 

sequence of informative signals and gradually reaches 

a true estimate for the state of the world. Let us now 

consider the formation of various information commu-

nities in these models.  

3.3. Forming Different Information Communities 

The question arises: can Bayesian agents
4
 reach 

different beliefs if they receive the same information 

(the same sequence of signals) about the state of the 

world? 

Cognitive limitations 

Agents can reach different beliefs if their prior 

beliefs differ and their memory is limited. In [25], some 

of the agent’s signals on the state of the world were 

supposed to be ambiguous and interpreted differently 

depending on their current beliefs. In particular, at a 

time instant t, an agent can receive informative signals 

a or b about the state of the world, or an ambiguous 

signal ab, which has to be interpreted and memorized 

as a or b due to the agent’s memory limit. An agent 

forms a belief λ about the state of the world by Bayes’ 

rule, interpreting the incoming signal ab as a if λt–

1 > 1/2, or as b if λt–1 < ½. (Thereby, the agent shows 

the inclination to confirm his point of view.) Let the 

agents have different prior beliefs (for example, the 

first agent considers state A to be more likely, and the 

second agent, state B). If the probability of ambiguous 

signals is significant, then the agents will reach oppo-

site beliefs about the state of the world with a positive 

probability. 

Cognitive biases 

In the paper [26], the effect of an agent’s inclina-

tion to confirm his point of view was described within 

the binary model. The following assumption was in-

troduced to model the inclination: if an agent receives 

a signal contradicting his belief about the state of the 

world, he incorrectly interprets (perceives) this signal 

with a probability q > 0 as confirming his belief. At the 

same time, he is unaware of the signal misinterpreta-

tion and acts like a typical Bayesian agent. As was es-

tablished therein, under the agent’s inclination to con-

firm his point of view (expressed by the parameter q), 

he can eventually reach the false belief, despite an in-

finite sequence of informative signals perceived by 

him. Accordingly, individual probabilities q can lead 

to some disagreement among agents in society. 

Complex model of beliefs: additional factors 

and questions 

As was demonstrated in [27], in some cases, the 

intensification of disagreement among individuals ob-

serving the same information is rational if they make 

different assumptions about additional factors affect-

ing the relationship between the parameters under 

consideration: the state of the world and the received 

                                                           
4 Although this subsection deals with situations with two agents, 
the considerations are applicable to any set of agents of two types.  
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signal (i.e., the private beliefs about the problem situa-

tion are richer compared to the individuals in classical 

learning models). This aspect was touched upon in 

[28], where the role of beliefs about an “auxiliary” is-

sue (not directly related to the “main” issue but affect-

ing the interpretation of signals associated with it) was 

considered. These beliefs may cause the polarization of 

beliefs about the main issue. With strained interpreta-

tion, due to the specifics of the agent’s utility function, 

this class of models includes the model [29], in which 

the state of the world θ = (α, β) is a realization of the 

random variable  ̃    ̃  ̃ ,  ̃  ̃ ∈      , and agents 

with different private signals on α, receiving general 

signals on β, reach different beliefs about the optimal 

actions.  

Different prior beliefs 

The paper [30] considered the polarization of 

Bayesian individuals’ beliefs in a collective choice 

problem that depends on the state of the world and re-

quires a decision (the choice of some policy). Depend-

ing on their beliefs about the state of the world, voters 

support one or another alternative. Then they observe 

the degree of success of their choice (the result of the 

chosen policy) and correct their beliefs about the state 

of the world. Polarization is excluded if and only if the 

conditional density of the choice result (given the state 

of the world and the chosen policy) has the Monotone 

Likelihood Ratio Property (MLRP). Otherwise, polari-

zation cannot be ruled out even under small differences 

in the prior beliefs: the corresponding examples were 

provided for discrete and continuous indicators of the 

success of the chosen policy. 

Different prior beliefs about conditional signal 

distributions 

Agents can also reach some disagreement if their 

prior beliefs about the state of the world and their be-

liefs about the conditional signal distributions are dif-

ferent. Let us discuss this aspect in detail. 

In [31], a learning model with two Bayesian 

agents (1 and 2) was considered. The agents observe a 

sequence of signals        
 ,   ∈      , from an envi-

ronment. The state of the world is described by the 

parameter  ∈       (the true state is A), and the prior 

belief of agent i about the probability that     is 

given by the parameter   ∈      . The agents suppose 

that for a given parameter θ, the incoming signals are 

independent and identically distributed: 

P(st = a | θ = A) = pA and P(st = b | θ = B) = pB. Usual-

ly, these probabilities are considered known. In reality, 

however, there may exist an uncertainty of the proba-

bility pθ ( ∈      ): for each agent i, this uncertainty 

is described by his distribution of subjective probabili-

ties   
 . 

Consider an infinite sequence of signals   
       

 , and let S be the set of all such sequences. The 

posterior belief of agent i about the parameter θ given 

the observed sequence of signals        
  is      

    1
θ | . 

ni i
n t t

s P A s


    

Recall that the signals are independent and identi-

cally distributed. Hence, the posterior probability de-

pends on the number of signals st = a by a time instant 

n:  

  #{ | }.n tr s t n s a    

According to the strong law of large numbers, 

rn(s)/n converges with probability 1 to some frequency 

    ∈ [   ] for all agents. Defining the set  ̅    ∈

                  , we write  

 
1

,  
( |θ )1 π

1
π ( | θ )

i
n ii

n

i i
n

s
P r B

P r A

 





 

where          is the probability of observing exactly 

rn signals st = a in the sequence of the first n signals 

given   
 .  

As it turned out [31], if for each θ
iF  we have the 

probability  θ θ 1ˆiF p   for some θ
ˆ 1/ 2p   and 

 θ 0iF p   for all θ
ˆp p , then: 

  lim 1|θ 1i i
n

n
P s A


     (asymptotic learning) and 

    1 2lim 0 1i
n n

n
P s s


     (asymptotic agreement) 

for each 1,2i  . Thus, if the individuals know the 

conditional distributions of signals (which are the same 

for them), they will learn the true state of the world 

from observations (almost surely as n → ∞) and reach 

a consensus regarding the state θ in the case of observ-

ing the same sequence of signals. If the limiting fre-

quency of the signal a is ˆ
Ap , then the individual be-

lieves that θ = A; if this frequency is 1 ˆ
Bp , then he 

believes that θ = B. The probability of all other cases 

for the agent is 0. If for sufficiently large n < ∞, the 

individuals observe ρ (the frequency of the signal a) 

different from ˆ
Ap  and (1 ˆ

Bp ), they will associate this 

deviation with sampling variation. However, as the 

sample grows (n → ∞), it becomes difficult to explain 

by the sample variation the signal frequency differing 

from ˆ
Ap  and  1 ˆ

Bp . Therefore, a natural approach 

is when the individuals are allowed to specify positive 

(albeit small) probabilities for all admissible values of 

pθ. This assumption leads to various consequenc-

es; see below.  
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Theorem 1. Assume that for each agent i and 

each value of the parameter θ, the probability distribu-

tion θ

iF  has a continuous, nonzero, and finite density 

function θ

if  on the interval [0, 1].  

Then for s S :  

(a) There is no asymptotic learning, i.e., 

  lim 1|θ 1i i
n

n
P s A


    .  

(b) There is no asymptotic agreement between two 

agents, i.e.,     1 2lim 0 1i
n n

n
P s s


     whenever 

1 2π π  and 
1 2
θ θF F  for each value  θ ,A B  [31, 

32]. 

of pθ. This assumption leads to various consequences; 

see below. 

In fact, learning under such uncertainty can inten-

sify the disagreement between two Bayesian agents 

after receiving the same infinite sequence of signals. 

This effect is impossible within the standard model; 

see the next theorem. 

Theorem 2. Assume that for each agent i and 

each value of the parameter θ, the probability distribu-

tion θ

iF  has a continuous, nonzero, and finite density 

function θ

if  on the interval [0, 1]. In addition, assume 

that there exists a number ϵ > 0 such that 

   1 2ρ ρR R   ϵ for each frequency  ρ 0, 1 , 

where      1 ρ 1 ρ / ρi i
B AR f f   is the likelihood ra-

tio. Then, there exists an open set of prior beliefs π
1
 

and π
2
 such that for all signals s S , 

   1 2 1 2lim π πn n
n

s s


     ; particularly, 

   1 2 1 2lim ( ) π π 1n n
n

Р s s


      [31]. 

Thus, even small differences in the prior beliefs of 

agents lead to different interpretations of the signals. If 

the initial discrepancy is small, then the disagreement 

between the agents will intensify after almost any se-

quence of signals. 

There is no network interaction among the agents 

in the models of learning and formation of information 

communities discussed above. In the general case, in-

dividuals—members of society—interact with each 

other within a social network. Hence, the actions of 

neighbors in the network can provide an agent with 

additional information about the state of the world. 

This type of interaction will be discussed in part II of 

the survey.  

CONCLUSIONS  

In part I of the survey, the concept of an infor-

mation community has been outlined, and relevant 

models for forming the beliefs of individuals who seek 

to eliminate uncertainty about a given issue(s), eventu-

ally forming information communities, have been con-

sidered. Approaches to model the updating of private 

beliefs and the influence of various factors on the 

achievement of true beliefs and the formation of one or 

several different information communities in the net-

work have been described. In a society of Bayesian 

agents, a true belief about the issue is often reached; 

for the emergence of various information communities, 

it is necessary to weaken the rationality requirement 

for individuals and/or introduce assumptions about 

different awareness of individuals. 

Part II of the survey will consider the formation of 

information communities in network models with 

Bayesian agents and with naive (“heuristic”) individu-

als. Finally, part III of the survey will be devoted to 

empirical studies on the existence of information 

communities in real social networks and their features. 
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Аннотация. A differential game of several players is considered as follows. One player (at-

tacker) penetrates some space, and several other players (pursuers) appear simultaneously to 

intercept the attacker. Upon detecting the pursuers, the attacker tries to evade them. The dynam-

ics of each player are described by a time-invariant linear system of a general type with scalar 

control. A quadratic functional is introduced, and the differential game is treated as an optimal 

control problem. Two subproblems are solved as follows. The first subproblem is to construct a 

strategy for pursuing the attacker by several players having complete equal information about 

the game. The second subproblem is to construct such a strategy under incomplete information 

about the attacker actively opposing the pursuers. The simulation results are presented. The ze-

ro-sum differential game solution can be used for studying the final stage of pursuit, in which 

several pursuers and one evader participate. 
 

Ключевые слова: differential games, linear dynamics, optimal feedback control, Nash equilibrium, Lya-

punov functions, Riccati equation.  
 

 

 

INTRODUCTION 

The theory of differential games as a branch of 

mathematical control theory is closely related to the 

mathematical theory of optimal processes, game theo-

ry, calculus of variations, and the theory of differen-

tial equations. Problems of the theory of differential 

games stem from many topical applications, such as 

the pursuit of one controlled object by another, bring-

ing a controlled object into a given state under un-

known disturbances, and military or economic prob-

lems, to name a few. The formation of the theory of 

differential games is associated with R.P. Isaacs [1, 

2], J.V. Breakwell [3], L.S. Pontryagin [4, 5], E.F. 

Mishchenko [6], B.N. Pshenichny [7], and many other 

foreign and Soviet scientists. Since the late 1970s, an 

independent area in the applied theory of differential 

games has appeared, dealing with the problems of 

pursuit, evasion, and target defense [8–19]. In the 

works by L.S. Pontryagin and E.F. Mishchenko [4–6], 
 

______________________________ 
1This work was supported by the Russian Foundation for Basic 

Research, project no. 19-8-00535. 

sufficient conditions for completing pursuit in linear 
differential games were established. In the research of 
N.N. Krasovskii, A.I. Subbotin [8], their students and 
colleagues, positional differential games were studied; 
for this class of games, the problems of approach and 
evasion were formulated, and control procedures im-
plemented on a computer were proposed. The devel-
opment of differential games theory with application 
to conflict-controlled systems by the 1990s was sum-
marized by L.A. Petrosyan in his book [9]. The theory 
of differential games as applied to pursuit problems 
significantly evolved thanks to A.A. Melikyan, L.S. 
Vishnevetsky, N.V. Ovakimyan [10–13], and V.S. 
Patsko and S.S. Kumkov [14, 15]. At the 18th and 
19th IFAC World Congresses, there were separate 
sections devoted to the theory of differential games 
and the practice of applying this theory to control 
problems in conflict states [15–19]. 

This paper considers a differential game with sev-

eral players. One player (attacker) penetrates some 

space, and several other players (pursuers) appear 

simultaneously to intercept the attacker. Upon detect-

ing the pursuers, the attacker tries to evade them. The 

dynamics of each player are described by a time-

http://doi.org/10.25728/cs.2021.1.3
mailto:afanval@mail.ru
mailto:spin7ion@gmail.com
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invariant linear system of a general type with scalar 

control. Note that this formulation of the game-

theoretic problem is quite popular. For example, in the 

papers [19, 20], distributed game strategies for similar 

problems were developed and analyzed. The proposed 

solutions were based on the integration of cooperative 

control theory and differential game theory. As 

demonstrated therein, the proposed non-zero-sum 

game strategies are the Nash solution in terms of 

functionals (performance criteria) introduced to assess 

the players’ actions. In this paper, a quadratic perfor-

mance criterion is introduced, and the differential 

game is treated as an optimal control problem [21], 

i.e., a zero-sum differential game. Two subproblems 

are solved as follows. The first subproblem is to con-

struct a strategy for pursuing the attacker by several 

players who have complete equal information about 

the game. The second subproblem is to construct such 

a strategy under incomplete information about the 

attacker who is actively opposing the pursuers. The 

simulation results are presented. The zero-sum differ-

ential game solution can be used for studying the final 

stage of pursuit, in which several pursuers and one 

evader participate. 

This paper is organized as follows. Section 1 for-

mulates the problem in which there are several pursu-

ers and one attacker. The pursuers try to intercept the 

attacker, and the attacker tries to evade them. Each 

player can detect other players within its radius of 

sensitivity. Therefore, the game is a game with dis-

tributed information. Assumptions are made to ex-

clude the cases when the attacker observes no pursu-

ers or each pursuer observes no objects within its ra-

dius of sensitivity. 

A common performance criterion is introduced in 

the zero-sum game to assess the actions of the pursu-

ers and the attacker evading them. The pursuers seek 

to minimize this criterion, whereas the evading at-

tacker to maximize it.  

Section 2 considers the classical differential game 

with global information. The outcome of this game is 

based on optimal control theory. A theorem on the 

existence of solutions of the zero-sum differential 

game is proved. Also, Section 2 considers the differ-

ential game with distributed information. 

Section 3 deals with a situation when the evading 

attacker artificially jams the pursuers to gain an ad-

vantage in the game. This means that the pursuers will 

receive information about the evader’s position with 

some noise. Hence, the controls constructed by the 

pursuers will contain this noise. Thus, the trajectories 

along which the pursuers will intercept the evader are 

suboptimal. In addition, the attacker constructs its 

strategy for all pursuers detected, trying to escape the 

center of mass of all pursuers. Since their positions 

are subjected to noise, the attacker’s trajectory will 

also contain a noise component. 

Section 4 presents the simulation results for the 

differential game of pursuit in various statements con-

sidered in the previous sections. 
 

1. PROBLEM STATEMENT  

In the problem under consideration, the number of 

players is (n+ 1), namely, n pursuers and one attacker 

evading the pursuers. Each player can detect other 

players in its radius of sensitivity. Thus, the game is a 

game with distributed information. Let us make some 

assumptions. 

Assumption  2.1.  The observation between any 

pursuer–attacker pair is mutual, whereas the observa-

tion between two pursuers is not necessarily mutual. 

Assumption  2.2.  There exists at least one pursu-

er–attacker pair in which each member observes the 

other member, and each pursuer observes at least one 

other pursuer. 

Without these assumptions, the following undesir-

able cases are possible in the problem: the attacker 

observes no pursuers, or each pursuer observes neither 

the attacker nor the other pursuers. 

Suppose that the differential game of pursuit takes 

place in the m-dimensional Euclidean space. The posi-

tions of the players can be written as the vectors 

 
T

1 2( ) ( ), ( ),..., ( )my t y t y t y t , ( ) my t R , for the at-

tacker and 
T

1 2( ) ( ), ( ),..., ( )j j j jmx t x t x t x t    , 

( )j

mx t R , for pursuer j = 1, 2,…, n, respectively. 

We introduce a vector ( ) m

jz t R
 
of the form  

( ) ( ) ( ), 1, 2, 3...,j jz t x t y t j n   , 

which specifies the distance between the attacker and 

pursuer j. This vector determines the radius of sensi-

tivity for each player.   

Denoting T T T T

1 2, , , nx x x x     and T T

1 ,z z 
T T

2 , , nz z  , we compactly write the distance as  

( ) ( ) ( )nz t x t y t  1 , 

where n1  is the unitary vector of dimensions 1n , 

and the symbol   indicates the Kronecker product. In 

the problems considered below, 0 , ft t t   .  

Assumption 2.3. Let us formulate the objectives 

of different players in this differential game. Consider 

a positive number ε 1 :  
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– If at some instant 1t , 0 1 ft t t  , the condition 

2

1( ) εjz t   holds due to the actions of one or several 

pursuers, then the game ends because the attacker is 

intercepted. This outcome is the pursuers’ objective in 

the game.   

– If for any t , where 0 ft t t  , we have 

2
( ) εz t  , i.e., the condition of interception is not 

valid, then at ft t  the game ends upon reaching the 

prescribed duration. This outcome is the attacker’s 

objective in the game. 

Let the game dynamics be described by an ordi-

nary linear differential equation [9, 10] of the form 

( ) ( ) ( )np e

d
z t u t u t

dt
  1 ,               (1) 

where ( ) ( )p

d
u t x t

dt
  and ( ) ( )e

d
u t y t

dt
  are the ve-

locities of the pursuers and attacker, respectively.  

In the non-zero-sum game for the system (1), we 

can introduce two performance criteria [19]:  

The group of n pursuers strives to minimize the first 

criterion 

0

T

T

( )
1 1

( )( ( ), ( )) ( ) ( )
2 2

( )

ft

pp p pf f f

t

n e

z t

u tJ z u k z t z t

u t

 
 

     
  


1

 

 

( )0 0

( )0 0 .

0 0 0 ( )

p

pp

n e

z tq I

u tr I dt

u t

  
  

   
      1

           (2) 

The evading attacker seeks to maximize the se-

cond criterion  

0

T

T

( )
1 1

( )( ( ), ( )) ( ) ( )
2 2

( )

ft

pe ef f f

t

n e

e

z t

u tJ z u k z t z t

u t

 
 

      
  


1

 

( )0 0

( )0 0 0 ,

0 0 ( )

e

p

e n e

z tq I

u t dt

r I u t

   
  

   
      1

         (3) 

where , , ,pf ef p ek k q q , ,pr  and er  are positive parame-

ters.  

The first summand in the criterion (2) characteriz-

es a finite value of the differential game, and the pa-

rameter ε determines the instant of successful inter-

ception, i.e., the fulfillment of the condition 
2

1 0 1( ) ε, fz t t t t   . Hence, the non-execution of 

interception should be highly estimated by the pursu-

ers. With this aspect in mind, in the case ε 1 , the 

parameter pfk  can be chosen as 1/ εpfk  . For the 

evading attacker, the first summand in the criterion 

(3), which estimates the value of its game at the ter-

minal instant, should be small. In other words, the 

parameter efk  can be chosen as εefk  .  

According to these performance criteria, the pur-

suers strive to minimize the weighted distances be-

tween them and the evading attacker under the mini-

mum energy costs. In contrast, the evading attacker 

seeks to maximize the weighted distances between it 

and the pursuers under the minimum energy costs. 

Unlike [19, 20], this paper considers the zero-sum 

differential game. There is a common performance 

criterion minimized by the n pursuers and maximized 

by the evading attacker. Treating the differential game 

as an optimal control problem [21], we combine the 

criteria (2) and (3) as follows: 



   
0

T T T

T

( ( ), ( ), ( )) ( ( ), ( )) ( ( ), ( ))

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

( ) ( ) , (4)

f

p e p p e

t

f f p p

t

n e n e

eJ z u u J z u J z u

z t Fz t z t Qz t u t Ru t

u t P u t dt

          

   

  



1 1

where , , ,pf ef n p e n p nF k k I Q q q I R r I         
 

and
 

,e nP r I  the parameters , , , , ,pf ef p e pk k q q r  and 

er  
are positive, and nI  is an identity matrix of dimen-

sions n n . 

The positive definiteness of the matrices F, Q, R, 

and Р  ensures the existence of optimal controls in 

this differential game [22]. As shown below, choosing 

the parameters pr  and er  so that p er nr  corresponds 

to the case of “strong” pursuers. (In other words, the 

pursuers excel the evader by their dynamical capabili-

ties.)   

For the mathematical description of different sit-

uations (stages) in the game with distributed infor-

mation, by analogy with the paper [19], we introduce 

the “sensitivity matrix”  

01 02 0

10 12 1

0 1 2

1 ( ) ( ) ( )

( ) 1 ( ) ( )
( )

( ) ( ) ( ) 1

n

n

n n n

s t s t s t

s t s t s t
S t

s t s t s t

 
 
 
 
 
 

,      (5) 

where the subscript “0” indicates the evading attacker, 

and the subscripts from “1” to “n” the corresponding 

pursuers. For players i, j and an instant t , the parame-

ter 
0( ), , , , 0, 1, 2,...,fijs t t t t i j n    , 0 ( ) 1ijs t  , 

is the degree of significance of the information about 

the latter player’s state used by the former player for 

accomplishing its objective in the differential game.  
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In the case 0 ( ) 1ijs t  , player i  observes player j ; 

otherwise ( ( ) 0ijs t  ), does not. Since each player 

always observes itself, the diagonal elements of the 

matrix (5) are constant and equal to 1. Thus, at sepa-

rate stages, the players’ information to accomplish 

their objective in the differential game may change, 

reflected via appropriate controls of the attacker and 

pursuers. This paper does not consider any methods 

for determining the degree of significance, i.e., the 

problem of finding the parameters of the matrix ( )S t  
depending on the game conditions. The criterion (4) 

for the zero-sum differential game with distributed 

information will be presented in Section 2.2. 

In the game with global information, the sensitivi-

ty matrix is constant, and its elements are equal to 1. 

2. CLASSICAL DIFFERENTIAL GAME AND GAME WITH 

DISTRIBUTED INFORMATION 

2.1. Classical differential game 

The classical differential game is a game with 

global information. It rests on the theory of optimal 

control: the problem is to design controls 
0 ( )рu t  and 

0 ( )eu t  for which 

0 0

0 0

( , ( ), ( )) ( , ( ),

( )) ( , ( ), ( ))

р e р

e р e

J z u t u t J z u t

u t J z u t u t

 






. 

For the classical differential game with several 

pursuers and linear feedback controls, we have the 

following result. 

Theorem 3.1.  Consider a differential game with n 

pursuers and one evading attacker with the dynamics 

(1) and the performance criterion (4). This game has 

a value under the condition p er nr   if the strategies 

of players are given by  

T

0 01
( ) ( ) ( ), ( )

1
( ) ( ) ( ), (6)

p

n m

e

р eu t K t z t u t
r

I K t z t
nr

  

  1

  

where 

T1 1
( ) ( ) ( )

( ) , ( ) . (7)

n n n m

p e

p e n f pf ef n

d
K t K t I I

dt r nr

K t q q I K t k k I

 
       

  

          

1 1

This assertion is proved in the Appendix. 

From equation (7) it follows that the matrix ( )K t  

is symmetric. A positive definite matrix ( )K t  is se-

lected from two possible solutions of equation (7). 

The positive definite property is established when de-

termining the conditions for the existence of optimal 

controls in the classical differential game. For this 

purpose, we introduce the Lyapunov function with a 

positive definite symmetric matrix ( )K t : 
T( ( )) ( ) ( ) ( )V z t z t K t z t . 

According to the Lyapunov theorem, the matrix 

equation (7) has a stable solution if  

 

T

T

T T

( ( )) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ). 8p e

d d d
V z t z t K t z t z t K t z t

dt dt dt

d
z t K t z t z t q q z t

dt

   
     

   

 
       

 

Equation (1) with the controls (6) takes the form  

T1 1
( ) ( ) ( ) ( )n n m

p e

d
z t I I K t z t

dt r nr

 
    
  

1 .   (9) 

Due to equation (9), we write inequality (8) as   
T

T

T T

T 1 1
( ) ( ) ( )

( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) 0.

( ) n n n m

p e

p e n

n n n m

p e

K t K t I I
r nr

K t q q I z t

z t K t I I K t z t
r nr

d
z t

dt

 
      

  

      

 
     

  





1 1

1 1

In view of (7), we obtain the following condition  

for the existence of optimal controls in the differential  

game:  

T T1 1
( ) ( ) ( ) ( ) ( ) 0n n n m

p e

z t K t I I K t z t
r nr

 
    

  

1 1 .  

Obviously, this condition will hold if the bracket-

ed matrix is positive definite, i.e., 

1 1

p er nr
 .                       (10) 

This inequality can be satisfied by tuning the pa-

rameters pr  and 
er , or the penalty matrices p nR r I  

and 
e nP nr I .  

Let us formulate this result as follows. 

Theorem 3.2.  The differential game (1), (4) has a 

value if the penalty matrices R  and P  of the perfor-

mance criterion (4) satisfy the relation R Р .  

Note that under condition (10), the performance 

criterion with the controls (6) achieves the saddle 

point, i.e.,  
0 0 0

0 0

( ( ), ( ), ( )) ( ( ), ( ),

( )) ( ( ), ( ), ( ))

р е р

е р е

J z u u J z u

u J z u u

 



     

    
. 

Condition (10) leads to a logical conclusion: the 

more the pursuers are, the more successful their game 

outcome will be.  
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Theorem 3.3.  Consider a differential game with n 

pursuers and one evading attacker with the dynamics 

(1) and the performance criterion (4). Let 0 ( )( , )J t z


  

denote the minimax value achieved by 

( ( ), ( ), ( ))p eJ z u u     under the feedback optimal con-

trols. This value is   

0 Т

0

1
( ) ( ) ( ),

2
( , ( ))

f
z t K t z t t t tJ t z t


  , 

where ( )K t  is a symmetric positive definite matrix 

satisfying equation (7) with the right-end boundary 

condition.  

This assertion is proved in the Appendix. 

In the case 1n   (only one pursuer), the controls 

take the form   

0 0
( ) ( )

( ) ( ), ( ) ( ),
p e

p e

р e

k t k t
u t z t u t z t

r r
     

where the parameters ( )pk t  and ( )еk t  satisfy equa-

tions (7) with ( ) ( ) ( )p e mK t k t k t I     and 1n  :   

 

2 2
( ) ( ) ( ) ( ) 0,

( ) , 11

e p

p p p e p

e p p

p f pf

r rd
k t k t k t k t q

dt r r r

k t k

 
    
  



 

 

2 2
( ) ( ) ( ) ( ) 0,

( ) . 12

e p

e e p e p

e p e

e f ef

r rd
k t k t k t k t q

dt r r r

k t k

 
    
  



.  

 

2.2. Differential game with distributed information 

The main idea of constructing strategies in the dif-
ferential game with distributed information is that 
each player makes a decision based on the available 
information at a given time instant. The dynamics of 
the information available to the players (the attacker 
and pursuers) to form their controls are described by 
the sensitivity matrix (5). 

In general form, the distance between pursuer  j, 
the attacker, and the other pursuers is specified by the 
vector 

1

( ) ( ) ( ) ( ) ( ) ( )
n

рj j ij i j

i

z t x t d t x t f t y t


   .       (13) 

If the evading attacker observes the actions of sev-
eral pursuers, then the following information can be 
available to it: 

1

( ) ( ) ( ) ( )
n

е i i

i

z t e t x t y t


  .                  (14) 

Like in the paper [20], the coefficients ( )ijd t , 

( )jf t , and ( )ie t  in (13) and (14) are composed of the 

elements of the matrix (5) characterizing the mutual 
observations of the players: 

0

1

0

0

0

( )
( ) 1 ( ) ,

( )

( )
( ) ( ), ( ) .

( )

ij

j n

jl

l

j

j j j n

i

i

ij

s t
d t s t

s t

s t
f t s t e t

s t



   

 





  

The pursuers’ strategies are 

0

1

( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) (15)

p

pj рj

p

n
p

j ij i j

ip

k t
u t z t

r

k t
x t d t x t f t y t

r 

  

 
    

 


 

for j = 1, 2,…, n.  

The evading attacker forms its control using the 
available information (14): 

0

1

( ) ( )
( ) ( ) ( ) ( ) ( )

n
e e

e е i i

ie e

k t k t
u t z t e t x t y t

r r 

 
     

 
 . (16) 

The parameters ( )pk t  and ( )еk t  in (15) and (16) 

satisfy equations (11) and (12) with 

( ) ( ) ( )p e nK t k t k t I     and 1n  .  

Note that these control formulas have been ob-
tained for the system dynamics (1) with the quadratic 

performance criteria (2) and (3). 
We write the expressions (15) and (16) compactly 

using the Kronecker product: 

 



0 1( ) ( ) ( ) ( ) ( )

( ) ( ) , (17)

p mu t R K t x t D t I x t

F t y t

    

 
 

 

0 1 T

T

( ) ( ) ( )

( ) ( ) ( ) . (18)

e n m

m

u t P I K t

E t I x t y t

   

    

1
. 

Here ( )K t  are solutions of equations (7), 

 
T

1( ) ( ) ( )nE t e t e t ,  
T

1( ) ( ) ( )nF t f t f t , and 

( ) ( ) n n

ijD t d t R     .  

Substituting the optimal controls (15) and (16) into 

the criterion (4) and performing some transfor-
mations, we obtain 

        

         

        

        

0

0

T

T

T

0 1
, , ( )

2

1
,

2

1
,

2

, 19

f

f

f f

t

t

t

t

z t x t y t z t Fz t

x t H D t E t x t dt

x t L D t E t y t

y t W F t y t dt

J  

   

   

  




  

where 
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            

         

       

     

     

1

T1 1

T 1

TT T 1

T

, ,

1

1 ,

m m

m m

m n m

n m m

H D t E t K t Q K t R K t K t

R K t D t I – D t I K t R K t

D t I K t K t D t I

n F t I I K t P

I K t F t I



 





   

      

       

        

  
 

 



        

         

     

       

T

1 1

T T
T T

T
T 1 T

, , 2

2

2 2

,

m

m

m m

m

n

n m

m

n

L D t E t F t D t I

K t R K t F t I K t R K t

F t I I Q n E t I

I K t P I K t

 



    

     

     





   



 

    
   

1

1 1

 

      

     

       

T

1

T
1

,

.

m

m

m

T T

n mn

W F t K t nQ F t I

K t R K t F t I

n I K t P I K t





     

 

   







1 1

 

Clearly, the integrand of the criterion (19) consid-
ers both the positions of the pursuers and evader and 
the mutual disposition of the pursuers and evader. 
Note that under the optimal controls, the value of this 
functional depends on the number of players and the 

elements  ijd t ,  if t , and  ie t
 

of the matrices 

 D t ,  F t , and  E t , respectively. In other words, 

the value depends on what information is available to 
the players during the game and the type of availabil-
ity.   

In the game with one pursuer, one evading attack-
er, and global information (the classical differential 
game; see subsection 2.1), the parameters are 1n  , 

( ) 0D t  , and ( ) 1E t  . As a result, the controls (17) 

and (18) become the same as in (6). In this case, the 
criterion takes the form  

     

          

0

T

1 1

0 1 1

2 2

.

( ( ))
ft

f f
t

z t Fz t z t

Q K t R K t K t P K t z t dt

J z t

 

   

  


 

According to Theorem 3.3, 0 ( , ( ))J t z t


 is given by  

0 Т

0

1
( ) ( ) ( ),

2
( , ( ))

f
z t K t z t t t tJ t z t


  . 

Consider a particular case of the differential game 
with distributed information and the binary sensitivity 

matrix (5). The element ( )ijs t  of this binary matrix 

indicates whether player i observes player j at a time 

instant t or not: if ( ) 1ijs t  , then player i observes 

player j; otherwise ( ( ) 0ijs t  ), player i does not ob-

serve player j. Since each player observes itself, the 
diagonal elements of the matrix (5) are constant and 
equal to 1.  

Case 1. Let pursuer j not observe the evading at-

tacker, i.e., 0 0,  0j js f  . From the expression (17) 

we therefore have 

0

1

( )
( ) ( ) ( ) ( )

n
p

pj j ij i

ip

k t
u t x t d t x t

r 

 
   

 
 . 

This means that pursuer j will follow the nearest 
observable pursuers.  

Case 2. Let pursuer j observe the evading attacker, 

i.e., 0 1,  1j js f  , and let this player have no infor-

mation about the other pursuers, i.e., 0ijd  . From 

the expression (16) we therefore have  

0
( )

( ) ( ) ( )
p

pj j

p

k t
u t x t y t

r
     . 

This means that pursuer j will try to intercept the 
evading attacker independently.    

Consider the evading attacker’s strategy (18), not-
ing the following: if the evader observes several pur-
suers in its radius of sensitivity, then its control will 
be intended to “escape” the center of mass of all the 
pursuers detected.  

3. DIFFERENTIAL GAME WITH NOISE  

Consider a situation when the evading attacker ar-
tificially jams the pursuers to gain an advantage in the 
differential game of pursuit. This means that the pur-
suers will receive information about the evader’s posi-
tion with some noise. Hence, the controls constructed 
by the pursuers will contain this noise. Thus, the tra-
jectories along which the pursuers will intercept the 
evader are suboptimal. In addition, the attacker con-
structs its strategy for all pursuers it detects, trying to 
escape the center of mass of all pursuers. Since their 
positions are subjected to noise, the attacker’s trajec-
tory will also contain a noise component. Note that 
the evading attacker will not be affected by the noise 
it creates, and its control strategy still depends only on 
the pursuers’ positions.   

The controls of the pursuer and attacker in the dif-
ferential game with global information are given by 

( )
( ) ( ), ( ) ( )

p

p e

p

k t d
u t z t u t y t

r dt
   . 

Let ( )n t  be the noise created by the evading at-

tacker, representing the white noise with the mean 

 ( ) 0M n t   and variance T ( ) ( )M n t n     

( ) ( )N t t   . Under the new conditions in the dif-

ferential game, the pursuers will detect the evading 

attacker along the trajectory 
*( ) ( ) ( )y t y t n t  . Note 

that the presence of noise may affect the condition of 
interception (the pursuers’ objective in the game); see 
Assumption 2.3. We therefore introduce a new condi-
tion of interception:  
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2
*

1( ) εjE z t  
  

, 

where 
2

*

1( )jE z t 
  

 is the root-mean-square distance 

between the attacker and pursuer j, or equivalently, 

2

( ) ( ) ε.jE z t n t  
  

 Due to the white noise created 

by the attacker, we have Т ( ) ( ) 0jE n t z t    , and the 

condition of interception takes the form  

2
( ) ε .E z t N   

 
 

If N   , the objective of interception cannot be 

accomplished.  

We write the control strategies in the classical dif-

ferential game:  

 *
( ) ( )

( ) ( ) ( ) ( )
p p

p

p p

k t k t
u t z t z t n t

r r
     . 

Also, we write the control strategies in the differ-

ential game with distributed information: 

1

*

1

( )
( ) ( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ( ) .

n
e

e i i

ie

n
p

pj j ij i j

ip

k t
u t e t x t y t

r

k t
u t x t d t x t f t y t

r





 
   

 

 
    

 




 

If a pursuer does not detect the evading attacker 

(therefore constructing its control strategy based on 

the pursuers detecting the attacker), its trajectory will 

still have a noisy component due to the noisy trajecto-

ries of the latter pursuers. 

4. EXAMPLE 

4.1. Classical differential game 

Let us simulate a differential game in which each play-

er has complete information (game with global infor-

mation). Assume that there are one attacker and three pur-

suers. Then the game dynamics with the constructed con-

trols are described by an ordinary linear differential equa-

tion of the form 

T

1 1 1 0

T

2 2 2 0

( )
( ) ( ( ) ( )), ( )  [ 3,  0] ,

( )
( ) ( ( ) ( )), ( )  [3,  0] ,

p

p

p

p

k td
x t x t y t x t

dt r

k td
x t x t y t x t

dt r

    

   

 

 

T

3 3 3 0

1 2 3

T

0

( )
( ) ( ( ) ( )), ( ) [4,  1] ,

( ) 1
( ) ( ) ( ) ( ) ( ) ,

3

( )  [0,  3] .

p

p

e

e

k td
x t x t y t x t

dt r

k td
y t x t x t x t y t

dt r

y t

   

 
     

 



 

Here the parameters ( )pk t  and ( )ek t  satisfy the equa-

tions 

2

2

1 2
( ) ( ) ( ) ( ),

( ) 1 / ,

1 2
( ) ( ) ( ) ( ),

( ) .

p p p p e

p e

p f pf

e e e p e

e p

e f ef

d
k t q k t k t k t

dt r r

k t k

d
k t q k t k t k t

dt r r

k t k

   

  

   

  

 

For the performance criterion (4), we choose the pa-

rameters 

1,  2,  1,  2,  = 20,  and 0.05. p e p e pf efr r q q k k     For 

the condition of interception, we choose the parameter 

ε 0.04 . Let the game of pursuit occur for  0,4t .  

The variations of the parameters ( )pk t  and ( )еk t  over 

time are shown in Fig. 1.  

 

 

Fig. 1. Variations of parameters  kp(t) and ke(t). 

 

The graphs of the transient processes in the problems 

are presented below. Figure 2 shows the trajectories of the 

pursuers and evading attacker in the classical game with 

and without noise. In both of the games, the attacker has 

been intercepted: the condition 1 1( ) ε, 4z t t s  , has 

been satisfied at 1 3.58t   (Fig. 2a) and 
1 3t   (Fig. 2b), 

where time is measured in conditional machine units.  

The classical differential game with centered noise has 

been simulated using the original model with the same ini-

tial conditions.  



 

 
 

 

 
 

28 CONTROL SCIENCES   No. 1 ● 2021 

ANALYSIS AND DESIGN OF CONTROL SYSTEMS 

 

 

Fig. 2. Transient processes in simple game of pursuit:  
(a) without noise (game ends at 3.58) and (b) with noise (game ends at 3). 

 

4.2. Differential game with distributed information 

Suppose that the initial position of the players is the 

same as in subsection 4.1. We simulate the differential 

game in which each player has limited information about 

the other players. Let the sensitivity matrix change three 

times during the game, which can be expressed as follows: 

1 2 3

1 0 0 1 1 0 1 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1 1 1
,  ,  .

0 0 1 1 1 0 1 1 1 1 1 1

1 0 0 1 1 0 0 1 1 1 1 1

S S S

     
     
       
     
     
     

In the first period, only one pursuer detects the attacker, 

and the two other pursuers, detecting the first pursuer only, 

follow it. In the next period, two pursuers detect the evad-

ing attacker and try to intercept it, while the remaining pur-

suer follows them. In the final period, each of the players 

detects the others, and the differential game turns into a 

game with global information (classical differential game). 

Like in subsection 4.1, we adopt the differential game 

with distributed strategies as the basis model and add noise. 

All operations to obtain a solution are performed by analo-

gy with the previous subsection. Figure 3 shows the trajec-

tories of the pursuers and evader in the game with distribut-

ed strategies, without noise and with noise. 
 

 
 

 
 

Fig. 3. Transient processes in game of pursuit with distributed infor-
mation:  
(a) without noise (game ends at 3.88) and (b) with noise (game ends at 4). 

 

The graphs in Fig. 3 show the instants when different 

pursuers join the pursuit of the evading attacker (when the 

attacker enters their zones of sensitivity, i.e., at the instants 
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of detection). Figure 3a corresponds to the successful inter-

ception of the attacker, i.e., the condition 
2

1 1( ) ε, 4jz t t s  , is satisfied for 
1 3.88t  . Figure 3b 

corresponds to the unsuccessful interception of the attacker, 

i.e., the condition
2

( ) εz t   holds for all 
0 ft t t  , and 

the game ends upon reaching the prescribed duration 

4ft t  .  

 

CONCLUSIONS 

This paper has considered a differential game of 

pursuit with several players. One player (attacker) 

penetrates some space, and several other players (pur-

suers) appear simultaneously to intercept the attacker. 

Upon detecting the pursuers, the attacker tries to 

evade them. The dynamics of each player are de-

scribed by a time-invariant linear system of a general 

type. The strategies of the pursuers and evading at-

tacker have been constructed within two subproblems: 

(1) all players have complete information about the 

state of all game participants, and (2) the pursuers 

have incomplete information about the evading at-

tacker actively opposing them. The distributed strate-

gies and some particular cases of the differential game 

of pursuit have also been considered. The main idea 

of constructing strategies for this game is that each 

player makes a decision based only on the available 

information at a given time. The simulation results 

have been provided to illustrate the theory. 
 

APPENDIX 

Proof of Theorem 3.1. Let us write the system’s Ham-
iltonian 



   

T T

T T

1
( , , , ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( ) ( ) .

p e p e p p p

e n e n e np e

Н z u u z t q q z t r u t u t

nr u t u t t u t u t

      

       1 1 1

 

Here, λ( )t  is the conjugate variable [22], which satis-

fies the equation  
Т

( , , , )
( ) ( )

p e

p e

Н z ud
t q q z t

dt z

u  
           


  (A.1) 

with the boundary condition 
T ( ) ( )1

( ) ( )
2

f pf ef f

f pf ef f

z t k k z t
t k k z t

z

         
. 

The optimal controls are the stationary points of the 
Hamiltonian: 

2

2

( , , , ) ( , , , )
0, 0,

p e p e

p

p р

Н z u Н z u
r

u u

u u 
  

 

 
 (A.2) 

2

2

( , , , ) ( , , , )
0, 0

p e p e

ep

e e

Н z u Н z u
nr

u u

u u 
   

 

 
. (A.3) 

Conditions (A.2) and (A.3) determine the optimal con-

trols  

T0 01 1
( ) ( ), ( ) ( ( ))n

p e

р eu t t u t t
r nr

     1 .  (A.4) 

Therefore, the variable λ( )t  is the solution of the two-

point boundary value problem (the Euler–Lagrange equa-

tions)  

T

0 0

1 1
( ) ( ) ( ),

( ) ,

( ) ( ),

( ) ( ).

m n m

p e

p e

f pf ef f

d
z t I I t

dt r n r

z t z

d
t q q z t

dt

t k k z t

 
     
  



     

    

1

 

The auxiliary variable λ( )t  will be calculated using the 

sweep method [22]. Let us find λ( )t  in the form  

λ( ) ( ) ( ),t K t z t                     (A.5) 

where ( )K t  is an unknown matrix. The total derivative of 

the expression (A.5) is given by  

 T

( ) ( ) ( ) ( ) ( )

1 1
( ) ( )

( ) ( ) ( ) . (A.6)

p e

n n m

d d d
t K t z t K t z t

dt dt dt

d
K t K t I

dt r nr

I K t z t

   
      

   

  
      

  

   1 1

 

Equalizing the expressions (A.1) and (A.6), we obtain: 

T1 1
( ) ( ) ( ) ( )

, ( ) .

m n n m

p e

p e m f pf ef m

d
K t K t I I K t

dt r nr

q q I K t k k I

 
        

  

         

1 1

 

Due to (A.4) and (A.5), the equations take the form: 

0

0 T

1
( ) ( ) ( ),

1
( ) ( ) ( ) ( ).

p

p

e n m

e

u t K t z t
r

u t I K t z t
nr

 

   1

  

 

Proof of Theorem 3.3. Consider the integrand of the 

performance criterion  

 

   

T

TT T

T

1
( ( ), ( ), ( )) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( )

2

( ) ( ) .

f

p e f f

t

p p n e

t

n e n e

J z u u z t Fz t

z t Qz t u t Ru t u t

P u t P u t dt

     

    

  

 1

1 1

 

Substituting T ( ) ( ) ( ) /d z t K t z t dt 
 

 into this integrand 

and compensating the result outside the integral by 

T T0.5 ( ) ( ) ( ) ( ) ( ) ( )
f f f

z t K t z t z t K t z t 
 

, we have: 
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
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z t K t z t z t K t z t

z t Qz t u t Ru t

u t P u t dt

dK t
z t z t

dt

dz t dz t
K t z t z t K t

dt d
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    

  

   

  
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 

 
  
 





1 1

 . A.7dt
t

 
 
 

 

Note that under the optimal controls 

 1 1 T0 0( ) ( ) ( ), ( ) ( ) ( )nр eu t R K t z t u t P K t z t     1 , (A.8) 

where  

 

1 1 T( ) ( ) ( )

( ) 0, ( ) , A.9

n n

f

d
K t K t R P

dt

K t Q K t F

       

   

1 1
  

the system’s dynamics are described by 

1 1 T

.
0 0

( ) ( ) ( ) ( ),

( ) ( .10)

n m

d
z t R P I K t z t

dt

z t z A

      



1
.  

Recall that 0 ( , ( ))J t z t


 denotes the minimax value of 

the criterion ( ( ), ( ), ( )).p eJ z t u t u t  
Substituting (A.8) and 

(A.10) into (A.7) and taking (A.9) into account, we finally 
arrive in 

0 Т

0

1
( ) ( ) ( ),

2
( , ( ))

f
z t K t z t t t tJ t z t


  . ♦ 
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Abstract. This paper develops an approximate method to optimize a time-varying objective 

function on a discrete time scale. The method should provide an admissible (controllable) error 

value. The conditions to be satisfied by the time scale, the objective function, and the environ-

ment’s parameters are established. The unconstrained optimization of a time-varying objective 

function that depends on the control vector components is considered on a discrete set of time 

instants. To find a solution, a discrete gradient constrained optimization method is proposed. 

Efficiency conditions for the gradient method are formulated. A lower bound on the solution 

error is obtained in terms of the time step, the rate of change of the objective function, and its 

first- and second-order derivatives with respect to the control vector components. The method is 

illustrated on a numerical example of an optimal controller design for a time-varying plant with 

a nonlinear objective function. According to the numerical experiments, the wide-range varia-

tions of the controller’s parameters have no significant effect on the qualitative behavior of the 

resulting trajectory. The method can be used to calculate an optimal control function for a sys-

tem with a discrete-valued objective function. 

 
Keywords: time-varying system, optimal controller, unconstrained optimization, lower bound on error.  
 
 

INTRODUCTION  

Purposeful developing systems, such as the nation-

al and regional economy or large multiple product 

farms, use optimal management mechanisms to max-

imize a target indicator [1]. This indicator can be total 

output, added value, profit, etc. Under crisis condi-

tions, in an unpredictable environment (economic 

sanctions, financial catastrophes, force majeure), the 

management methods based on knowledge of normal 

business processes do not provide the desired result. 

For example, the international division of labor, which 

usually plays a positive role, becomes useless under 

sanctions. In such a situation, successful economic 

management should primarily focus on its internal ca-

pabilities and closed technological cycles within the 

economic system, thereby being autonomous in some 

sense [2]. 

Mathematical models for managing developing 

systems under crisis conditions may have little or even 

no accuracy. In such cases, management has to be lim-

ited only to a set of target indicators. In addition, the 

available statistical reports usually provide economic 

indicators only for certain periods (month, quarter, or 

year). All these factors restrict the applicability of any 

methods involving a smooth objective function and 

should be considered when developing appropriate 

management and decision-making methods. 

Under uncertain behavioral rules of an object, the 

most appropriate method is optimal control. It consists 

in determining and maintaining a mode of operation in 

which the optimal (minimum or maximum) value of 

some criterion characterizing the object’s performance 

is achieved. The construction of management mecha-

nisms for autonomous system models has much in 

common with the design of an optimal controller that 

automatically finds and maintains the optimal value of 

the controlled variable. It ensures some stability of the 

controlled object (often called plant). The optimal con-

troller’s applicability is restricted since we cannot 

manage the long-term consequences of its operation. 

http://doi.org/10.25728/cs.2021.1.4
mailto:gusvbr@mail.ru
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In addition, in the case of a limited amount of infor-

mation about the object, its inertial properties may be 

neglected. 

In the 1960s, optimal (extremal) control formed an 

independent branch in the theory of nonlinear automat-
ic control systems [3], and optimal controllers became 

widespread. For example, they were used in optimal 
relay systems [4] and pulse self-adjusting (adaptive) 

and optimal automatic control systems [5]; when tun-
ing resonance loops and automatic measuring devices; 

when finding the optimal parameters of tunable mod-
els; when controlling chemical reactors and heating 

units for flotation and crushing [6].  
Depending on the available information about the 

plant, the control laws in optimal controllers involve 
various approaches, differing in their validity and con-

vergence of the result to the optimum. For example, in 
the paper [7], a heuristic extreme regulation algorithm 

was proposed to simulate the metabolic process. At 

each iteration, this algorithm performs a random search 
for the best response. The convergence of the process 

was demonstrated using an example for a particular 
object. In the paper [8], the air supply u in the furnace 

was regulated using the optimal control of the inertial 
object’s static characteristic f as follows: 

∆ u(i + 1) = h sign [∆f(i + 1) ∆ u(i)], 
where u and f are the scalar control parameter and the 
measurable response parameter (control criterion), re-

spectively; i denotes the time instant. The convergence 
of the control process in the cited paper was also 

demonstrated experimentally. A particular case of an 
optimal controller with a nonlinear objective function 

was considered in [9] for a linear dynamic system de-
scribed by an ordinary first-order differential equation. 

The control step was chosen constant, and its sign was 
inverse to that of the derivative with respect to the con-

trol variable. The convergence of the control process 

was proved under the exactly known system’s dynam-
ics and derivatives of the objective function with re-

spect to the time and control variables. The algorithm 
proposed below does not require this knowledge. 

Consider a time-varying autonomous system mod-
el. For this system, let a control u be designed by 

( , ) opt
u

F y u    

at each point t , where (t)u  denotes the control vector; 

, )F( y u  is an objective function that satisfies 

smoothness and convexity in u ; ( , , , )y t p x u  de-

notes the system’s state vector; p  
is the parameters 

vector; finally, )(tx  
is the environment’s state vector. 

If such an optimal control exists, it depends on the cur-

rent state of the system and can be determined, e.g., 
using the gradient-based unconstrained optimization 

method from the first-order optimality condition 

0
dF

du
 . 

If at the corresponding time instants only the values 

of the objective function are known, and the current 

state of the system is considered implicitly, we will 

find the control by the value of this function, denoting 

( , ) ( , , ( ), ), )f t u F( y t p x t u u .  

For the nonstationary problems of this type, the con-

vergence of the gradient-based unconstrained optimi-

zation method was considered in the paper [10]. As-

suming the exactly known gradient of the objective 

function, the convergence of the discrete-time iterative 

process 

1( )  ( ) ( , ( ))k k u k kku t u t f t u t       

was established under the requirement  

atutua kk   )(*  )(*:0 1 ,  

where )(* tu
 

is the optimum of the function ( , )f t u  

at the time instant t ; a specifies the deviation of the 

limit value from the optimum )(* ktu  as k ; the 

step k  is determined by the properties of the matrix 

fuu . The results of [10] were further developed in the 

paper [11] by weakening the convergence condition of 

the iterative process: 

1( , ) ( , ) , 0   u k u kf t u f t u a a .  

When considering nonstationary unconstrained op-

timization problems in [10, 11], both the deviation of 

the solution from the exact value at the current time 

instant t and the limit deviation as t  were con-

trolled. As a disadvantage of purely gradient methods, 

note the relatively slow convergence to the exact solu-

tion, which can be explained by the following fact: 

when approaching the optimum of the objective func-

tion with smooth derivatives, the gradient norm  

( , )
u k
f t u  may tend to 0 faster than the growth of 

the step γk. Therefore, the approximate solution “lags” 

the exact counterpart at every step. The methods pro-

posed in [8, 9] allow the advance of the exact solution, 

which does not reduce their errors but accelerates their 

convergence. 

If the objective function values are measured at 

discrete instants, the derivative ( , )uf t u  can be es-

timated only approximately, for example, using the 

spline representation of the function  ( , )f t u  (ambig-

uously). The expected consequence of such assump-

tions is an increase in the solution error compared to 

the methods based on the accurate estimation of the 

objective function’s derivatives. Moreover, the solu-

tion error will not vanish over time, i.e., it cannot be 

eliminated. Naturally, its value should increase with an 

increase in the discretization step of the time interval 
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and the rate of change of the objective function. Ac-

cordingly, “the deviation of the solution from the exact 

value” becomes an incorrect concept due to the latter’s 

ambiguity. It can be replaced by “the deviation of the 

solution from an exact value” or “the deviation of the 

solution from the set of exact values.” 

This paper develops an approximate method to op-

timize a time-varying objective function on a discrete 

time scale. The method should provide an admissible 

(controllable) error value. The conditions to be satis-

fied by the time scale, the objective function, and the 

environment’s parameters are established. This method 

can be used to design an optimal controller for a sys-

tem defined at discrete time instants.  

1. PROBLEM STATEMENT  

Let the objective function ( , )f t u , where t is the 

scalar time and nRu , be continuously differentiable 

with respect to both variables and convex in u. Also, 

let this function together with the vector )(tu  be given 

at discrete time instants 1 2 it t ... t   .  

Consider the unconstrained optimization of the ob-

jective function at the time instant 1tt  : 

1( , ) opt i

u

f t u . 

More precisely, the problem is to find the control 

vector value )( 1 ituu  approximating the objective 

function value ),( 1 utf i   to the optimum using the 

values ( , ( ))j jf t u t , ij  , and estimate the resulting 

error.  

2. BASIC RESULTS  

Let the function ),( utf  have continuous first-

order partial derivatives with respect to both variables. 

We introduce the following notations for the kth com-

ponents of the vectors: nktuu i
k

i
k ,...,1),(  , 

),( iii utff  , where ,..2,1i . The first-order partial 

derivatives on the two-point data have the approxima-

tions 

i
k

i

i
k

i
k

ii

i
k u

f

uu

ff

u

f



















1

1

, 

written in the vector form as 

iuiu ff 
. 

Here the gradient and its approximations apply to 

the values of the variables ti and ui. Also, we denote by 

f iu  the vector composed of 
i

i
k

f

u




.  

Proposition 1. Assume that: 

1. The function ),( utf  is continuously differen-

tiable with respect to both variables. 

2. The values of this function are given on the 

discrete set {ti} with the step t. 

3. For each ti, 0




itt

f
. 

4. There exists a stationary point of this function 

in the variable u.  

Then for some value hi, the iterative method 

 1 / ,i i i i u i ifu u h u f       

0 / ,
 

      
 

i
i i u i

f
h t f

t
  

yields a sequence of values ui deviating from the sta-

tionary point u~  so that the differences k
i

k uu


  and 
k

i
k uu


 1 , nk ,...,1 , are of opposite sign. Thus, the 

result ui fluctuates around the stationary points 

0, 
i

u tuf  . 

Proposition 2. In addition to the conditions of 

Proposition 1, assume that: 

1. The function (t, u) has second-order partial de-

rivatives with respect to the variable u that 

form the matrix fuu . 

2. At each point ( ii ut , ), this matrix satisfies the 

strong convexity in u: 0 iuuf .  

Then for 
i

tf
t

f
h ui 




  and 

0 /  i h /
 

   
 

i
i u i

f
t f

t
, where the gradient 

approximation applies to the values of the variables ti 

and ui, the iterative method 

 1 /i i i i u i ifu u h u f       

yields a sequence of values ui deviating from the sta-

tionary points alternately by each coordinate in the 

opposite directions by the value  Δui. Moreover, the 

lower bound 
2

1

inf
iuu

ifi

i

f

uth
u




  of its norm is 

achieved for 
i

tf
t

f
h ui 




 .  

Proposition 3. In the maximization problem, the 

sign of the step hi obeys the following rule: hi has the 

same sign as 
1

( , )
ˆ [ , ]

i i i

i i

f
f t u t

t t tt 

  
  

  
 if 
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0),(  ii utf  and the opposite sign otherwise 

( ( , ) 0) i if t u . 

The proofs of Propositions 1–3 are postponed to 

the Appendix.   

Remark 1. Given an admissible solution error δ, 

the admissible class of all functions ( , )f t u  for which 

 iu δ must satisfy the inequality 








2

1

iuu

iuif

f

fut
it

f

δ on the time interval under 

consideration (when needed, on the entire definitional 

domain). Therefore, greater values 
it

f




 and t  lead 

to greater errors.  

Remark 2. According to Proposition 1, a fluctuat-

ing process approximates the optimum at the first it-

eration of the method. According to Remark 1, the 

process will not leave the tube  iu δ.  

Remark 3.  Proposition 3 is applicable if the deriv-

ative 
t

f




 varies in the period Δti so that the sign of 

( , )i i i
f

f t u t
tt

  
  

 
 is fixed for ],[ 1 ii ttt . Un-

der a fixed step t , the value 
tt

f
t

ˆ


   can be estimat-

ed using the three-point approximation  

1 1 1 1

1 1

ˆ

( )( ) ( )( )
.

2

   

 


 



    


 

i i i i i i i i

i i i

f
t

t t

f f u u f f u u

u u u

 

This estimate can be obtained from the system of 

equations  

tt

f
tuu

u

f
ff iiii

ˆ
)( 11









  , 

tt

f
tuu

u

f
ff iiii

ˆ
)( 11









  , 

assuming that the derivative 
t

f




 has a small variation 

in the period t . 

Remark 4. Choosing the value α in the iterative 

method so that const 0i     , we obtain a great-

er range of the increment  

 1( ) / ( )i i u i ifu h u f u         , 

for which the differences i
k

i
k uu ˆ  and i

k
i

k uu ˆ1   have 

opposite signs. The greater the difference αi – α is, the 

greater the range of fluctuations ii uu ˆ  will be.  

The admissible values of the parameters αi and hi 

can be chosen within a rather wide range without any 

accurate estimates of the values 
it

f




 and iuuf . The 

closer the parameter αi to 0 is, the greater the range of 

Δui will be. Decreasing the parameter hi reduces the 

range of Δui; however, for very small hi, the algorithm 

diverges: the total error increases between iterations.  

Remark 5. Since the external factors affect the ob-

jective function through its derivative
itt

f




, the range 

of control values directly depends on the value of this 

effect.  

Remark 6. Since the values of the target function 

( , )f t u  are calculated (or measured) only at the nodes 

of the discrete time grid and for the corresponding val-

ues of the control vectors, it is possible to construct a 

spline approximation of this function of the required 

smoothness and apply exact methods of gradient de-

scent for it [10, 11]. However, the accuracy of the ob-

tained result will remain finite, since such a spline ap-

proximation is not unique. In addition, the computa-

tional complexity of this method will significantly ex-

ceed the complexity of the proposed approach. 

3. NUMERICAL EXAMPLE  

The approximate method for optimizing a discrete 

time-varying system is illustrated below by a numerical ex-

ample of optimal controller design for a simplified model of 

production. This model is described by the following dis-

crete-time finite difference relations. However, according to 

the problem statement, only the values of the objective func-

tion and control at the previous and current time instants are 

used for solution. 

The control (and simultaneously the state parameter) is 

the production output )(tu . The objective function––profit–

–has the form 

u
tcuCtutptutftr max)()()())(,()( 2

0  , 

where ,...2,1,0t ; )()( tutp  gives the income; C0  are 

fixed costs; C0 + cu
2
 is an estimate of the total costs includ-

ing production assets, remuneration of labor and direct ex-

penditures; finally, )(tp  specifies the unit price of the 

products  (the environment’s parameter)  

0( ) ( 1), (0)  p t d p t p p ,   

where d is the growth coefficient, and p0 is an initial price.  

The marginal profit (the gradient of the objective func-

tion with respect to the control variable) is estimated as 

( ) ( ( ) ( 1))/( ( ) ( 1))    e t r t r t u t u t .  
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At the next step, the control is calculated using the 

proposed approximate optimization method: 

)(()(/(()()1( tetehtutu  + α)).   

Here   is the stabilization parameter, and h  is the 

coupling coefficient. 

The figure shows the simulation results for the produc-

tion output model with the parameters С0 = 1 and c = 1 and 

the optimal controller with the parameters α = 0.1 and h = 1. 

The product price with the initial value p0 = 3 varies with the 

constant rate d = 1.03. The exact optimal solution has the 

form  

c

tp
tu

2

)(
)(  . 

 

 
 

Fig. Simulation results for optimal controller:  

                      optimal solution,                          calculated solution,  

                      optimal profit, and                         calculated profit. 

 

The optimal controller quickly (in one step) approxi-

mates the production output the optimal one and, over time, 

tracks the optimal output within the method’s error. 

The range of fluctuations around the optimal output is 

conditioned by the discrete nature of the model, the nonsta-

tionary behavior of the product price, and an inaccurate 

choice of the controller’s parameters. With an increase in 

the time derivative of the price, the solution error grows, 

which agrees with the approximation estimate presented 

above. At the initial steps, the value hi has the estimate 

1





i
tf

t

f
h ui  and the sign +1. An appropriate 

estimate of the coefficient αi was selected from the stability 

considerations to satisfy iuf >> αi >0. They can be exper-

imentally refined along the trajectory by maximizing the 

value achieved by the objective function ( , ( ))f t u t  during 

several steps of the discrete algorithm. In the example, the 

values of αi and hi were constant along the entire trajectory. 

 

CONCLUSIONS  

The approximate optimization method proposed in 

this paper is not very critical to the choice of the pa-

rameters  and h . They can be determined in a partic-

ular way depending on the applied problem under con-

sideration. In the numerical example, the value of the 

parameters corresponds to the rate of increase in the 

unit price of products. In addition, the parameter h can 

be estimated using finite-difference approximations for 

the derivatives of the function f(t, u). In this case, the 

parameter α can be estimated as 
2

0  uf  

/ max



t

f
h

t
. According to numerical simulations, 

varying the controller’s parameters in a rather wide 

range has an insignificant effect on the qualitative be-

havior of the calculated trajectory. 

APPENDIX  

Proof of Proposition 1. Using the linear part of the 

Taylor–Lagrange series for the function ( , )f t u  at the 

point ( 1 1,i it u  ), where the remainder is given at the in-

termediate point   , 1, 1ˆ ˆ( ), , ,k k k k
i i i i it u t t t u u u     

we obtain 

1 1( , ) ( , )   i i i if t u f t u .  

1 1( ) ( ).
ˆ ˆˆ ˆ,,

 
 

   
 

 k k
i i i i

k
k

f f
u u t t

u tu ut t
 

According to the first-order optimality condition, let 

0
ˆ ˆ,




 k

f

u ut
. Then  

1

1 1
1

1

( , ) ( , )
( ) /

ˆ ˆ,



 




   

 
 

 

k k k
i i i

i i i i
i i

k k
i i

u u u

f f t u f t u
t t

t u uut

, 

which can be written in the vector form as 

ifii u
utt

f
tu 





ˆ,ˆ
.                          (1) 

Now we present a calculation method suitable for nu-

merical implementation. Let αi and hi be determined from 

the relation 

  /


   


i
i i u i i

f
h t f

t
.                     (2) 

Then, near the stationary point  1ˆ , i i iu u u , we have 

 /    i i f u i iu h u f .  

Since iû  is an inner point of the interval  1, i iu u , the 

differences ˆk k
i iu u  and i

k
i

k uu ˆ1   have opposite signs. 

Thus, ui will coordinate-wise fluctuate around the stationary 

points ˆ 0 u
i

uf .  

Proof of Proposition 2.  We denote by u  the method 

error at the current step due to the discrete time scale. Near 

the stationary point, the gradient can be estimated as 
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  u i uu if f u .  

If the value of the derivative 




f

t
 is exactly known, then 

for the values h and α satisfying (2), we use condition (1) to 
obtain 

 /      i uu ifu h t u f u . 

Solving the quadratic equation for u  yields  

1
2

2

2

4

2 4

     
    
  
 

i uu if

uu i uu i

h t u f
u

f f
. 

Obviously, the function u (α) is monotonically in-

creasing.  
From the relation (2) it follows that 

 


   


i
i u i i i

f
h f t

t
, 


  


i u

f
h f t

t i
.                       (3) 

For α = 0, the expressions (2) and (3) give 
1

2

1

2

.

( 0)
  
     
 
 


  






if

uu i

i u if

uu i

h t u
u

f

f
t u f

t i

f

.  

Due to this equality, the estimate 

1

2


  


 



i u if

uu i

f
t u f

t i
u

f
 

is a lower bound for the solution error. 

Proof of Proposition 3.  According to Proposition 1, 

the interval  1, i iu u  does not contain the stationary point if 

for some (or all) coordinates, the differences ui +1 – ui have 
the same signs.  

In this case, assuming 
1

0
ˆ [ , ]




 
k

i i

f

u t tt
, we obtain 

1

1 1 1( , ) ( , ) ( )
ˆ

,

ˆ

k k k
i i i

i i i i i i

k

u u u

f
f t u f t u t t

t t
f

u t



  

   


  








  

which can be written in the vector form 

( , ) .
ˆ ˆ

  
      

 
ii i i i f

f
u f t u t u

t t t
    

In the maximization problem, for a fixed absolute val-

ue of the step h , the descent direction is chosen from the 

condition 

sign( ) sign ( , )
ˆ

  
    

 
i i i

f
h f t u t

t t
 if ( , ) 0 i if t u , 

sign( ) sign ( , )
ˆ

  
     

 
i i i

f
h f t u t

t t
 if ( , ) 0 i if t u .  
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Abstract. A generalized probabilistic model is proposed that uniformly describes the formation 

and development of individual, collective, and social experience at various human activity lev-

els. Some of its particular cases are considered, covering many learning models known in math-

ematical psychology and models of developing and mastering technologies within the method-

ology of complex activity. 

 
Keywords: experience, activity, knowledge, technology, culture, learning curve.   
 

 

 

INTRODUCTION 

 
Active systems. Let us separate two classes of sys-

tems that include a human. (Following the terminology 
of [1, 2], such systems will be called active systems.). 
These classes are: 

– Natural systems, existing or emerging “inde-
pendently,” in the absence of an external source that 
forms or determines the goal of activity. Such systems 
have independent goal-setting, and their global goal is 
development (which requires preservation and possibly 
adaptation reproduction). In terms of systems engi-
neering [3, 4], active systems with internal goal-setting 
are systems of systems (SoSs) belonging to collabora-
tive or virtual classes. 

– Artificial systems created by some subject to 
achieve his goals. In terms of systems engineering [3, 
4], active systems with internal goal-setting are exter-
nally directed SoSs or externally acknowledged SoSs. 

Depending on the presence of an explicit subject, 
one can distinguish between subject systems and non-
subject systems. The former systems perform their ac-
tivity, which is uniformly described by the methodolo-
gy of complex activity (MCA) [5] regardless of their 
type. The latter systems perform no activity them-
selves; more precisely, their “activity” is the set of ac-
tivities of their components. 

Thus, we have three options (one of the four possi-
ble options is contradictory); see examples in (Table 1) 
below.  

Table 1 

 
Classification of systems 

 
 Natural sys-

tems 

(internal goal-

setting) 

Artificial systems 

(external goal-setting) 

Subject  

systems 
Individual 

Organization 

Enterprise 

Government 

Particular case: individual 

employee 

whose internal motives are 

coordinated with external 

goals 

Non-

subject 

systems 

Social com-

munities: 

Group 

Family 

Genus 

Tribe 

Society 

Ethnos 

People 

Economic 

communities: 

Market 

Set of inde-

pendent inter-

acting eco-

nomic agents 

– 
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Fig. 1. Structure of active system. 

 

As a digression, note that human activity can be 

considered within the ASs of different levels and 

scales (Table 2), and a promising task of MCA is their 

uniform description (probably, except for the two low-

er levels). 

 

Table 2  

Human activity 
 

Level Typical object Dominant form of activity 
of elements 

Cultural Ethnos, people Reproduction and  

development of activity 

Political Government, 

institution 

Institutionalization of 

activity 

Economic Organization, 

enterprise 

Collective practical  

activity 

Social Society Communication activity 

Group, collec-

tive; 

family, genus, 

tribe 

Collective practical  

activity 

Psychic Personality Individual practical  

activity 

Individual Internal activity 

Biological Organism Life activity 

Physical Body Movement 
 

Moreover, the assignment of a particular system to 

a specific class depends on the aspect of its considera-

tion. For example, a social group is itself a non-subject 

natural system. However, when studying the problems 

of managing such a group by other subjects (an indi-

vidual, another group, or government), it must be con-

sidered an artificial subject system, together with the 

control subject. 

For natural non-subject systems, the key factors are 

the mechanisms of their functioning (conditions, prin-

ciples, norms, requirements, and criteria for assessing 

the activity of the system components, both separately 

and during their interaction [5, 6]). Recall that a mech-

anism is a system or device that determines the order 

of some activity [2]. The mechanisms of functioning 

form a multilevel system of nested feedback loops de-

termining the dependence of conditions, principles, 

norms, etc. (including control actions) on previous and 

current performance results and uncertainty factors. As 

a rule, the mechanisms of functioning of non-subject 

systems are reflexive. Some examples include natural 

selection, competition, conflicts, dissemination of ide-

as, etc. These mechanisms provide (self) control of 

such systems. 

In subsystems (ASs or individuals), let us separate 

the material component (for an individual, his body 

and material means of activity) and the immaterial 

component (for an individual, psyche; for a collective 

subject, culture). For details, see  

Fig. 1). Experience is a significant part of the im-

material components. 

Experience. Experience is understood [7–9] as: 

1) a set of practically mastered knowledge, skills, 

abilities, and habits (individual experience); 

2) the reflection of the objective world and social 

practice aimed at changing the world in the human 

mind (socio-historical experience, the individual expe-

rience of each individual). 

The category of experience is closely related to 

other categories such as education, technology, and 

culture (Fig. 2).  
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Fig. 2. Experience and related categories. 

 

Indeed, education is the development of experience 

[10] and includes learning. (Learning is the process 

and result of acquiring individual experience [11].) A 

modern survey of mathematical models of learning can 

be found in [11, 12], and a survey of learning models 

in automatic control theory in [13]. 

Technologies are the operational reflection of a 

mass-practice proven and systematized practical expe-

rience [14]. (According to [5], technology is a system 

of conditions, criteria, forms, methods, and means for 

consistently achieving a set goal.)  

Culture includes [7]: 

– the objective results of human activity (machines, 

technical structures, results of cognition (books, works 

of art, legal and ethical norms, etc.), representing the 

first component of culture; 

– the subjective human strengths and abilities real-

ized in activities (sensations, perceptions, knowledge, 

skills, production and professional skills, the level of 

intellectual, aesthetic, and moral development, 

worldview, the methods and forms of mutual commu-

nication of people, etc.), representing the second com-

ponent of culture [15]. 

The objective results of human activity (the first 

component of culture) are reflected in different forms 

of social consciousness such as language (understood 

in a broad sense–both natural native and foreign lan-

guages and artificial languages), everyday conscious-

ness, political ideology, law, ethics, religion (or athe-

ism as anti-religion), art, science, and philosophy [15]. 

The second component of culture is subjective hu-

man strengths and abilities. They are expressed in per-

sonal knowledge, including figurative, sensory 

knowledge, which is not transferred by words (con-

cepts), as well as in skills, the development of certain 

individual abilities, the worldview of each person, etc. 

[7]. 

Here are some quotes and definitions that charac-

terize the concept of culture: 

– “a set of genetically non-inherited information in 

the field of human behavior” (Yu.M. Lotman); 

– a set of sustainable forms of human activity (or-

ganizational culture); 

– “Just as the embryo in the womb repeats in a fan-

tastically accelerated time scale the entire evolution of 

life on Earth over a billion years, so a growing person 

in 20 years must assimilate the culture that mankind 

has created for 4 million years.” [7, p. 32]; 

– a set of accepted standard norms of activity 

(ways of standardizing and regulating behavior) and 

the corresponding results. The main function of culture 

is the reproduction and construction (development) of 

activity. 

Thus, culture can be viewed as a generalized expe-

rience proven by social practice [7, 12, 16, 17]; see 

Fig. 1. 

Experience can be formed through independent ac-

quisition by a subject (individual or collective) during 

his activity or through the development of someone 

else’s experience during learning activity (Fig. 3).  

 

 
 

Fig. 3. Formation of experience. 

 

Depending on the methods and means of fixing and 

translating the experience (or even more broadly––in 

the case of an individual––the components of the psy-

che, when relating ideas, beliefs, attitudes, personality 

worldview, etc. to the widely interpreted experience), 

we can distinguish among: 

– explicit experience, which is often translated in 

the form of text (e.g., knowledge, or technology); 

– tacit experience (tacit knowledge), which is often 

translated in non-verbal and non-textual forms (e.g., 

beliefs, or worldview); 

– nontranslated components, which are, perhaps, 

translated “biologically” (e.g., biopsychic properties of 

an individual; the specific physiology of individuals, 

conditioned by climate, landscape, and lifestyle), but 

so slowly that they can be considered unchanged. 

Education Technologies 

Culture 

Experience 
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The types of experience are listed in Table 3.  

 

Table 3  

Types of experience 

 

Level Experience 

Social system Social 

Group Collective 

Personality Individual 

 

In the process of his activity, a subject can partici-

pate (Fig. 4) in: 

1) mastering social experience; 

2) forming/acquiring individual experience; 

3) mastering collective experience; 

4) forming collective experience; 

5) forming social experience. 

Mastering social and/or collective experience can 

be conventionally regarded as “learning with a teach-

er,” and forming individual experience as “learning 

without a teacher.”  

 

 
 

Fig. 4. Individual, collective, and social experience. 

 

The goal of this study is to create a general experi-

ence formation model that would adequately and uni-

formly describe the processes of forming and master-

ing individual, collective, and social experience (Fig. 

4), explicit or tacit, at various levels of activity (Table 

2) in any classes of systems (Table 1).  

The remainder of this paper is organized as fol-

lows. In Section 1, a general experience formation 

model is introduced. Section 2 provides a classification 

system for different models of experience. Sections 3 

and 4 consider several particular models for form-

ing/mastering individual and collective/social experi-

ence, respectively. The Conclusions section outlines 

some promising lines for further research. 

1. GENERAL EXPERIENCE FORMATION MODEL 

 

We extend the original learning model (see subsec-

tion 3.3.4 of the book [18]) by supplementing it with 

the following effects: environment variability, making 

experience outdated (or, equivalently, forgotten/lost), 

and a more complex formation of experience, with 

mastering experience by other subjects and the interac-

tion of different subjects.1  

Let an AS be composed of a given set 

N = {1, …, n} of active elements (AEs). (An AE is an 

element of an active system representing an individual 

or a lower-level AS.)  

Assume that each AE observes one of K possible 

values of an uncertainty factor (UF) in each period. In 

the general case, the values observed by different AEs 

will differ. We introduce the concept of a complex un-

certainty factor: its current value will be characterized 

by the aggregate of all states encountered by all AEs in 

period t.  

A complex UF can be represented as a matrix 

( ) ω ( )ikt || t ||ω  with binary elements ( ω ( ) {0; 1}ik t  ). 

Suppose that in a current period t, the UF for AE i has 

state k(i). Then the elements ωik(i)(t) are 1, and the oth-

ers are 0. Obviously, the matrix ω ( )ik|| t ||  satisfies the 

condition  
1

ω 1, 1,
K

ik

k

t i n


  .  

We denote by Ω the set of all such matrices. (Its 

cardinality is Kn). On the set Ω we define a time-

varying probability distribution {pω(t)} for the states of 

the complex UF of the environment, assuming that the 

current state ω(t) occurs independently of the previous 

ones. We number the elements of this set using the 

function ι(ω) = 1

1 1

ω
n K

i

ik

i k

kn 

 

 .  

Therefore,  ( ) ( ) 1p t p t  
 

   .  

In a particular case, the states observed by each of 

the AEs are mutually independent. We denote by pik(t) 

the probability of observing state k by AE i, where 

                                                           
1 In the proposed model, we will not separate the effect of physio-

logical forgetting of experience from the effect of rejecting the 

previously learned experience when new technologies appear. Sep-

aration of two effects, generally speaking, different by their nature 

and speed – the objective change in technologies and the resulting 

hard or soft rejection of experience (depending on the distribution 

of the AE parameters) and the subjective physiological forgetting 

of it together with a regular trend towards age-related changes in 

the parameters of the AE cognitive characteristics – will allow us 

to analyze several social effects (cultural interaction of generations, 

a decrease in collective experience (including culture) in revolu-

tionary periods, etc.) by varying their speeds. The effects men-
tioned above can become the subject matter of further research.  
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1

( ) 1 1
K

ik

k

p t , i ,n


  , and by k(i) the state observed by 

AE i. Then 
ω (i)

1

( ) ( )
n

ik

i

p t p t


 .  

Let us describe the AS state by a matrix 

( ) ( )ikt || v t ||v  as follows. Each element is a binary 

variable characterizing the formation of experience 

(within the mathematical model, this process will also 

be called mastering the technology) by the AE for var-

ious states of the UF. More precisely, each element 

vik(t) takes value 1 if, after period t, AE i has 

formed/mastered the experience under state k of the 

UF. 

Suppose that the AS evolves during period (t + 1) 

under the following mechanism.  

Let the complex UF have a state ( 1)t ω , and let 

AE i encounter state k of the UF. Then:  

 For any UF state l unmastered by AE i 

(vil(t) = 0), the experience is formed (vil(t + 1) = 1) with 

a probability 0 ≤ wikl({v(∙) | t – τ; t}) ≤ 1, which gener-

ally depends on time as well as on the current v(t) and 

τ previous AS states; the experience is not formed with 

the probability 1 – wikl({v(∙) | t – τ; t}), which implies 

vil(t + 1) = 0. In the sequel, {v(∙) | t1; t2} will denote the 

history, i.e., an ordered set of values v(∙) on a time in-

terval between periods t1 and t2 inclusive. (If t2 = t1, 

there is no history.)  

 For any UF state l mastered by AE i (vil(t) = 1), 

the experience is forgotten (vil(t + 1) = 0) with a prob-

ability 0 ≤ uikl({v(∙) | t – τ; t}) ≤ 1, which generally de-

pends on time as well as on the current v(t) and τ pre-

vious AS states; the experience is not forgotten with 

the probability 1 – uikl({v(∙) | t – τ; t}), which implies 

vil(t + 1) = 1.  

This mechanism is illustrated in Fig. 5.  

The semantics of this model reflects the possibility of 

forming experience, particularly, mastering technology 

by an active element, transferring knowledge from one 

element to another, forgetting knowledge and/or mak-

ing it outdated, among other things, due to the evolu-

tion of the environment and the repeated adaptation of 

the AS to changes in the environment, reflected by the 

realized UF values. 

In this case, for each UF state, the process of form-

ing-forgetting experience by each AE is supposed to 

be binary (possible states = <mastered | unmastered>) 

and random, which reflects its uncertainty. For differ-

ent AEs and different UF states, the transitions be-

tween states occur independently of each other. By 

assumption, there can be no more than one event dur-

ing one period: forming experience or forgetting it. At 

 
 

Fig. 5. Alternative events in period t. 

 
the same time, as the probabilities of transition be-
tween states depend on the current and previous states 
of all AEs in the AS, the model describes rather com-
plex laws of the AS behavior. For example, observing 
one state, an AE can generally form an experience cor-
responding to another UF state (by acquiring the expe-
rience from another AE). 

Now we write dynamic equations for the probabili-

ties of mastering experience and the expected experi-

ence maturity levels. Let ( ) || ( ) ||ikt q tq , where 

qik(t) = Pr(vik(t) = 1) = E[vik(t)] is the probability that 

state k of the UF is mastered by AE i after period t. 

Then by the rule of total probability yields  

qik(t + 1) = Pr(vik(t + 1) = 1 | vik(t) = 0)  

Pr(vik(t) = 0) + Pr(vik(t + 1) = 1 | vik(t) = 1)  

 Pr(vik(t) = 1) = Wik(q(t)) (1 – qik(t)) + 

+ (1 – Uik(q(t))) qik(t) = Wik(q(t)) + 

+ [1 – Wik(q(t)) – Uik(q(t))] qik(t),            (1) 

where the functions Wik(v(t)) and Uik(v(t)) are the prob-

abilities of mastering and forgetting, wikl{∙} and uikl{∙}, 

respectively, averaged by the UF states considering 

their probabilities pm(t) and the probabilities of the AS 

states in the current and previous periods:  

 

 
( )... ( )

1

0
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( ( )) ( )
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ik

t t
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 t    t i k






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

 
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
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where π({z(∙), q(∙)|t – τ; t}, i-, k-) are the conditional 

probabilities that after periods {t – τ; t} the AE states 

have the values z(∙) and the probabilities of mastering 

have the values q(∙) given a known value of the experi-

ence maturity level under UF state k after period t. The 

conditional probabilities π(∙) are calculated by formula 

(4) with the product taken over all triplets < α; β; γ > 

except for < α; β; γ > = <i; k; t >:  

1 ; 1 ; ;

; ; ; ; ;

( )

( ) ( )

{ ( ) }, ,

(

+ (1 ( )) (1 ( )

( ), 

).

;

)

...n ...K t ...t

s i k t

y z

| i k t

y z

   t

 

   

    

 

 

 

  

 











 



qz

            (4) 

In a particular case when the UF states observed by 

each AE are independent, the expressions (2) and (3) 

take the form   

   

 

(i)

1
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0
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(
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 
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
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
z z

q

z

z
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and 

   

 

(i)

1
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1

( )
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Well, we have obtained the recurrence relations 

reflecting the dynamics of the expected experience 

maturity levels. To calculate their values in any period, 

it remains to specify the initial value matrix q(0). By 

default, suppose that in the initial (zero) period, the AE 

has no experience for any of the FN states. 

Let the individual experience criterion Li(t) (“learn-

ing level”) of AE i be the probability of realizing a UF 

value previously encountered, successfully mastered, 

and not forgotten by him (i.e., the expected share of 

the learned values):  

Li(t) = 1 – 
1

( ) (1 ( ))
K

ik ik

k

p t q t


 , 1,i n .  (7) 

By analogy, let the collective experience criterion 

Lmax(t) be the probability of realizing a UF value pre-

viously encountered, successfully mastered, and not 

forgotten by at least one AE:  

Lmax(t) = 1 – 
1

(1 ( ))
n

i

i

L t


 ,                (8) 

or the probability Lmin(t) of realizing a UF value previ-

ously encountered, successfully mastered, and not for-

gotten by each of the AEs:  

 Lmin(t) = 
1

( )
n

i

i

L t


 .                   (9)  

A sequence of experience criterion values will be 

called an experience curve, similar to the concept of a 

learning curve. 

The collective experience criterion can be treated 

as an aggregate characteristic of the experience formed 

by the entire group. 

Transition to continuous time. Let the AS and 

AE operate in continuous time: the processes of form-

ing and forgetting experience are independent flows of 

elementary events, whose intensities (rates) 

wikl({v(∙) | t – τ; t}) and uikl({v(∙) | t – τ; t}) in a known 

way depend on the history of the AS states at the cur-

rent and previous time instants {v(∙) | t – τ; t}. 

Assume that the UF changes its states somehow (in 

discrete or continuous time), independently of the AS, 

and the evolution of {pik(t)} is known. 

Then the system of difference equations (5), de-

scribing the AS dynamics with given initial conditions, 

can be replaced by the system of differential equations 

of the form  

dqik(t) / dt = Wik(q(t)) – 

– (Wik(q(t)) + Uik(q(t))) qik(t).           (10) 

 

2. CLASSIFICATION OF EXPERIENCE MODELS 

 

The expressions (1)–(10) describe the process and 

result of forming individual and collective experience 

in the most general case––under minimum assump-

tions. For an operational description and study, it is 

necessary to make some simplifications (additional 

assumptions about the structure and properties of the 

model). Therefore, we introduce a system of classifica-

tions based on the properties of the model components. 

(Note that classification bases 1–9 are mutually inde-

pendent.) 

1. Properties of complex UF states observed by 

AE in each period. For now, we will separate the gen-

eral case (considered above) and a particular case in 

which all AEs observe the same realization of the UF 

state in each period. The UF properties will be de-

scribed not by the n K-dimensional distribution 

{pω(t)}, but by the K-dimensional one {pk(t)}, where 

1

( ) 1
K

k

k

p t


 . 

2. Dependence of complex UF states on time. 

Here, the general case (see above) is an arbitrary 

known dependence of the probability distribution of 

the complex UF states on time, and the particular case 

is a stationary (time-invariant) distribution. 
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3. Dependence of the probability of mastering 

on time. The general case (see above) is an arbitrary 

known dependence of the probability of mastering on 

time, and the particular case is no dependence. 

4. Dependence of the probability of forgetting on 

time. Similar to item 3. 

5. Dependence of the probability of mastering 

on process history. The general case (see above) is a 

known dependence of the probability of mastering on 

τ t  previous states. Also, we will separate two sub-

cases: τ 0  (the history-invariant probability of mas-

tering) and τ 1  (the probability of mastering de-

pends only on the previous state). 

6. Dependence of the probability of forgetting on 

process history. Similar to item 5. 

7. Dependence of the probability of mastering 

for AE i on the states of other AEs. The general case 

(see above) is a known dependence of the probability 

of mastering on the states of all AEs. An “intermedi-

ate” case is when the probability of mastering for AE I 

depends on the states of his “neighbors” – AEs from a 

known set Ni(t). The particular case is when for each 

AE, the probability of mastering depends on his states 

only. 

8. Dependence of the probability of forgetting 

for AE i on the states of other AEs. Similar to item 7. 

9. Possible experience formation regardless of 

realized UF state. The general case is when, by trans-

ferring experience from other AEs, a specific AE can 

form his experience corresponding to a UF state that 

differs from the state observed by him. The particular 

case is when an AE forms an experience corresponding 

only to the UF states observed by him. 

10. Number of AEs. The general case is a known 

number of AEs, n > 1. The particular case is n = 1. 

Consider several models in the order of complica-

tion. (Models 1–6 correspond to individual experience, 

whereas models 7–12 to collective and social experi-

ence.) 
 

3. MODELS OF INDIVIDUAL EXPERIENCE 

 

Model 1 ([14, Section 2.2]), in which there is one 

AE, all parameters are time-invariant, the experience 

corresponding to the UF state observed by the AE is 

formed effectively (the probability of mastering is 

equal to 1), and there is no forgetting.  

We denote by pk > 0 the probability that in a next 

period, the AE will encounter UF state k. (Obviously, 

1

1
K

k

k

p


 .) The vector of these probabilities is 

P = (p1, …, pK).  

In the case under consideration, n = 1 and i = 1, 

which implies m = l. Since the probability of mastering 

is 1, let Wmj({v(∙) | t – τ; t}) = 1 for m = l and 

Wmj({v(∙) | t – τ; t}) = 0 for m ≠ l regardless of the his-

tory {v(∙) | t – τ; t}, i.e., Wmj({v(∙) | t – τ; t}) = δmj, 

where δm is the Kronecker delta. Due to no forgetting, 

we have umj({v(∙) | t – τ; t}) ≡ 0 and Uj(q(t))

( ( )) 0jU q t  . From the expression (2) it follows that  
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          (11) 

Really, the Kronecker delta is taken once in the 

sum 

 
( ).. ( ;. )

0j

z t z t

mj

X
z t

 


  because zj(t) = 0, and this condition 

reduces the sum to a single element for which m = j. 

As a result,  

qj(t + 1) = pj(t) + [1 – pj(t)] qj(t).  
Since the probabilities are stationary, 

qj(t + 1) = pj + (1 – pj) qj(t), or Δqj(t + 1) = pj (1 – qj(t)), 
or 1 – qj(t + 1) = (1 – pj) (1 – qj(t + 1)). According to 
(8), the experience criterion is 
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     

 



      (12) 

Model 2. Consider a modification of Model 1 in 
which there is a unique UF state (K = 1), but the prob-
ability of mastering (0, 1]w  can be smaller than 1. 

Omitting the UF state subscript, by analogy with the 

expression (19) we obtain: ( ( ))q tW w ,  

qj(t + 1) = w + [1 – w] qj(t), 
or 1 – qj(t + 1) = (1 – w) (1 – qj(t + 1)). From (11) it 
follows that the learning curve has the form  

L(t) = 1 – (1 )tw .                     (13) 

(Also, see the expression (12) for w = pk = 1 / K.) 

Model 3. Consider a modification of Model 1 with 

the same stationary probability of mastering 

( ) (0, 1]w q   for all UF states. By analogy with the 

expression (11) we obtain ( ( )) ( ( )) ( )j jq t w q t pW t . Since 

the probabilities are stationary, from (5) it follows that 

qj(t + 1) = ( ( )) jw q t p  + (1 – ( ( )) jw q t p ) qj(t), or 1 – 

– qj(t + 1) = (1 – ( ( )) jw q t p ) (1 – qj(t)). Let the proba-

bility of mastering be a known function ( )g   of the 

current experience criterion value, i.e., 
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w(q(t)) = g(L(q(t))). Then the equality 1 –

 qj(t + 1) = (1 – g(L(t)) pj) (1 – qj(t)) implies 

1 – qj(t) =
1

0

(1 ( ( ))
t

j
p g L





  . 

Denoting bj(t) = 1 – qj(t), we write bj(t + 1) = (1 – 

– g(L(t)) pj) bj(t) and, consequently,  

L(t) = 1 –
1

( )
K

k k

k

p b t


  = 1 –
1

1 0

(1 ( ( ))
tK

k k

k

p p g L


 

   , 

ΔL(t) = g(L(t))
2

1 0

2
(1 ( ( ))

tK

k

k

kp p g L


 

   . 

In the uniform distribution case (pj = 1 / K, 1,i n ), 

we have bj(t) = b(t) and  

L(t) = 1 –
1

( )
K

k k

k

p b t


 =1 – 
1

( )
1K

k

k

b t
K

 =1 – b(t) = q(t).  

Therefore,  

1

1

1

( ) ( ( 1) ( ))

1 1
( ( 1) ( ( ( )) ( 1  ))

1 1
( (

1

1 ( ))

 

( 1

)

))

1

1   1  

K

k k k

k

K

k k

k

K

k

g L t

g L

L t p b t b t

b t b

t

t
K K

b t
K K







 



    

 



  

 







 

1

1
( ( )) ( ))1 1

K

k

b t
K

g L t


    

= 
1

K
 g(L(t – 1)) b(t – 1)) = 

= 
1

K
 g(L(t – 1)) (1 – L(t – 1)), 

which gives  

ΔL(t) = 
1

K
 g(L(t – 1)) (1 – L(t – 1)).         (14) 

Depending on ( )g  , the solution of the difference 

equation (14) can be an exponential, power, or logistic 

curve; see the models of different learning curves and 

a survey in [14]: 

 

Probability of 

mastering 

( )g   
Difference equation 

Learning 

curve 

g(L) = γ K ( ) γ (1 ( 1))L t L t     Exponen-

tial 

g(L) = µ K L ( ) μ ( 1) (1 ( 1))L t L t L t    

 

Logistic 

g(L) = η K (1 

– L)a 

1( ) η (1 ( 1))aL t L t      Power 

Model 4 ([18], subsection 3.3.4]) is the intersection 

of particular cases for the nine classification bases 

above. It differs from Model 1 in the presence of sta-

tionary probabilities of mastering and forgetting, 

which are generally not equal to 1 and 0, respectively. 

Suppose that during the first realization of UF state 

k, the corresponding experience is formed with a 

known probability 0 ≤ wk ≤ 1, where wk is the proba-

bility of mastering, and is not with the probability (1 – 

– wk). After forming component k of the experience, in 

each next period, it changes as follows: 

– If the UF state realized differs from k, then the 

result of mastering state k remains the same. 

– If UF state k is realized again, then component k 

of the experience is “lost” with the probability of for-

getting 0 ≤ uk ≤ 1 and remains the same with the prob-

ability (1 – uk).  

We construct the vectors of the probabilities of 

mastering and forgetting: W = (w1, …, wK) and 

U = (u1, …, uK). Generally speaking, these vectors do 

not satisfy the normalization condition. 

By analogy with the expression (11), we obtain: 

( ( ))j j jtW q w p , ( ( )) j jj q tU u p . Substituting this 

result into (5) yields  

 qj(t + 1) = pj wj + (1 – pj (wj + uj)) qj(t).            (15) 

Let the initial conditions be qj(0) = α [0, 1]j  . 

Then, using the recursive formula (15), we find  

( ) (1 (1 ( )) )+

+(1 ( )) α

j t

i j j j

j j

t

j j j j

w
q t p w u

w u

p w u .

   


 

     (16) 

Substituting the sum (16) into (7), we finally arrive 

at  

   

  

  

1

1 1

1

1 1

1

1 (1 )

( , )

7

, ,
K

t
k

k k k k

k k k

K K
t

k
k k k k k

k k k k

K
t

k
k k k k k

k k k

w
p p w u

w u

w
p w u p

w u

w
p p w u .

w

L P W U

u

t


 



    


     


 
     

 



 



 

Suppose that the AE obtains a reward (payoff) hk 

for successfully forming component k of his experi-

ence in a certain period. Then over T0 periods, his total 

expected payoff from forming the experience during 

his work is given by  

   

0

1 1

,

1

,

1

( , )
T K

k
k k

t k k k

t

k k k

w
p h

w u

p w u .

F P W U T
 

 


   


 

Calculating the sum of this geometric progression 
in time, we obtain  
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  

  
 

0

0

1

0( , , ,

1 1

) 1
K

k k k
k k k

k k k

T

k k k

k k k

p h w
T p w u

w u

p w u

F P W U T

.
p w u



    


  


 




 

In the homogeneous case (for all states, the proba-
bilities of mastering and forgetting are wk = w and 
uk = u), from the expression (17) it follows that  

  
1

1 1( , , , )
K

t

k k

k

L
w

p p wP w u u
w u

t


 
    

  
 ,  

t = 0, 1, 2, …                  (18) 
In a particular homogeneous case (w = 1 and u = 1 

under the uniform probability distribution), 

1 1 2
1(

2 2
)

t

K
L t

 
   

 
. (The asymptote 0.5 means that the 

fact of forgetting is discovered during the repeated re-
alization of the mastered UF state.)  

Let us introduce the following assumption, known 
as the learnability condition [18]: the probabilities P, 
W, and U are such that  

pk (wk + uk) < 1, 1,k K .              (19) 

As was demonstrated in [18], condition (19) can be 
violated at most for one UF state. Moreover, under 
assumptions I–VI:  

– The initial value of the experience criterion is 0.  
– The experience curve is not decreasing and as-

ymptotically tends to 
1

K
k

k

k k k

w
p

w u 
 ; in addition, its 

growth rate is monotonically decreasing.  

Introducing a threshold ρ [0,1 ]/ K , we denote 

by Pρ, K = {P = (p1, …, pK) | 
1

1
K

k

k

p


 , pk   ρ, k = 1, K } 

the set of K-dimensional probability distributions 
whose values are all not smaller that ρ.  

As was established in [14], an analog of the expres-
sion (17) achieves maximum over all possible proba-
bility distributions P  Pρ, K at the uniform distribu-
tion. We present a similar result for the model under 
consideration.  

Proposition 1. If  

wk (0, 1] , uk [0, 1) , 1,k K ,           (20) 

then ρ ∈ (0, 1/K] ∃ t(ρ, W, U) = 

1

2
1

min{ }k k
k ,K

w u



 

 

such that  τ > t(ρ, W, U) the function (17) is strictly 
concave in {pk}  Pρ, K.   

Proof. Denoting  

(0, 1], (0, 2), 1,k
k k k k

k k

w
w u k K,

w u
       


  

we write the expression (25) as  

 
1

1 1( , , )
K

t

k k k k

k

t p px P W U


    
  .    (21) 

Differentiating the expression (21) twice, we easily 
check that the condition  

t > 

1,

2
1

min{ }k
k K


 

 

guarantees the strict concavity of the function (21) in 

all variables {pk}  Pρ, K. ♦ 

Corollary. If  

uk = kw  – wk, 1k ,K ,                (22) 

then the uniform probability distribution pk = 1/K, 

k = 1, K  is a unique solution of the problem  

τ ( , , )x P W U  
ρ, 

max
KP P

 .                (23) 

This fact follows from Proposition 1 and the sym-
metry of the function (17) in all variables {pk}   Pρ, K 
under condition (22). (Also, see the proof of Proposi-
tion 4 in [14]). Note that condition (22) implies the 
learnability condition (19).  

Thus, in the presence of forgetting and the non-
unitary probabilities of mastering, the uniform proba-
bility distribution is generally not optimal in the prob-
lem (23); a sufficient condition for its optimality is 

given by (22), where (0,1]kw  . 

In the homogeneous case, for the uniform probabil-
ity distribution to be optimal in the problem (23), it 
suffices to satisfy the relation w + u = 1, under which 
condition (19) always holds and a particular case of 
which is the basic model with w = 1 and u = 0.  

Substituting the uniform probability distribution 

pk = 1/K, k = 1, K , into the expression (18), we obtain  

 

( , , )

1 exp γ( , , ) ],

1 1

[

t

tx K w u

 –    K w u t

w w u

w u K

w

w u

  
       










 

where γ(K, w, u) = ln(1 + 1/(K – (u + w))) is the rate of 

forming experience. Since ( ) (0, 2)w u  , the 

learnability condition (19) will be satisfied if K ≥ 2.  
Model 5 (learning and productive activity). As-

sume that the AE has a foresight horizon T0. In this 

horizon, the first 0{0, 1, ..., }T T  periods are occu-

pied by learning. In the initial period, the subject 
chooses an allocation X = (X1, …, XK) of his time (the 
same for all T future periods) among K possible activi-
ty types, where Xk is a share of his time for forming 

experience in activity type k and 
KX 

 = 
1

{ | 1}
K

K

k

k

s s



  .  
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Suppose that there is no forgetting. Then from the 

expression (16) we obtain the following expectation 

that component k of the AE experience is successfully 

formed after period t: 

qk(Xk, t) = 1 (1 )t

k kw X  , 1,k K .          (24) 

The vector q = (q1, …, qK) in learning models will 

be called the AE’s qualification.  

Upon completing the learning process, the AE pro-

ceeds to productive activity. (By assumption, there is 

no learning during productive activity.) In each period 

of this activity, UF state k is realized with a probability 

pk, which forces the AE to perform the complex activi-

ty of type k. If the experience corresponding to activity 

type k is formed by the given period, the AE performs 

this type of activity and obtains a reward hk; otherwise, 

he obtains nothing. 

Thus, in each period 0{ 1, ..., }t T T   of his pro-

ductive activity of type k, the AE obtains the expected 

“income” hk qk(T), which is the expectation of obtain-

ing the reward hk in the case of successfully achieving 

the result of activity k. (If the corresponding experi-

ence is formed and not forgotten by the AE, the result 

is achieved.) The AE’s objective function in period t 

has the value f(X, t) = 
1

( , )
K

k k k k

k

h p q X T


 , 

0{ 1, ..., }t T T  . (There is no learning during produc-

tive activity, and hence the probabilities of successful-

ly achieving the positive results are determined by the 

learning results achieved by the end of learning.) 

Consider the AE’s time allocation problem: max-

imize the expected “income” per unit time of produc-

tive activity,  

1

( , )
K

k k k k

k

h p q X T


 max
KX

 .              (25) 

Substituting the difference (24) into (25), we write 

this problem as  

1

(1 )
K

T

k k k k

k

h p w X


 min
KX

 .               (26) 

1(1 ) λT

k k k k kh p w T w X   ;  

1

1

1 λ
(1 )

T

k

k k k k

X
w h p w T

 
  

 
; 

1 1
1

1

1 1 1

1 1 1
λ 1

T
T

K K K

k

k k kk k k k k

X
w w h p w T




  

 
   

 
   ;  

1

1

1

1

1

1

1
1

λ .

1 1

T

T

K

k k

K

k k k k k

w

w h p w T













 
 
 





 

Solving the constrained optimization problem (26), 

we find the AE’s optimal time allocation for learning:  

 
1

1
1

1*

1

1

1
1

1
1

1
( )

T
T

K

j j

k K
k

k k k j j j

j j

w
X

w
h p w h p w

w








 
 

  
 
 
 
 




, 

1,k K .                       (27) 

In a particular case (the unitary probabilities of 

mastering and the same “incomes” from different ac-

tivity types) we have   

   11

*

11

1

1
1

1
TT

k K

k j

j
j k

K
X

p p






 

 
.             (28) 

The solution (27) and (28) of the problem (26) with 

a fixed value T being available, we can formulate the 

AE’s optimal learning time problem as follows. If in 

each period of learning the AE bears fixed costs 0c  , 

then the problem is to choose a period to terminate the 

learning process by maximizing the difference between 

the expected income and costs:  

f(X*, T + 1) 0( )T T  – c T 
0[0; ]

max
T T

 .        (29) 

Substituting the difference (28) into (29), we arrive 

in the scalar optimization problem 

0( )T T

 
1

1

1

11

1

1
1

1

1
( )

T

T
T

T
K

K
j j

k k T
Kk

k k k j j j

j j

w
h p

h p w h p w
w










  
      

  
   
  






 – 

– c T 
0[0; ]

max
T T

 .                    (30) 

The solution of the problem (30) will give the AE’s 

expected payoff under sequential learning and produc-

tive activity. An alternative is learning during work: 

during all T0 periods some UF states are realized, and 

the AE forms the corresponding experience of practi-

cal activity, achieving a positive result (and obtaining a 

“reward” for it) through mastering. Assume that under 

learning during work, the AE bears costs c in each pe-

riod. In the absence of forgetting, due to the expression 

(25), his total expected payoff will be 

    0

1

1

0

0

0

0

1

)

31

( , ,
K

k k

k

T

k k k k

p h

T p

F P W T с T

w p w cT .





 

  
 



 


 

The expressions (30) and (31) can be compared in 

each particular case (for specific values of the model 

parameters) to answer the following question: which 
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strategy – sequential learning and productive activity 

or learning during work – is more beneficial for the 

AE in terms of the total expected payoff?  
Example 1. Let the probabilities of mastering be 1, dif-

ferent activity types yield the same “income,” and the prob-

ability distribution be uniform. Then from the expression 

(28) it follows that 
* 1/kX K . The optimization problem 

(30) takes the form  0( ) 1 (1 1 )TT T h / K    – c T 
0[0; ]

max
T T

 ; 

see the concave curve in (28), illustrating the dependence of 

this objective function on T.  

In this case, the AE’s total expected payoff under learn-

ing during work (formula (31)) is h[T0 – (1 – 1/K)

  0 1
1

T
/ K


  cT0; see the horizontal line in T.  

Let K = 10, T0 = 100, and h = 4. For c = 2, there exists 

an optimal learning time (18 periods) during which sequen-

tial learning and productive activity yield a higher total ex-

pected payoff (approximately 242.8) than learning during 

work (approximately 200.0). If the costs per unit time de-

crease (e.g., c = 1), the optimal choice is learning during 

work; see the optimal choice is learning during work; 

see Fig. 6a vs. Fig. 6b. ♦  

A similar model can be constructed in the case of 

nonzero initial conditions for {qj}, in which the opti-

mal solution will depend on the AE’s initial experi-

ence. 

 
 

Fig. 6. AE’s total expected payoffs in Example 1: 

a) с = 2 and b) с = 1 (horizontal line corresponds to learning time T). 

Model 6 (deterministic model with one subject). 
Consider a modification of Model 1 in which there is a 

unique UF state (K = 1) realized with the unitary prob-

ability, and the probability of mastering 

( , ) [0,1]w q t   does not explicitly depend on the histo-

ry. By analogy with (11), omitting the UF state sub-

script, we obtain ( ( ), ) ( ( ), )W q t t w q t t . The expression 

(5) gives the difference equation 

q(t + 1) = ( ( ), )w q t t  + (1 – ( ( ), )w q t t ) q(t). 

The corresponding differential equation (see (10)) 

has the form 

( ) ( ) (1 ),q t w q t q  .                     (32) 

The family of differential equations (32) with an 

initial condition (0) [0,1]q   and a Lipschitz function 

( , ) [0,1]w     as the parameter possesses the following 

properties: 

– The solution of equations (32) exists and is 

unique. 

– The experience curve q(t) is strictly monotonical-

ly increasing and 0 ( ) 1t q t    (its growth rate is 

bounded).  

– The experience curve q(t) is slowly asymptotic, 

i.e., lim ( ) 1
t

q t


  and lim ( ) 0.
t

q t


  

Allowing the effect of forgetting, we obtain the 

family of differential equations with an initial condi-

tion (0) [0,1]q   and two parameters – Lipschitz func-

tions ( , ) [0,1]w     and ( , ) [0,1]u    : 

,( ) ( ) (1 ) ( ),q t w q q u q qt t   .          (33) 

Let us analyze the differential equations (33), char-

acterizing the family of solutions. The following ques-

tion is of particular interest: for which time-varying 

functions ( ) [0,1]q t   is it possible to find Lipschitz 

functions ( , ) [0,1]w     and ( , ) [0,1]u     so that the func-

tion :[0, ) [0,1]q    will be the solution of (33)?  

Proposition 22. A continuously differentiable func-

tion :[0, ) [0,1]q    with a Lipschitz derivative q  

is the solution of equations (33) under some Lipschitz 

functions ( , ) [0, 1]w     and ( , ) [0, 1]u     if and only if 

 0 ( ) ( ) 1 ( )t q t q t q t      .             (34) 

Proof. Conditions (34) are immediate from ( ) [0,1]q t   

and the constraints imposed on ( , )w    and ( , )u   . Converse-

ly, let a function g(t) satisfying the hypotheses of this propo-

sition be the solution of equations (33). Choosing  

( ) := ( ) ( ),w t q t q t  ( ) :=1 ( ) ( ),u t q t q t   0,t      (35) 

we have ( )(1 ( )) ( ) ( ) ( ( ) ( ))(1 ( )) (1w t q t u t q t q t q t q t      

( ) ( )) ( ) ( ).q t q t q t q t   Moreover, from the relations (35) 

                                                           
2 This result was established by S.E. Zhukovskiy, Dr. Sci. (Phys.–
Math.).  
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it follows that ( ) [0,1]w t   and ( ) [0,1]u t   for all 

0.t   ♦ 
Let us find possible equilibria: the right-hand side 

of (33) vanishes for  
( ( ) )

( )
( ( ) ) ( ( ) )

w q t ,t
q t

w q t ,t u q t ,t



. 

According to (35), in the case q(0) = 0, the unique 

experience curve with a stationary (time-invariant) 

probability of mastering γ > 0 is the exponential curve 

q(t) = γ (1 – exp(–t)).  

 

4. MODELS OF COLLECTIVE AND SOCIAL EXPERIENCE 

 

Model 7 (mastering social experience; see arrow 

1 in Fig. 4). The mastering of social experience by a 

subject can be described by modifying the general 

model from Section 1. In the absence of forgetting, 

assume that:  “social experience” contains all the nec-

essary information about optimal actions for any UF 

values and “guides” the subject’s learning; the subject 

sequentially encounters the UF states (for convenience, 

in accordance with their numbering); the same state 

repeats until the probability of forming the correspond-

ing experience component (see formula (13)) 

 1 1 1( )
t

kk wq t    , t = 0, 1, 2, … , 

achieves a given threshold q*. The time (the expected 

number of repetitions) required is  

1 ln(1 )
( )

ln(1 )

*
*

k

k

q
t q

w





. 

Hence, for all K possible UF values, the threshold 

q* will be achieved in the time 1

1

ln(1 )
( )

ln(1 )

*K
*

k k

q
t q

w





 . In 

the homogeneous case, 1 ln(1 )
( )

ln(1 )

* K
* q

t q
w





.  

Model 8 (forming individual experience; see ar-

row 2 in Fig. 4). Generally speaking, Models 1–6 all 

describe the formation of individual experience. We 

will consider a particular case: no forgetting and the 

uniform probability distribution (pk = 1 / K) of various 

UF states. In this case, experience is formed by the 

rule  

1

2 1(
1

) 1

tK
k

k

tL
w

K K
W



 
   

 
 , t = 0, 1, 2, …, 

representing a particular case of formulas (16) and 

(17). 

In the homogeneous case, 2 1 1t

t
w

L
K

 
   

 
. Hence, 

the threshold q* will be achieved in the time 

2 ln(1 )
( )

ln(1 )

*
* q

t q .
w

K






   

Proposition 3. The ratio 

2

1

( ) ln(1 )
1

( )
ln(1 )

*

*
K

t q w

wt q

K


 


, char-

acterizing the relative effectiveness of mastering social 

experience compared to forming individual experi-

ence, is independent of q* and monotonic in w and K.   

Model 9 (mastering collective experience; see ar-
row 3 in Fig. 4). Joint activity of subjects within col-
lectives implies the possibility of exchanging their ex-
perience acquired during the process of activity. (A 
team is a particular case of collectives [19].)  

In the absence of forgetting, assume that: a team 
includes n AEs; for each AE, a certain UF state (same 
for all subjects) is realized with a given probability 
distribution P in each period; the subjects form their 
experience of activity for this state independently with-
in the model (17); after that, the subjects completely 
exchange their information with each other (i.e., all 
team members will form their experience for a certain 
UF state if at least one team member does). The ele-
ments of the matrix W = ||wik|| can be interpreted as the 
effectiveness of “learning by one’s own and someone 
else’s experience” for different subjects under different 
UF states. 

After t periods, team member i will not master UF 

state k with the probability (1 – pk wik)
t, and all team 

members will not master it with the probability 

 
1

1
n

t

k ik

i

p w


 . We obtain the following experience 

curve for the entire team and each team member (the 

probability that none of the team members will en-

counter a new UF state for the entire team):  

 
1 1

3 1( 1, )
nK

t

k k ik

k i

t p pL P w
 

   W , t = 0, 1, 2, …    (36) 

In the case of homogeneous AEs and the uniform 

probability distribution, the expression (38) takes the 

form 3 1 1t

n t
w

K
L

 
   

 
. The threshold q* will be achieved 

in the time 3 ( ) ln(1 ) ln(1 )* * w
t y q n

K
   . Therefore, 

3( )*t q  = 21
( )*t q

n
.   

Proposition 4. The complete exchange of experi-

ence between the subjects reduces the time for forming 

their individual experience proportionally to the num-

ber of AEs participating in this exchange. 

This conclusion is valid under a constant probabil-

ity of mastering w. The decreasing dependence of the 

probability of mastering w(n) on the number of inter-

acting subjects seems to be more realistic. A promising 

line is to consider models with the coefficients wij de-

pending not on the UF states but on the pairs of inter-
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acting AEs (subject i acquiring experience from sub-

ject j).  

Model 10 (forming collective experience; see ar-

row 4 in Fig. 4). Assume that for each of n AEs, a cer-

tain UF state (same for all subjects) is realized with a 

given probability distribution P in each period. The 

effect of forgetting will be described by the matrix 

U = ||uik||. We denote by πikt the probability that team 

member i will master UF state k after t periods. Ac-

cording to the expression (16), 

   π 1 1
t

ik
ikt k ik ik

ik ik

w
p w u

w u
   


. Hence, team mem-

ber i will not master UF state k after t periods with the 

probability  

   1 π 1 1 1
t

ik
ikt k ik ik

ik ik

w
p w u

w u
      



  1
t

ik ik
k ik ik

ik ik ik ik

u w
p w u .

w u w u
   

 
 

None of the team members will master this state 

with the probability  

    
1 1

1 π 1
n n

t
ik ik

ikt k ik ik

i i ik ik ik ik

u w
p w u .

w u w u 

 
     

  
 

We obtain the following experience curve (the proba-

bility that at least one team member will form the ex-

perience for a new UF state realized in period (t + 1); 

see formula (7)):  

Lmax (P, W, U, t) = 1 – 

  

1

max

1

1

1 , 0, 1,

, , )

2

,

,

(
nK

ik
k

k i ik ik

t
ik

k ik ik

ik ik

u
p

w u

w
p w u t ...

w u

L P U t
 


  




   

 

 W

  

(37) 

As noted above, the group/collective experience 

criterion can be either the probability Lmax(t) (at least 

one of the AEs will encounter a previously known, 

successfully mastered, and not forgotten UF state; see 

the expression (37)), or the probability Lmin(t) (each of 

the AEs will do so; see the expression (8)):  

     

1

min

1

( , , , )

1 1 , 0, 1, 2, 38

nK
ik

k

k i ik ik

t

k ik ik

w
p

w u

p w u t . .

U

.

L P t
 


 



    

 W

 

Substantially, the formation of social/collective ex-

perience differs from the formation of individual expe-

rience in that, in order to “consolidate” the methods of 

effective activity under a certain UF state, many sub-

jects must encounter this state many times. In the 

course of modeling, this feature can be reflected, e.g., 

by a low probability of mastering; see Model 12 be-

low. 

Consider the homogeneous case of identical AEs 

(uik = 0 and wik = w) and the uniform probability distri-

bution. Assuming that the probability of mastering is 

less than 1 and there is no forgetting, we reduce the 

expressions (37) and (38) to the following form (also, 

see (36)):  

max ( , , ) 1 1

nt

L n w t
w

K

 
   

 
, t = 0, 1, 2, … , 

min 1( , ) 1,

n
t

w

K
L n w t

  
       

, t = 0, 1, 2, … 

Based on the results for Model 8, we obtain the fol-

lowing experience curve of one AE with the unitary 

probability of mastering for all UF states in the ab-

sence of forgetting (also, see (13)):  

2 1
1 1( =1)

t

tL w
K

 
   

 
, t = 0, 1, 2, …    

Applying trivial transformations to the condition 
2

max ( , , ) = tL n w t L , we establish the following fact.  

Proposition 5. In the case of no forgetting and 
1

1
( ) (1 )nw n K K

K
   , forming collective experience 

with the probability of mastering w(n) is equivalent to 

forming individual experience by an AE with the uni-

tary probability of mastering.  

An alternative version of Proposition 5 is as fol-

lows: in the case of no forgetting and  

1
ln(1 )

( )

ln(1 )

Kn w
w

K







  , 

forming individual experience by an AE with the uni-

tary probability of mastering is equivalent to forming 

collective experience by n(w) AEs with the same prob-

ability of mastering w.   

Model 11 (deterministic model with several in-

teracting subjects).   

Assume that: there is a single UF state (K = 1) real-

ized with the unitary probability; the probabilities of 

mastering and forgetting do not explicitly depend on 

the history (also, see Model 6). Then from the expres-

sion (1) we obtain the system of difference equations 

qi(t + 1) = Wi(q(t), t) + [1 – Wi(q(t), t) – 

– Ui(q(t), t)] qi(t), 1,i n ,                 (39) 

and the corresponding system of differential equations  

( )iq t  = wi(q, t) (1 – qi) – ui(q, t) qi, 1,i n , 

with an initial condition (0) [0,1)ny  and two parame-

ters – Lipschitz vector functions 1:[0;1] [0;1]n n

 w  

and 
1:[0;1] [0;1]n n

 u .   
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The difference equation (39) has a specific struc-

ture with given constraints on the functions in the 

right-hand side. Therefore, we cannot write in its 

terms, e.g., the linear models  

( )

( 1) ( ( ) ( ))
i

i ij j i

j N t

q t a q t q t


    ,          (40) 

where 
( )

1
i

ij

j N t

a


  (see a survey in Section 3.2 of the 

book [10] and the work [200]) or the threshold behav-

ior models [10]    

( )

1
( 1) ( ) δ ( )

| ( ) |
i

i j i

j N ti

q t I q t t
N t 

 
    

 
 ,    (41) 

where ( ) 2N

iN t   denotes the set of “neighbors” of AE 

i in period t, and δ ( ) [0,1]i t   is his “threshold.”   

Therefore, we will proceed by considering the in-

fluence of other AEs not on the state of a given AE 

(the expected level of his experience q) but his proba-

bility of mastering. Let the probability of mastering be 

represented as the sum of two functions,   

Wi(q(t), t) = di(qi) + Di(qi), 1,i n ,       (42) 

taking values from the range [0, 1] but in the sum not 

exceeding 1, where qi = (q1, …, qi1, qi+1, …, qn) is the 

opponents’ experience profile for AE i. 

Some practical examples of such dependencies are 

“the linear model” (with the superscript L) 

WL
i(q(t)) = αi + 

( )

β ( )
i

i ij j

j N t

a q t


 ,            (43) 

which can be compared with (40), and “the threshold 

model” (with the superscript T) 

WT
i(q(t)) = αi + 

( )

1
β ( ) δ ( )

| ( ) |
i

i j i

j N ti

I q t t
N t 

 
 

 
   (44) 

with constants α β 1, 1,i i i n   , which can be 

compared with (41).  

The first term in the right-hand sides of (42), (43), 

and (44) can be interpreted as reflecting an explicit 

experience (directly transferred to the subject and mas-

tered by him), whereas the second term as a tacit expe-

rience (acquired and mastered by the subject indirect-

ly, through interactions with other subjects). 

In this class of models, natural selection (competi-

tion) can be considered, e.g., by letting Wi(q(t), t) → 0 

as 
( )

1
( ) ( )

| ( ) |
i

i j

j N ti

q t q t
N t 

  .   

Example 2. Consider two active elements with the 

same stationary probability of forgetting u and the 

probabilities of mastering 

Wi(q(t), t) = 

3

( )
γ , 1, 2

( ) ( )

i
i

i i

q t
i

q t q t




. In a practical 

interpretation, the AEs compete for a constant amount 

of a resource for each period, distributed between them 

proportionally to their experience. The probability of 

mastering in each period is proportional to the amount 

of the resource received in the past period. The coeffi-

cients of proportionality γi  
can be treated as the indi-

vidual learning aptitudes of the AEs. 

Assume that the AEs differ in the initial values of 

their experience: q1(0) = 0.1 and q2(0) = 0.2; see the 

solid and dashed lines in Fig. 7, corresponding to the 

first and second AEs, respectively. However, despite 

the worse “starting position,” the first AE has a higher 

learning aptitude: 1γ 0 2.  and 2γ 0 1. .   

 

 
 

Fig. 7. Dynamics of AE’s experience in Example 2: 

a) u = 0 and b) u = 0.2 (horizontal line corresponds to time). 

 

In the absence of forgetting, both AEs successfully 

learn and will equally share the resource on a suffi-

ciently long horizon (see Fig. 7a). In the presence of 

forgetting (u = 0,2), the first AE wins the competition 

and will obtain the entire resource on a sufficiently 

long horizon (see Fig. 7b). ♦ 

Model 12 (forming social experience; see arrow 4 

in Fig. 4). Within Model 10, collective experience is 

formed if at least one of the team members forms it. 

Model 12 rests on the assumption that social experi-

ence is formed only if all team members form it. 
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This approach makes the experience criterion mul-

tiplicative over subsets: in the homogeneous case of 

Model 10 (the identical AEs and the uniform probabil-

ity distribution), if the society consists of two subsets: 

1 2 1 2 1 1 2 2, , | | , | |N N N N N N n N n      , then  

min ( , , )L n w t  = 
min 1( , , )L n w t  

min 2( , , )L n w t .  

The expressions Lmax (n, w, t) = 1 – (1– w/K)nt and  

min 1( , ) 1,

n
t

w

K
L n w t

  
       

, t = 0, 1, 2, … , can be 

used for estimating the expected time required for 

achieving a given collective experience level q*, de-

pending on the number of AEs:  

t(n, q*) 
* 1/ln(1 ( ) )

~

ln(1 )

nq

w

K





.                   (45) 

Clearly, the time (45) grows rather slowly with an 

increase in the number of AEs (approximately linearly 

in the logarithm of this number). Since collective expe-

rience grows linearly in the number of AE, we arrive at 

the following result. 

Proposition 6. Social experience is formed approx-

imately by n ln(n) times slower than the collective one.  

Applying trivial transformations to 2

min ( , ) = tL n w,t L , 

we establish the following fact.  

Proposition 7. In the case of no forgetting and 
1

1
( ) 1 1 1 1

n tt

w n,t K
K

 
                  

 

, forming social ex-

perience with the unitary probability of mastering is 

equivalent to forming individual experience by one AE 

with the probability of mastering w(n, t). 

Due to Proposition 7, social experience can be 

viewed as the experience of one integral and virtual 

subject.  
 

CONCLUSIONS 

 

The results of Sections 3 and 4 show that the well-

known learning models [11, 14, 18], including the 

learning curves (20)–(26), correspond to particular 

cases of the general experience model from Section 2. 

As was shown in [14, 18], the learning models, in turn, 

generalize the following models: testing of complex 

systems and checking their characteristics; increasing 

the efficiency of mass production during mastering 

(the model of T.P. Wright and his followers); software 

testing; dissemination of knowledge (ideas, theories, 

concepts) in society; knowledge management and ex-

traction/acquisition; machine learning; iterative learn-

ing and testing of knowledge in pedagogy, psychology, 

and physiology of humans and animals. The surveys 

[14, 18] referred to numerous works on the experi-

ment-based characterization of nontrivial processes 

that underlie learning models. 

Let us outline some promising lines for further re-

search: 

 The formation of experience is an essential 

component of any activity. Therefore, it seems strate-

gically important to develop a general mathematical 

model of complex activity (with operational decompo-

sition and aggregation of particular models) within 

MCA, reflecting the active choice of subjects and con-

sidering the processes of forming their experience. 

 The system of classification bases for experi-

ence models (see Section 2) yields various particular 

models of forming and mastering individual and col-

lective experience. The development and study of such 

models are a well-founded “tactical” step. Here, some 

of the promising areas are as follows: exploring the 

joint formation of experience during work, optimizing 

the duration of learning before the transition to produc-

tive activity, analyzing the impact of forgetting and the 

history length, identifying the role of the time depend-

ence of the uncertainty factor states, revealing the in-

fluence of the experience structure (the logical connec-

tions between its components), and optimizing and 

managing the experience formation process. 

 The experience model proposed above is rich 

enough for describing many phenomena and process-

es: 

– personnel management (recruitment, placement, 

development, promotion, and dismissal) and human 

capital models; 

– risk management and information security man-

agement; 

– evolution (including adaptation, competition, and 

natural selection) in biological systems (involving the 

conventional mathematical apparatus for this range of 

problems – inite automata3 [21, 22], differential equa-

tions [23–25], evolutionary games [26, 27], etc.); 

– different characteristic times and hierarchy for 

the translated (explicit and tacit) and nontranslated ex-

perience, which are considered within psychological 

and sociological approaches; 

– selection, formation, mastering, consolidation, 

and transmission of social experience, considered as 

cultural phenomena. 

 

                                                           
3 The areas of research mentioned here are very extensive. Without 

claiming to be exhaustive, we therefore refer to several classical 
monographs and/or modern surveys.  
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Abstract. Three income redistribution algorithms supporting the agents with prosocial 

voting are considered within the Voting in Stochastic Environment (ViSE) model of 

social dynamics. The first algorithm is income tax; the second one ensures that the in-

come of each agent with the prosocial strategy is not smaller than the average income; 

the third one ensures that the average income of prosocial agents is not smaller than 

that of the entire society. The social utility of prosocial voting is analyzed. The three 

algorithms are compared with each other. The effectiveness of income tax depends on 

the environment. The second and third algorithms do not suffer from this disadvantage. 

However, under certain conditions, the second algorithm provides too many bonuses to 

prosocial agents. With any of these income redistribution algorithms, the egoists get 

more profit than in a society without any prosocial agents. Thus, whenever such taxa-

tion schemes motivate some participants to choose the prosocial voting strategy, this 

will increase the expected income of all agents. 
 

Keywords: ViSE model, altruism, voting, social dynamics, tax, pit of losses, prosocial behavior.  
 

 

 

Basic elements of ViSE model 

In the ViSE (Voting in Stochastic Environment) 

model [1], a society consisting of n agents is consid-

ered. Each agent is characterized by a social attitude 

determining his voting strategy and current wealth 

(capital), expressed as a real number. A strategy is an 

algorithm for using information about a proposal and 

society to support (or not) the proposal put to the vote. 

A stochastic environment generates a proposal to so-

ciety––a vector of realizations of independent identi-

cally distributed random variables. Each ith compo-

nent of this vector is a proposed capital increment for 

agent i. The proposal is put to the vote; each agent 

votes for or against it, following his voting algorithm. 

If the number of votes “for” exceeds 50%, the pro-

posal is approved, and the corresponding proposal 

components are added to the agents’ capital. (In a 

more general case, the number of votes “for” must 

exceed α𝑛, where α is a relative voting threshold and 

n is the number of agents). Otherwise, the capital of 

the participants remains the same. Proposals are put to 

the vote consecutively; voting on one proposal is 

called a move or step in a sequence of decisions. In a 

series of votes, the parameters of the distribution gen-

erating the proposals and the voting strategies of the 

agents are fixed. In this paper, the Gaussian distribu-

tion is considered a generator of proposals. The re-

search aims to analyze the effectiveness of the voting 

strategies of agents and collective decision procedures 

by the criteria for increasing the individual capitals of 

agents and their sum.  

In the papers [1, 2] and other publications on the 

ViSE model, many of its variants were considered by 

imposing additional conditions. Specific features of 

the model related to the subject of this study will be 

discussed below. 

The ViSE model refers to the theory of voting, 

which, in turn, is part of social choice. Unlike several 

game-theoretical models, agents in the ViSE model 

are not treated as players maximizing their utility 

functions. They possess capital, but their behavior is 

not always reduced to capital maximization: generally 

http://doi.org/10.25728/cs.2021.1.6
mailto:afonkinvadim@yandex.ru
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speaking, their behavior has an arbitrary structure giv-

en by the researcher. The main element of this behav-

ior is the agent’s personal (and not necessarily con-

stant) voting algorithm. Society is characterized by a 

mechanism for making collective decisions. The re-

searcher analyzing, within the model assumptions, the 

effectiveness of the individual and collective decision 

mechanisms is a social designer trying to understand 

which of the identified patterns may be useful in real 

life.  

Pit of losses  

For the ViSE model, the following scenario is 

known: a society consisting of agents with an egoistic 

social attitude acts irrationally, approving proposals 

that are generally disadvantageous to it since they lead 

to a negative total capital increment [2]. An egoistic 

strategy is a strategy in which the participant supports 

a proposal if and only if it increases his capital. The 

effect of impoverishment and ruin of society in this 

scenario is usually called the pit of losses. 

 

 
 

Fig. 1. Average capital increment in society of 25 agents with egoistic 

strategy. 

 

This situation is illustrated in Fig. 1, where the 

vertical axis corresponds to the average capital incre-

ment (ACI) of the participant per one step in an unfa-

vorable environment, and the horizontal axis corre-

sponds to the expected value of the proposals. 

Throughout the paper, the components of an environ-

ment proposal are realizations of independent Gaussi-

an random variables with σ = 12. In the situation un-

der consideration, the “unbiased” proposals of the 

environment lead to the same result as the agenda 

manipulation in the Malishevskii paradox described, 

for example, in [3, pp. 92–95]. 

Indeed, the ruin of society due to implementing 

the decisions made by the majority of votes of its 

classically rational participants is, in some sense, a 

paradoxical effect. It has the following explanation: in 

the zone of moderately negative expected values, 

some proposals yield a small capital increase for most 

agents and a total decrease by absolute value for the 

rest of society. Such proposals are approved by a ma-

jority of votes, but the total welfare of society de-

creases during their implementation. 

A way to secure against the pit of losses is to se-

lect the best voting threshold α [2]. In the case of an 

unfavorable environment, this optimum is usually 

above 50%. The corresponding dependence of the 

total capital on the voting threshold is comparable to 

the results of [4], where the influence of other social 

mechanisms (bargaining, bribes) on the effectiveness 

of decisions determining social dynamics was studied.  

The influence of altruistic agents on social wel-

fare 

Another factor reducing the pit of losses is the 

presence in society of agents who, when voting, are 

guided not by personal interests but by those of the 

entire society. An agent’s strategy supporting a pro-

posal if and only if it increases the total welfare of 

society is called altruistic. Behavior that benefits so-

ciety is also called prosocial. In the case shown in 

Fig. 1, replacing three egoists with altruistic partici-

pants appreciably increases the average capital incre-

ment of society; see Fig. 2.  

 

 
 

Fig. 2. Comparing effectiveness of societies composed of egoists only 

and egoists plus altruists: 

               22 egoists and 3 altruists,                  25 egoists.  

 
The results presented in this paper were obtained 

by simulations using ViSE Experiment Module [5]. 

Obtaining the same results analytically is a problem of 

at least high complexity: for the corresponding multi-

ple integrals it is impossible to find a general expres-

sion in terms of standard functions. 

The presence of altruistic agents always positively 

affects social welfare: the share of socially irrational 

decisions made is significantly reduced. However, the 

altruists themselves are outsiders in this case: accord-
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ing to Fig. 3, their capital is considerably smaller than 

the society average. This pattern is also observed for 

other values of the parameters.  

 

 
 

Fig. 3. Average capital increment in society of 22 egoists and 3 

altrusists:  

                     egoists,                      altruists. 

 
This is because when voting, altruists neglect the 

change in their capital in the case of implementing the 

environment’s proposal. Therefore, they support, 

among others, the proposals enriching society as a 

whole but reducing their capital. Thus, the presence of 

altruistic agents is beneficial to society, but their role 

is “sacrificial.” 

In real life, a society not encouraging the partici-

pants who secure it against ruin seems unfair. Moreo-

ver, in a version of the model where participants can 

change their voting principle to an individually more 

profitable one, providing prosocial agents with an in-

come of at least the average will ensure that they do 

not change their strategy to selfish. If the position of 

prosocial agents becomes better than the society aver-

age, then the share of such agents in this version will 

grow, leading to an increase in social welfare. 

Within the ViSE model, there is no need to repre-

sent any (particularly, prosocial) behavior by maxim-

izing the agent’s utility function: this would compli-

cate the description of complex behavioral types 

common in real life. For example, a social attitude 

aimed at supporting the entire society is conditioned 

by philanthropy, the need to maintain reputation, etc., 

but such motivation can fade into the background un-

der serious material losses and then return without 

external reasons. 

The goal of this study is to analyze material sup-

port mechanisms for agents with prosocial strategies. 

The agents are allowed to change their voting strate-

gies to individually more profitable ones, but specific 

mechanisms for such a change are not considered: this 

is not required to achieve the goal. The paper propos-

es and investigates several algorithms for supporting 

prosocial agents based on income redistribution (in 

other words, prosocial voting is motivated by taxes.) 

Also, the paper investigates the effectiveness of the 

prosocial strategy under various parameters of the 

environment. 

Voting in a society of altruistic agents was studied 

in the earlier paper [6]. Like in the model considered 

below, the agent was assumed to maximize the wel-

fare function during voting, the value of which mono-

tonically increases with the growth of consumption of 

any agent (analogy of capital increase). The progres-

sive taxation schemes quadratically dependent on 

production were put to the vote, and the presence of 

“self-approving” equilibrium was established. 

In the paper [7], as a result of laboratory experi-

ments, it was found that monetary incentives motivate 

prosocial behavior in the case of its private (non-

public) nature. The work [8] examined reducing inter-

nal motivation for prosocial behavior with its mone-

tary incentives on an example of “green” (environ-

mental) taxes. The authors concluded the following: if 

a tax leads to positive changes in society, its introduc-

tion is justified even under decreasing the “moral” 

motivation. 

Choosing an appropriate taxation scheme for 

agents by the majority voting was studied in [9]. The 

main result was the conclusion that progressive tax is 

beneficial to the “middle class.” Also, choosing a lin-

ear income tax by voting was considered in [10].  

 

As noted above, the presence of a small share of 
altruistic agents in society can significantly reduce or 
even eliminate the pit of losses. Let us identify the 
environment’s parameters under which the presence 
of altruists increases the capital of society most of all. 
To do this, we compare the average capital increments 
for the societies consisting of 25 egoists and 22 ego-
ists plus 3 altruists under σ = 12 and different ex-
pected values of the environment’s proposals. The 
comparison results are demonstrated in Fig. 4, where 
“the benefit from the altruistic strategy” is the differ-
ence between the ACIs of the two societies men-
tioned. 

As Fig. 4, agents with the altruistic strategy bring 
maximum benefits to society in a neutral environment 
that generates positive and negative proposals with 
equal probability. In an unfavorable environment 
most dangerous for society (the “bottom” of the pit of 
losses), the help of the three altruists is less in abso-
lute terms. At the same time, it is enough to eliminate 
the pit of losses almost completely.  
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Fig. 4. Comparing average capital increments and their difference  

for societies of egoists only and egoists plus altruists: 

               25 egoists,                        22 egoists and 3 altruists, 

                      benefit from altruistic strategy.         

 

 

As noted above, altruistic agents helping society 
make rational decisions in a moderately unfavorable 
environment need support to increase the relative wel-
fare of altruists and, presumably, prevent their shift to 
egoism. Consider possible schemes for redistributing 
society’s income in their favor. This redistribution can 
be treated as levying a tax. The simplest scheme is 
“flat” income tax. After each approved proposal, the 
egoists who have received a positive capital increment 
deduct v percent of their capital increment for the cur-
rent step to the fund, and the fund is equally divided 
among the agents with the altruistic voting strategy. 
The effectiveness of a support method will be as-
sessed by the increase in the altruist’s ACI after intro-
ducing the tax and by the increase in the egoist’s ACI 
compared to his increase in a society consisting of 
such agents only.  

Figure 5 shows the average capital increments of 
different participants under 13% income tax. As be-
fore, society consists of 22 egoists and 3 altruists 
(12% of society). An income tax rate of 13% (further 
called the first income redistribution algorithm or the 
first taxation scheme) is applied. Clearly, due to the 
redistribution, the income of altruists significantly 
exceeds that of egoists. At the same time, the welfare 
of egoists remains higher than in the society without 
altruists. Thus, the agents voting altruistically do good 
to the entire society, becoming the main beneficiaries 
(the wealthy stratum): being altruistic1 is very advan-

                                                           
1 In some cases, the term “altruists” is enclosed in quotation 

marks to emphasize that it refers to participants with the altruistic 

voting strategy. In view of the social support under consideration, 

the motivation for choosing this strategy can be mercantile, that is, 

selfish. The term “egoists” also refers only to the voting strategy.  

tageous. If agents are allowed to change their strategy, 
then the egoists will be willing to vote altruistically to 
turn from taxpayers to tax fund recipients. 

 

 
 

Fig. 5. Comparing average capital increments for different partici-

pants under 13% income tax:  

                     altruists (society of 22 egoists and 3 altruists),                   
                     egoists (society of 22 egoists and 3 altruists),                   

                     egoists (society of 25 egoists).   

 

In this regard, note that the difference between the 
welfare of egoists and altruists depends on the ratio of 
the number of agents with different strategies. The 
more altruists there are in the society, the less increase 
each of them will receive from the tax fund. As a re-
sult, the ACI curves of the two groups of participants 
will converge and finally match. The difference in the 
income of the different groups also depends on the 
environment’s favorableness. For these reasons, it is 
natural to select the income tax rate depending on the 
parameters of society and the environment. A fixed 
rate can lead to insufficient or, conversely, excessive 
support for altruists. For example, in Fig. 5, there is an 
income gap that is difficult to justify. 

Thus, an additional criterion for assessing support 
methods can be the dependence of the tax effect on 
the environment’s parameters. The problem described 
above can be solved by more flexible taxation 
schemes. Here is one example, also called the second 
income redistribution algorithm, or the second taxa-
tion scheme. 

 After each approved proposal, calculate the dif-
ference (𝑐̅ – ACI) for the participant at the current 
step.  

 Calculate the sum of all positive excesses above 

the ACI over society:  
1

( )
n

exc i i

i

S I c c c c


    , 

where 𝑐𝑖 is the capital increment of agent 𝑖 at the cur-
rent step, and 𝐼{∙} denotes the indicator function of an 
appropriate event. This function takes value 1 if the 
assertion within the curly brackets is true and 0 oth-
erwise.  
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 Calculate the amount donated to the altruists for 

making their capital increments not smaller than the 

society average: 
1

( ) { } { }
n

don i i

i

S altr i I c c c c


    , 

where Altr(i) = 1 if agent i is altruist and Altr(i) = 0 

otherwise.   

 Calculate the income withdrawal rate .don

exc

S
u

S
   

 Charge the tax ( )ic c u  from each agent 𝑖 whose 

capital increment is greater than .c   

 Redistribute the tax fund collected at this step 

among the altruists whose capital increments are 

smaller than 𝑐̅, making them equal to .c  

Note that the coefficient u cannot exceed 1: the 

sum 
excS  includes all excessive incomes, and 

donS is 

the total income deficit (in relation to the average) 

only for the altruists who are proposed the capital in-

crements smaller than the society average. Therefore, 

the income of the “lucky ones” with
ic c  cannot fall 

below the value .c  

Well, the second taxation scheme ensures that eve-

ry altruist will obtain a capital increment of at least 

the society average from each proposal. Moreover, the 

tax is paid not only by egoists but also by altruists, 

who initially obtained a capital increment above the 

average. The expected capital increments of different 

participants under the second taxation scheme are 

shown in Fig. 6. 

We emphasize that tax collection determines only 

the redistribution of capital within society: the deci-

sion-making process remains the same, and the taxes, 

therefore, do not affect the average capital of society. 

According to Fig. 6, the incomes of altruists, like in 

the case of the first taxation scheme, appreciably ex-

ceed those of egoists. The difference from the first 

taxation scheme is that in an unfavorable environ-

ment, the income of altruists turns out to be even 

higher. In fact, depending on the number of partici-

pants with the altruistic voting strategy, they can ob-

tain either more or less income under the second taxa-

tion scheme compared to the first one (income tax). 

Now consider the third income redistribution al-

gorithm (the third taxation scheme), intended to re-

duce the gap between the incomes of altruists and 

egoists. This income is collected and redistributed as 

follows: 

 After each proposal approved, calculate the dif-

ference ( c – ACI) of the participant at the current step 

and the ACIs 𝑐�̅�𝑙𝑡𝑟 of altruists. If ,altrc c  implement 

the current proposal without any changes; otherwise, 

pass to Step 2. 

 

 
 

Fig. 6. Comparing average capital increments of different participants  

under different taxation schemes:  

                   egoists (second taxation scheme),                     altruists (second 

taxation scheme),                     altruists (first taxation scheme).  

 
Calculate the sum of all positive excesses above 

the average capital increment: 
1

{ }
n

exc i

i

S I c c


     

( )ic c  by analogy with the second taxation scheme. 

 Calculate the amount donated to the altruists for 

making their capital increments not smaller than aver-

age over society: 
1

( ) { } { }
n

don i i

i

S altr i I c c c c


    , 

similar to the second taxation scheme. 

 Calculate the income withdrawal rate 

( )altr altr

exc

c c n
u

S


 , which ensures the altruists the av-

erage capital increment over society. 

 Calculate the raise rate
( )

.altr altr

don

c c n
q

S


  

 Charge the tax ( )ic c u  from each agent 𝑖 whose 

capital increment is greater than .c  

 For each altruist whose initial capital increment at 

this step is lower than the average one ,c  pay the ex-

tra amount ( )ic c q  from the tax fund. 

This algorithm guarantees that at each step, the 

average capital increment of altruists is not smaller 

than c  (the average capital increment in society). If 

this increment is initially smaller, then it is raised to 

the society average by payments from the tax fund; 

otherwise, it remains unchanged. 

According to Fig. 7, the ACI of altruists under the 

third taxation scheme is appreciably smaller compared 

to the second one. The excess of the altruist’s income 

over that of the egoist is also less. 
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Fig. 7. Comparing average capital increments of different participants 

under different taxation schemes:   

                    egoists (third taxation scheme),                      altruists (third 

taxation scheme),                     altruists (second taxation scheme). 

            
We explain this pattern as follows. Suppose that 

the altruists obtained increments on average greater 

than the egoists per step. Then the third taxation 

scheme is not applied. At the same time, the second 

taxation scheme would provide a positive increase for 

those altruists whose initial income was below aver-

age. If a capital increment above 𝑐̅ was only for the 

altruists, then the total income of the altruists under 

the second taxation scheme would not change; other-

wise, it would increase due to egoists and become 

higher compared to the third taxation scheme. 

Now consider the case in which the altruists ob-

tained, on average, a smaller capital increase per step 

than the egoists. Under the third taxation scheme, af-

ter the redistribution of income, the ACIs of altruists 

and egoists will be equal to each other and the value 

𝑐̅. Under the second taxation scheme, every altruist 

who originally had a capital increment below 𝑐̅ will 

receive an increment equal to 𝑐̅. The increase in the 

altruist’s capital, which initially exceeded the value 𝑐̅, 
will remain above 𝑐̅. Therefore, the average total capi-

tal increment of altruists under the second taxation 

scheme in each case will be not smaller compared to 

the third one. Due to the stochastic nature of pro-

posals, proposals will be occasionally approved with 

probability 1, in which the second taxation scheme 

will provide altruists with a greater capital increase 

than the third one.  

The above reasoning proves that the expected cap-

ital increment of altruists under the third taxation 

scheme (and non-zero variance σ2) is always lower 

compared to the second one.  

The results for all societies considered are summa-

rized in Fig. 8. 

 
 

Fig. 8. Summarized data on average capital increments of different participants under different taxation schemes. 
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This paper has proposed and investigated some 

ways to support agents with prosocial behavior within 

the ViSE model. It has been established that altruists 

increase the capital of society, which helps to elimi-

nate the pit-of-losses paradox. Without income redis-

tribution, the welfare of prosocial agents is signifi-

cantly smaller than that of egoistic ones. Hence, by a 

logical assumption, such agents would think about 

changing their strategy, thereby worsening society’s 

state. Three income redistribution algorithms have 

been considered: income tax (the first taxation 

scheme), a tax with “pulling” at each step each altru-

ist’s income to the society average (the second taxa-

tion scheme), and a tax with “pulling” the average 

income of all altruists to the society average (the third 

taxation scheme). The application of each taxation 

scheme mentioned provides altruists with a greater 

average capital than egoists, which creates a material 

incentive for them to choose the altruistic voting ben-

eficial for society. In this case, the benefit of society is 

that all participants, both egoists and altruists, obtain a 

greater average capital than in a society without altru-

ists. 

The problem of excessive bonuses to altruists may 

arise. Of the approaches considered, the third taxation 

scheme best secures against it, rewarding altruists on 

average in a smaller volume than the second taxation 

scheme. The consequences of introducing a flat-rate 

income tax (the first taxation scheme) strongly depend 

on the environment’s favorableness and the share of 

altruistic agents, which indicates its inflexibility. At 

the same time, the administration of the second and 

third taxation schemes requires complete information 

on the income of participants and more complex cal-

culations, which makes these taxes less transparent 

and somewhat complicates their practical application. 

In all income redistribution algorithms considered, 

egoists obtain a higher income than in a society with-

out prosocial agents, which makes the appearance of 

altruists supported by tax attractive, particularly for 

egoists. 

In the paper [11], an optimal taxation scheme was 

intended to ensure social welfare by maximizing the 

total utility function of society. In this paper, another 

criterion of tax optimality has been proposed and in-

vestigated: the degree of support for the agents whose 

strategy contributes to increasing social welfare. The 

patterns identified during this study can be used to 

develop real taxation algorithms. 
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Abstract. This paper proposes a new method for constructing a two-stage dual photon switch 

with enhanced functional characteristics in the system basis of low-channel photon switches and 

photon multiplexers and demultiplexers. The method yields non-blocking switches with static 

self-routing. Also, the method ensures a significant speed-up for the switches with the same 

number of channels and a significant increase in the number of channels with the same speed 

compared to the non-blocking dual switches known previously. The non-blocking self-routing 

dual photon switches presented below have the highest possible speed and a maximum possible 

number of channels with almost the same complexity. As is shown in the paper, the dual 

switches have a switching complexity comparable with full switches and, at the same time, a 

lower channel complexity. 
 

Keywords: physical level, photon switch, dual switch, multistage switch, conflict-free self-routing, non-

blocking switch, static self-routing, quasi-complete digraph, switching properties, direct channels, scalabil-

ity and speed.  
 

 

 

INTRODUCTION  

In the papers [1–3], a technique was proposed for 

constructing non-blocking photon switches with static 

self-routing for optical supercomputer systems. A sys-

tem area network is non-blocking if for any packet 

permutation, conflict-free paths from sources to sinks 

can be built in it. A system area network is self-

routing if conflict-free paths can be built locally over 

network nodes without their interaction based on rout-

ing information in packets only. Finally, self-routing 

is static if any source can independently choose con-

flict-free paths to its sink without interacting with oth-

er sources. 

Until recently, the problem of constructing non-

blocking system area networks has not been com-

pletely solved. At best, rearrangeable multistage Clos 

networks were proposed [4, 5]. In rearrangeable net-

works [4], a conflict-free implementation of any per-

mutation of data packets is possible, but a conflict-

free schedule for each permutation has to be compiled 

separately, and it is not self-routing. 

Non-blocking Clos networks [6] are known. How-

ever, for such networks, no static or even dynamic 

routing procedures have been proposed so far. In ad-

dition, they have significantly greater complexity than 

rearrangeable Clos networks and are not applied in 

practice. 

The p-ary r-dimensional generalized hypercube is 

a widely used system area network [7, 8]. However, 

for r > 2, it is neither non-blocking nor even rear-

rangeable. For making the generalized hypercube re-

arrangeable, the number of channels in it should be 

increased. For example, for p = 2, it suffices to double 

the number of channels of one dimension [9]. In this 

case, a double hypercube in which all channels are 

duplicated has conflict-free schedules for two permu-

tations at once [10].  

The three-dimensional hypercube with dynamic 

self-routing has been made non-blocking recently; see 

[11]. However, this required an almost threefold in-

crease in the number of channels and the degree of 

constituent switches. 

Nevertheless, the problem of constructing a non-

blocking self-routing network has a solution in the 

special case of networks with the topology of a quasi-

complete graph and digraph [12]. Unfortunately, the 

number N of users (processors) in such networks does 

http://doi.org/10.25728/cs.2021.1.7
mailto:elizavetaalexb@yandex.ru
https://e.mail.ru/compose/?mailto=mailto%3avytovtov_konstan@mail.ru
mailto:podlazov@ipu.ru
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not exceed the square of the degree p of composite 

switches: N = p(p – 1)/ + 1 and N = p
2
, respectively, 

where  is the number of different channels between 

users. Moreover, they have a greater switching com-

plexity and a smaller channel complexity compared to 

a complete graph. A quasi-complete graph is isomor-

phic to such a mathematical object as an incomplete 

balanced block design [13–17]; a quasi-complete di-

graph is isomorphic to a two-dimensional generalized 

hypercube (parallelogram) or a two-dimensional mul-

tiring. In particular, the two lowest dimensions of the 

four-dimensional hypercube Dragonfly (CRAY XC-

30) [8] are implemented in the form of a 616 paral-

lelogram and represent a non-blocking self-routing 

subnet. 

Networks with the topology of quasi-complete 

graphs and digraphs can be extended by increasing the 

number of their users without changing the non-

blocking and self-routing properties. This effect is 

achieved by the invariant extension method of system 

area networks [12, 18]. Unfortunately, such an exten-

sion further increases the switching complexity of 

extended networks, strongly restricting their scalabil-

ity. 

Note that most modern system area networks 

(Clos networks [5], generalized hypercubes [8], mul-

tidimensional tori [19], the hierarchy of complete 

graphs from IBM [20], and the Melanox thick tree 

[21, 22]) cannot implement an arbitrary permutation 

of packages in one session without conflict. It is often 

necessary to resend the packets blocked in buffers. At 

present, photon computers are being developed [23], 

whose photon networks contain no buffer memory for 

blocked packets in the channels. 

In the papers [1–3], the concept of dual networks 

was introduced, and new dual networks were con-

structed for photon computers, implementing arbitrary 

permutations of packets without conflict at a slightly 

lower channel speed. The methodology for construct-

ing these networks is based on four fundamental prin-

ciples:  

 Applying a four-channel switch of a new structure, 

which is dual by the conflict resolution approach. It 

combines the bus method (separation of conflicting 

signals to different cycles in one channel) and the 

switch method (separation of conflicting signals to 

different channels). 

 Assuming the parallel transmission of signaling 

and control information for switches at different fre-

quencies for each data bit. This assumption eliminates 

the problem of synchronizing signals from different 

channels.  

 Cascading switches so that the Ith channel of the 

Jth switch on one stage is connected to the Jth chan-

nel of the Ith switch on the next stage. With such ex-

change links, the previous and next stages must in-

clude the same number of switches, each having the 

same number of channels. This method allows con-

structing multichannel switches with a small number 

of stages. 

 Balancing the speed and complexity of a multi-

stage switch using the invariant extension method of 

system area networks [4], which preserves the non-

blocking property and speed of the switch with an 

increase in the number of its channels. This method 

involves an extended circuit base consisting of both 

pp switches for p channels and pairs of 1p multi-

plexers and p1 demultiplexers, where p  2. 

In the papers [1–3], one of the block designs of a 

dual 44 switch is a two-stage circuit of four demulti-

plexers and four multiplexers with feedback links 

through the delay lines (Fig. 1). The switch stages are 

interconnected by exchange links. 

 

 
 

Fig. 1. Generalized block design of dual switch SS4:  

D4 – four-input demultiplexer, M4 – four-output multiplexer, DL – delay 

line of length  signals. 

 

If the complexity of multiplexers M4 and demulti-

plexers D4 is measured by the number of switching 

points (equal to 4), then the switching complexity of 

the switch is S1 = 32.  

The combination of two control frequencies 

uniquely determines the demultiplexer’s mode in 

which the information signal can be directed to one of 

the four outputs. Possible combinations of control 

signals are presented in Table 1 below.  
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Table 1  

Control frequencies for photon 4×4 switch  

Output no. Control frequencies 

1 11 

2 12 

3 21 

4 22 

 

The signals from the demultiplexer’s outputs are 

supplied to the multiplexer’s inputs. One of them is 

passed to the output, and the rest return to their delay 

lines DL. The switch implements dynamic signal 

delay using the feedback links through DL. 

The dual switch SS4 provides non-blocking with 

static self-routing under an appropriate length  of the 

delay line. The value  depends on the number of the 

stage in which the switch SS4 is used. 

For the first stage,  = 1. Let four signals of dura-
tion T0 be simultaneously supplied to the inputs of the 
switch SS4, all received in one cycle. With dynamic 
signal delay at the switch outputs, there are four pos-
sible options of signal placement: one at each output, 
two signals in a row at two outputs, one and three sig-
nals in a row at two outputs, and four signals in a row 
at one output. They are shown in Fig. 2. As a result, 
the switch SS4 will be non-blocking for any input 
traffic when the period T1 of information signals is 
four cycles. 

 

 
 
Fig. 2. Different distributions of input signals among lines and cycles.  

 
Therefore, the non-blocking self-routing switch 

SS4 has the following performance characteristics: the 
signal period T1 = 4 = N1 cycles, the number of chan-
nels N1 = 4, and the switching complexity 
S1 = 32 = N1

5/2
. 

In the papers [1–3], the two-stage 1616 switch 
S216 with exchange links was considered, consisting 
of four switches SS4 on each stage. The first stage 
includes DL1, and the second stage includes DL0 (no 
delay lines). For an arbitrary permutation of packets, 
S216 turned out to be a non-blocking self-routing 

switch with the following performance characteristics: 
the number of channels N2 = 16, the signal period 
T2 = 4 = N2

1/2
 cycles, and the switching complexity 

S2 = 2432 = 256 = N2
2
.  

In the papers [1–3], the four-stage 256256 switch 
S4256 with exchange links was considered, consisting 
of 16 switches S216 on each stage. It consists of four 
stages of switches SS4. The first stage includes DL1, 
the second stage includes DL4, the third stage in-
cludes DL15, and the fourth stage includes DL0 (no 
delay lines). For an arbitrary permutation of packets, 
S4256 turned out to be a non-blocking self-routing 
switch with the following performance characteristics: 

the signal period T4 = 49  3N4
1/2

 cycles, the number 
of channels N4 = 256, and the switching complexity 

S4 = 216256 = 8192 = N4
1.625

. Note the large digit 
period (low speed) and small complexity of this 
switch. 

In the papers [1–3], the “speed–complexity” ratio 
was balanced using an invariant extension of small-
period switches. In particular, the switch S216 was 
extended through external multiplexers M4 and de-
multiplexers D4. As a result, the non-blocking self-
routing switch S364 was constructed, consisting of 16 
switches S216 and 64 demultiplexers D4 and multi-
plexers M4. This switch has the following perfor-
mance characteristics: the number of channels 
N3 = 64, the signal period T3 = 4 = N3

1/3
 cycles, and 

the switching complexity S3 = 16256+4128 = 
=4 608 = N3

2.028
.  

In this paper, a non-blocking switch with the qua-
si-complete digraph topology will be used not only to 
extend two-stage switches but immediately to con-
struct them. The resulting switches have a higher 
speed (a smaller signal period) and more channels 
than those proposed in [1–3]. 

In Section 1, we present the structure and charac-
teristics of a switch with the quasi-complete graph 
topology for any number p of ports. In Section 2, we 
discuss the main idea of increasing the speed and the 
number of channels for p = 2 on an example of con-
structing a non-blocking three-stage switch. In Sec-
tion 3, this idea is fully realized by constructing a 
non-blocking two-stage switch for p = 2. In Section 4, 
we construct a similar two-stage switch for any p. In 
Section 5, we describe an extension of a two-stage 
switch into switches with more channels and a con-
stant signal period.  

1. NON-BLOCKING SELF-ROUTING SWITCH WITH QUASI-

COMPLETE DIGRAPH TOPOLOGY  

Consider N1 = p
2
 dual pp switches (SSp). For      

p = 4, the block design of each of them is shown in 

Fig. 1. In the general case, they represent a two-stage 
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block design with exchange links: the first stage in-

cludes p demultiplexers of the type 1p (Dp), and the 

second stage includes p multiplexers of the type p1 

(Мp) with feedback links through the delay lines DL 

for each input. Each switch SSp has the switching 

complexity S1 = 2p
2
.  

From N1 = p
2
 switches SSp, N1 multiplexers Мp 

without delay lines, and N1 demultiplexers Dp, it is 
possible to construct a non-blocking self-routing 

switch N1N1 with the quasi-complete digraph topol-
ogy––the switch SFN1. The interconnections in this 
switch are specified by an incidence table; for p = 4, 
see the example in Table 2. The circuit of the switch 
SF16 is provided in Fig. 3. 

 
Table 2 

Interconnections in 1616 switch SF16 with quasi-

complete digraph topology 

Simplex channels  

from users 

44 

switches 

SS4 

Simplex channels to 

users 

1 2 3 4 1 1 5 9 13 

2 3 4 1 2 2 6 10 14 

3 4 1 2 3 3 7 11 15 

4 1 2 3 4 4 8 12 16 

5 6 7 8 5 5 9 13 1 

6 7 8 5 6 6 10 14 2 

7 8 5 6 7 7 11 15 3 

8 5 6 7 8 8 12 16 4 

9 10 11 12 9 9 13 1 5 

10 11 12 9 10 10 14 2 6 

11 12 9 10 11 11 15 3 7 

12 9 10 11 12 12 16 4 8 

13 14 15 16 13 13 1 5 9 

14 15 16 13 14 14 2 6 10 

15 16 13 14 15 15 3 7 11 

16 13 14 15 16 16 4 8 12 

 
The switch SFN1 is non-blocking on packet per-

mutations and for any distribution of N1 packets 
among outputs when no more than p packets are sent 
to each output. 

The switch SFN1 has the following performance 
characteristics: the number of channels N1 = p

2
, the 

signal period  = p, and the switching complexity 

 = S1N1 + 2pN1 = 2p
2
N1 + 2pN1 = 2p

3
(p + 1). For any 

switches, we will also introduce the layout complexity 
by the number of simplex channels in them. For SFN1, 

this complexity is given by  = 2pN1 = 2p
3
. All per-

formance characteristics of the switch are combined 
in Table 3. We consider the switch SFN1 to be one-
stage, according to the number of stages of the 
switches SSp. Below, the number of stages will be 
interpreted by the number of stages of the switches 
SSp.  

We emphasize that the switch SFN1 is non-
blocking on packet permutations and for any distribu-
tion of N1 input packets among outputs when at most 
p packets are sent to each output.  

 

 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 8 

9 9 9 

10 10 10 

11 11 11 

12 12 12 

13 13 13 

14 14 14 

15 15 15 

16 16 16 
 

 
Fig. 3. Switch SF16 with quasi-complete digraph topology. 

Boxes correspond to switches SS4, and triangles to multiplexers M4 

and demultiplexers D4.  

 

 

Table 3 

Performance characteristics of switch SFN1  

p 2 3 4 5 6 7 8 

N1 4 9 16 25 36 49 64 

 48 216 640 1500 3024 5488 9216 

 N1
2.79 

N1
2.45

 N1
2.33

 N1
2.27

 N1
2.24

 N1
2.21

 N1
2.19

 

 16 54 128 250 432 686 1024 

 N1
2 

N1
1.82

 N1
1.75

 N1
1.72

 N1
1.69

 N1
1.68

 N1
1.67

 

 

The table is extended to p = 8 since a dual photon 

88 switch, SS8, has already been developed; see 

[24]. 

In Sections 2 and 3, the dual switches SS2 and 

SF4, shown in Fig. 4, will be used. Note that the one-

stage switch SF4 has the same signal period and num-

ber of channels as the two-stage switch constructed 

from SS4 in the papers [1–3].  
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Fig. 4. Non-blocking self-routing switch SF4.    

 

2. NON-BLOCKING SELF-ROUTING THREE-STAGE 

SWITCH  

From the dual switch SF4, we construct a self-
routing two-stage network with exchange links––the 
network С216 shown in Fig. 5. It consists of two stag-
es, and each stage includes four switches SF4. Unfor-
tunately, this network is not a 16-channel non-
blocking switch: it can have signal conflicts on the 
stage of the multiplexers M2, highlighted in gray. 
Signals in the first and second cycles may conflict. To 
resolve the conflicts, it suffices to provide these mul-

tiplexers with DL,  = 2 (Fig. 6). Then, conditionally 
speaking, they will form the second stage of dual 
switches without demultiplexers. The result is a three-
stage non-blocking self-routing switch S316. It has the 
following performance characteristics: the number of 
channels N3 = 16 = 2

4
, the signal period T3 = 4, the 

switching complexity S3 = 2N1p =2= 384 = N3
2.15

, 

and the layout complexity L3 = 2N1+N1p =2= 
= 144 = N3

1.79
. 

Let us compare the performance characteristics of 
this three-stage switch and the two-stage switch de-
scribed in the introduction (the one composed of 
SS4). They have 16 channels each, the signal period 

ratio is  = T3/T2 = 2/4 = 0.5, and the switching com-

plexity ratio is  = S3/S2 = 384/256= 1.5. The product 

 = 0.75 shows how many times the reduction in the 
signal period is less than the increase in the switching 
complexity.  

Using the switches SF16 in a similar way, we can 
construct the two-stage self-routing network N3256 
with exchange links. It consists of two stages of 16 
switches SF16 on each stage. This network may have 
conflicts on the multiplexers M4 of the first stage. For 
making N3256 a three-stage non-blocking self-routing 
switch, it suffices to provide these multiplexers with 

DL,  = 4 (Fig. 7). The result is a three-stage non-
blocking self-routing switch S3256. It has the follow-
ing  performance characteristics: the number of  chan- 
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Fig. 5. Two-stage network N216. 

 

 

 

 

Fig. 6. Multiplexer M2 with delay lines for first stage.  

 

 

 
 

Fig. 7. Multiplexer M4 with delay lines for first stage.  

 
nels N3 = 256 = 4

4
, the signal period T3 = 11, the 

switching complexity S3 = 2N1p =4= 20 480 = N3
1.79

, 

and the layout complexity L3 = 2N1+N1p =4= 

=4352 = N3
1.51

. The values  and T3 are justified in 
Lemma 1 below. 

Let us compare the performance characteristics of 

this three-stage switch and the four-stage switch de-

scribed in the introduction in the case p = 4. They 
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have 256 channels each, the signal period ratio is 

 = T3/T2 = 10/49  0.204, and the switching complex-

ity ratio is  = S3/S2 = 20 480/8192 = 2.5. The product 

 = 0.51 shows how many times the reduction in the 

signal period is less than the increase in the switching 

complexity.  

For an arbitrary p > 2, the three-stage switch S3p
4
 

is constructed by analogy from the switches SFp
2
. It 

has the following property.  

L e m m a  1 .  The switch S3p
4
 is non-blocking if 

the multiplexer Mp of the first stage has DL with 

 = p and the signal period 

T3 = p
2
.                                 (1) 

P  r  o  o  f .  At their inputs, Mp receive p signals 

with their possible distribution on the interval from 1 to p 

cycles. In a conflict situation, they are distributed maximal-

ly on the interval from 1 to p cycles. For ensuring that in 

any conflicts, the primary signals are not superimposed on 

the signals delayed in the DL, a sufficient condition is 

 = p.  

The maximum number of conflicting signals occurs 

when all signals are distributed among p cycles. In this 

case, conflict resolution will require retransmitting the con-

flicting signals through the DL p times. As a result, they 

will be distributed on the interval from 1 to p
2
 cycles. And 

the conclusion follows. ♦ 

Formula (1) was confirmed by numerical simula-

tions on a switch model with the synchronous genera-

tion of arbitrary permutations of packets. 

For an arbitrary p  2, the switches S3p
4 

have the 

performance characteristics shown in Table 4.  

 
Table 4 

Performance characteristics of switches S3N3   

p  N3 = p
4
 T3 = p

2 
S3 L3 

2 2 16 4 384 = N3
2.15

 144 = N3
1.79

 

3 3 81 9 3888 = N3
1.88

 1053 = N3
1.58

 

4 4 256 16 20 480 = N3
1.79

 4352 = N3
1.51

 

5 5 625 25 75 000 = N3
1.74

 13 125 = N3
1.47

 

6 6 1296 36 217 728 = N3
1.71

 32 400 = N3
1.45

 

7 7 2401 49 537 824 = N3
1.70

 69 629 =  N3
1.43

 

8 8 4096 64 1 179 648 = N3
1.68

 135 168 =  N3
1.42

 

 

3. NON-BLOCKING SELF-ROUTING BINARY TWO-STAGE 

SWITCH  

The three-stage switch S316 can be turned into the 

non-blocking two-stage switch S316 by the internal 

parallelization method: we should cut the M2 stage 

with DLp from the first stage (Fig. 5) and separate the 

conflicting signals across two copies of the second 

stage (Fig. 8). The outputs of these copies are com-

bined by an additional M2 stage. The switch S216 

switch has the following performance characteristics: 

the number of channels N2 = 16, the signal period 

T2 = 2, the switching complexity S2 = N1( – pN1) + 

+pN2p = 2= 576 = N2
2.29

, and the layout complexity 

L2 = (p + 1) N1 + pN2p = 2 = 224 = N3
1.95

. 
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Fig. 8. Non-blocking self-routing binary two-stage switch S216.  

Channels to second stage copies and from them are indicated by dot-

ted lines.   
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Note that the switch S216 has slightly greater 
complexity than S316. In addition, the two-stage 
switch S216 and the two-stage switch composed of the 
switches SS4 [1–3] have the same number of chan-
nels, but the former switch has half the signal period 
of the latter. 

4. NON-BLOCKING SELF-ROUTING P-ARY TWO-STAGE 

SWITCH  

Using the internal parallelization method, from 
the switches SFN1 (N1 = p

2
, p > 2), we can construct 

the non-blocking self-routing p-ary two-stage switch  

S2N1
2
 or S2N2 (Fig. 9) with the number of channels 

N2 = p
4
. In Fig. 9, the trapezoidal block B2,1 indicates 

the switch SFN1 without the output multiplexers Mp, 
which has N1 inputs and N1 groups of outputs with p 
outputs each. The square block B2,2 indicates the 
complete switch SFN1 with N1 inputs and N1 outputs. 
The triangular block B2,3 indicates the multiplexer 
Mp.  

A set of N1 blocks B2,1 is indicated by B2
*
. In this 

set, the outputs of blocks B2,1 are numbered by I, J, 

and k, where I (1  I  N1) gives the number of B2,1 in 

B2
*
, J (1  J  N1) gives the group number of p out-

puts of B2,1, and k (1  k  p) gives the output number 
in the group. 

 

 

A set of N1 blocks B2,2 is indicated 
by B2. In this set, the inputs of blocks 
B2,2 are numbered by I and J, where I 

(1  I  N1) gives the number of B2,2 in 

B2, and J (1  J  N1) gives the input 
number of B2,2. There are p copies of the 
set B2. 

Between the outputs of blocks B2,1 in 
the set B2

*
 and the inputs of blocks B2,2 

in each of the p copies of the set B2, 
there are exchange links, in which the 
outputs no. I, J, and k of the set B2

*
 are 

connected to the inputs no. J and I of the 
kth copy of the set B2.  

The set B2
*
 and each set B2 in the kth 

group have exchange links: the outputs 
no. I, J, and k of blocks B2,1 are connect-
ed to inputs no. J and I of blocks B2,2 in 
the kth copy of sets B2. The outputs of k 
copies of sets B2 are combined by N2 
blocks into the outputs of the switch 
S2N2 

Each block B2,1 has the switching 

complexity S2,1 =  – pN1 = 2p
2
N1 + pN1 

and the layout complexity 

L2,1 =  = 2pN1 along with the output 
lines on a copy of B2,2. Each copy of B2,2 
has the switching complexity 

S2,2 =  = 2p
2
N1 + 2pN1 and the layout 

complexity L2,2 =  =2pN1. Each block 
B2,3 has the switching complexity 
S2,3 = p and the layout complexity 
L2,3 = p along with the input lines from 
copies of B2,2. As a result, the switching 
and layout complexities of the switch 
S2N2 are S2 = N1S2,1 + pN1S2,2 + 
+ N2S2,3 = 2N2(p

3 
+ 2p

2 
+ p) = 2(N2

7/4 
+ 

+ 2N2
3/2 

+ N2
5/4

) and L2 = N1L2,1 + 
+pN1L2,2  + N2L2,3 = N2(2p

2 
+ 2p + 

+p) = 2N2
3/2 

+ 3N2
5/4

, respectively. Table 
5 shows the performance characteristics 
of the switches S2N2 compared to the 
switches S3N3 (Table 4). 

 

Fig. 9. Non-blocking self-routing p-ary two-stage switch S2N2. Channels to kth and pth copies 

of second stage and from them are indicated by short and long dotted lines, respectively. 
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According to Table 5, for the same p, the two-
stage switches S2N2 have a considerably greater num-
ber of channels (N2 = N2

2
) than the two-stage switches 

composed of the switches SSp [1–3]. They both have 
the same signal period (T2 = T2 = p) but different 

switching complexities (S2  N2
2
 vs. S2 = 2N2

3/2
, re-

spectively). 

5. EXTENSIONS OF NON-BLOCKING SELF-ROUTING  

P-ARY SWITCHES 

This section will apply the invariant extension 
method of system area networks [18], which is in-
tended to enlarge the number of users by increasing 
the network complexity without changing transmis-
sion delays. To extend the switches S2N2 in this meth-
od, separate multiplexers Md and demultiplexers Dd 
are used, where d is a divider of N2, i.e., d = p

r
 (r = 1, 

2, …). In the papers [1–3], this method was adopted 
in the case r = 1 for extending the switches construct-
ed in the purely switching scheme base.  

The invariant extension method consists in the fol-
lowing. Let us take d

2
 switches S2N2. Each of them is 

divided into n = N2/d zones with d ports in each. (A 
port is an “input–output” pair.) Parts of the switches 

S2N2 in any zone are also dd switches. All together, 
they are the backbone element of the switch SF1d

2
 

with the quasi-complete digraph topology. (For ex-
ample, see Fig. 3 for d = p = 4 and Fig. 4 for 
d = p = 2.) To form each such switch, it suffices to 
connect d

2
 inputs to it through multiplexers Md, and 

d
2
 outputs through demultiplexers Dd according to the 

corresponding interconnection table (for example, see 

Table 2 for d = p = 4). These connections yield the 
extended switch SE2R2, where R2 = nd

2
 = dN2. In this 

switch, from any input the signal comes to the unique 
(!) copy of the switch S2N2, then passing to any given 
output without additional delays. Therefore, SE2R2 is 
a non-blocking self-routing switch, like S2N2. 

An example of extending the switch SE216 to the 
switch SE232 with d = p= 2 is illustrated in Table 6 
and Fig. 10. 

 

 

1.i SS2 D2 

D2 

D2 

D2 

M2 

M2 

M2 

M2 

2.i SS2 

3.i SS2 

4.i SS2 

1+4(i-1) 

2+4(i-1) 

3+4(i-1) 

4+4(i-1) 

1+4(i-1) 

2+4(i-1) 

3+4(i-1) 

4+4(i-1) 

1 ≤ i ≤ 8 

SF14 

 
 

Fig. 10. Interconnection diagram of inputs and outputs of switch 

SE232 in ith zone of switch SE216.   

 

The switch SE2R2 has the switching complexity 
S2

*
 = d

 2
S2 + 2R2d = d

 2
2(N2

7/4 
+ 2N2

3/2 
+ N2

5/4 
+ N2) and 

the layout complexity L2
*
 = d

 2
L2 + 2R2d = d

 2
(2N2

3/2 
+ 

+ 3N2
5/4 

+ N2). Table 7 presents the performance char-
acteristics of SE2R2 with some values of p and d. Note 
that the extended switch preserves its specific com-
plexity (per channel) when increasing the number of 
its channels and maintaining its speed (signal period). 

  
Table 5 

Performance characteristics of switches S2N2   

p N2 = p
4 

T2 = N2
1/4 

S2 L2  = S2/S3  = T3/T2 / 

2 16 2 576 = N2
2.29

 224 = N2
1.95

 1.50 2 0.75 

3 81 3 7776 = N2
2.04

 2187 = N2
1.75

 2.00 3 0.67 

4 256 4 51 200 = N2
1.96

 11 264 = N2
1.68

 2.50 4 0.63 

5 625 5 225 000 = N2
1.91

 40 625 = N2
1.65

 3.00 5 0.60 

6 1296 6 762 048 = N2
1.89

 116 640 = N2
1.63

 3.50 6 0.58 

7 2401 7 2 152 296 = N2
1.87

 285 719 = N2
1.61

 4.00 7 0.57 

8 4096 8 5 308 416 = N2
1.86

 622 592 = N2
1.60

 4.50 8 0.56 

 

Table 6  

Arranging switches SS2 in extended switch SE232 with d = p = 2   

Copy of S216 

Ports of switch S216 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Composition of switches SE232 from switches SS2 

1 1 SS2 2 SS2 3 SS2 4 SS2 5 SS2 6 SS2 7 SS2 8 SS2 

2 1 SS2 2 SS2 3 SS2 4 SS2 5 SS2 6 SS2 7 SS2 8 SS2 

3 1 SS2 2 SS2 3 SS2 4 SS2 5 SS2 6 SS2 7 SS2 8 SS2 

4 1 SS2 2 SS2 3 SS2 4 SS2 5 SS2 6 SS2 7 SS2 8 SS2 
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Table 7 

Performance characteristics of switch SE2R2 with some values of p and d   

p 2 3 4 5 6 7 8 

T2 2 3 4 5 6 7 8 

d = p 

R2 32 243 1024 3125 7776 16 807 32 768 

S2
*
 R2

2.25
 R2

2.03
 R2

1.97
 R2

1.93
 R2

1.91
 R2

1.90
 R2

1.89
 

L2
*
 R2

1.89
 R2

21.74
 R2

1.69
 R2

1.66
 R2

1.65
 R2

1.64
 R2

1.63
 

d = p
2
 

R2 64 729 4096 15 625 46 656 117 649 262 144 

S2
*
 R2

2.21
 R2

2.03
 R2

1.97
 R2

1.94
 R2

1.93
 R2

1.92
 R2

1.91
 

L2
*
 R2

1.91
 R2

1.78
 R2

1.74
 R2

1.72
 R2

1.71
 R2

1.7
 R2

1.69
 

d = p
3
 

R2 128 2187 16 384 78 125 279 936 823 543 2 097 152 

S2
*
 R2

2.18
 R2

2.02
 R2

1.98
 R2

1.95
 R2

1.94
 R2

1.93
 R2

1.92
 

L2
*
 R2

1.92
 R2

1.81
 R2

1.78
 R2

1.76
 R2

1.75
 R2

1.74
 R2

1.74
 

d = p
4
 

R2 256 6561 65 536 390 625 1 679 616 5 764 801 16 777 216 

S2
*
 R2

2.16
 R2

2.02
 R2

1.98
 R2

1.96
 R2

1.95
 R2

1.94
 R2

1.93
 

L2
*
 R2

1.93
 R2

1.84
 R2

1.8
 R2

1.79
 R2

1.78
 R2

1.77
 R2

1.77
 

 

CONCLUSIONS  

This paper has proposed a technique for construct-
ing non-blocking self-routing photon switches of wide 
scalability based on new dual photon switches with a 
small number p of channels. In dual switches, signal 
conflicts are resolved by distributing them either 
among different channels or among different cycles. 
The latter method requires increasing the signal peri-

od by p times for a p-channel dual pp switch. 
Dual photon switches of wide scalability have 

been constructed with the minimum possible signal 
period, which is p times greater than the signal dura-
tion. Scalability is achieved using switches with the 
quasi-complete digraph topology and the invariant 
extension of any networks based on them. This meth-
od allows increasing the number of network channels 
while maintaining such properties as the signal period, 
non-blocking, and self-routing through its paralleliza-
tion with increasing complexity. This method in-

volves an extended element base consisting of pp 

switches, 1p demultiplexers, and p1 multiplexers. 
Three- and two-stage non-blocking self-routing N-

channel NN switches with N = p
4
 have been con-

structed. In the first of these, the period–complexity 
balance is shifted towards a lower complexity under a 
large period. In the two-stage switch, the balance is 
shifted towards the minimum period under high com-
plexity. Its switching complexity turned out to be 
comparable to the complexity of a full switch, and its 
layout complexity turned out to be significantly less 
than that of a full switch. These switches have only 

two stages of pp switches and two stages of 1p de-

multiplexers and p1 multiplexers. 
The above switches have been extended to R-

channel RR switches with R = N
r
 (r = 1, 2, 3, 4) us-

ing another stage of 1d demultiplexers and d1 mul-
tiplexers with d = p

r
. These R-channel switches are 

non-blocking self-routing switches with a minimum 
signal period. Their switching complexity is compa-
rable to that of a full switch, and the channel com-
plexity is significantly less. 

In comparison with the papers [1–3], the main re-
sults of this work are a significant reduction in the 
signal period with the same number of channels and a 
significant increase in the number of channels with 
the same single period. In other words, the key novel-
ty consists in developing a method for constructing 
non-blocking self-routing dual photon switches with 
the minimum possible signal period and the feasibility 
of achieving the maximum number of channels under 
almost the same complexity. 

This paper, together with [1–3], has presented a 
technique for designing fundamentally new dual sys-
tem networks with the following properties: 

– They are non-blocking networks with static self-
routing of packets, i.e., networks with conflict-free 
self-routing on arbitrary packet permutations.  

– They have the widest scalability with the maxi-
mum speed reached on them and the complexity com-
parable to that of a full switch.  

– Their maximum speed is only 2–4 times less 
than the physically achievable speed.  

– They allow balancing the speed–complexity ra-

tio with decreasing their complexity to that of the 
non-blocking Clos network (which has no conflict-

free self-routing procedures) but at a significantly 
lower speed of the non-blocking network. 

In the future, we expect to make dual networks 
channel fault-tolerant by replacing the quasi-complete 

digraph topology with the quasi-complete graph one. 
In addition, when cascading dual networks, we expect 

to use internal parallelization (Sections 3 and 4) in-

stead of external parallelization (invariant extension). 
This approach will enable the scaling of dual net-

works with smaller costs.  
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