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Abstract. This paper proposes an algorithm for designing a measured output-feedback control-

ler with given or achievable engineering performance indices for linear multivariable systems. 

The plant is subjected to bounded exogenous disturbances from the class of polyharmonic func-

tions with an infinite number of harmonics and a bounded sum of their amplitudes for each dis-

turbance component. As a result, additional tracking errors appear in controlled variables. The 

problem is to design a multivariable output-feedback controller ensuring given or achievable 

tracking errors, the settling time determined by a given or achievable degree of stability of the 

closed loop system, and a set of the oscillation indices 
iM  for the ith closed loop relating the ith 

reference signal 
ig  to the ith controlled variable 

iz . In addition, the controller should ensure 

the conditions γiM  , where γ  is a given number or the minimand. As shown below, Н∞ con-

trol methods are quite convenient for solving such problems. An illustrative example of design-

ing an interconnected electric drive is presented.  
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INTRODUCTION 

The classical theory of automatic control of mini-

mum-phase neutral single-input single-output (SISO) 

plants has shown high practical efficiency due to the 

physical clarity of the engineering performance indices 

underlying it: the tracking error, the settling time, and 

the oscillation index [1]. 

For multivariable (multi-input multi-output) plants, 

such an approach to controller design has not yet been 

formed, although the obvious first step is to solve the 

problem of autonomous control [2–4] going back to 

Voznesenskii [5]. 

The authors’ recent works [6, 7] were devoted to 

single-variable plants (both minimum-phase and non-

minimum-phase, stable and unstable), and controllers 

were constructed based on the Н∞ theory. This paper 

deals with multivariable plants and can be considered 

an extension of the approach [8] to the class of track-

ing systems: the robustness of a closed loop system is 

assessed not using the radius of stability margins but 

the oscillation index, a more natural and generally ac-

cepted performance index in the theory and applica-

tions of tracking systems. 

Let us clarify the concept of the oscillation index of 

a multivariable system: it means a set of the oscillation 

indices iM  for the ith closed loop relating the ith ref-

erence signal ig  to the ith controlled variable iz . The 

controller should ensure the conditions γiM  , where 

γ  is a given number or the minimand. As shown be-

low, Н∞ control methods are quite convenient for solv-

ing such problems.  

In practice, automatic systems are subjected to 

bounded exogenous disturbances causing additional 

tracking errors. This paper considers polyharmonic 

exogenous disturbances with an infinite number of 

unknown harmonics and a bounded sum of their (un-

known) amplitudes for each disturbance component. 

The controller should ensure given (or achievable) 

tracking errors in the presence of such disturbances. 
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Note that they cover an applications-relevant class of 

continuous disturbances with piecewise continuous 

time derivatives [8, 9]. 

Another engineering performance index employed 

in control design is the settling time, characterizing the 

response speed of the closed loop system under non-

zero initial conditions and (or) a stepwise change in the 

reference signal or disturbance. Below, the settling 

time is indirectly taken into account by ensuring a giv-

en degree of stability of the closed loop system. Alt-

hough this index estimates the rate of transient pro-

cesses very approximately (especially when the roots 

of the characteristic polynomial of the closed loop sys-

tem are close to each other), it has proven itself well in 

applications with an initial estimate of the settling 

time. As demonstrated in [6, 10], an excessive increase 

in the degree of stability (a smaller distance from the 

plant’s zero to the imaginary axis) catastrophically re-

duces the radius of stability margins (raises the oscilla-

tion index) and the phase and modulus margins even in 

the minimum-phase case with an output-feedback con-

troller. Such results are unacceptable in practice due to 

large overshoots in the step response of the closed loop 

system. This phenomenon is analogous to the burst 

effect [11] for the output-feedback controllers. There-

fore, the controller design algorithm suggested below, 

like the one developed in [8], provides for a gradual 

increase in the degree of stability. 

To the authors’ knowledge, Aleksandrov [12, 13] 

and his students are among the leading researchers 

stating and solving particular problems of this very 

difficult class within the theory of LQ control and H∞ 

optimization. A detailed survey of the corresponding 

results was provided in the paper [8]. In the Western 

literature, with the appearance of the Н∞ theory in the 

early 1980s, stability margins were given much atten-

tion [10, 14]. At the same time, the issues of accuracy, 

response speed, and stability margins, combined in a 

unified output-feedback controller design method for 

multivariable tracking systems, have not received 

proper coverage. 

Let us mention some important publications on dif-

ferent aspects of this range of problems. For example, 

the issues of nonsmooth Н∞ optimization were consid-

ered in [15], and the results were later used in [16] to 

design controllers of a given structure and order (par-

ticularly PID controllers). The matter is that controllers 

based on modern design techniques have a high order. 

Hence, they are “fragile”: lose stability under small 

deviations of their parameters from the calculated ones 

[17].  This property is usually expressed in small phase 

and modulus margins of control loops. Also, a still-

unsolved problem is choosing weight functions in the 

design of multivariable Н∞ controllers, noted in [18]. 

(For scalar systems, some rules were suggested in the 

monograph [14].) Below, we introduce a strict mathe-

matical rule for choosing a weight for a given tracking 

accuracy. 

Besides a different measure of robustness for the 

closed loop system, this paper involves a fundamental-

ly novel approach to accuracy compared to [8]: a new 

vector of weighted controlled variables is not intro-

duced, but the vector of exogenous disturbances is 

weighted. With this approach, the degree of sufficien-

cy of the results is considerably decreased. 

As shown below, the problem to ensure the engi-

neering performance indices reduces to a special Н∞ 

optimization problem [19, 20]. A numerical solution of 

such a degenerate problem can be conveniently ob-

tained using the technique of Linear Matrix Inequali-

ties (LMIs) [21, 22], e.g., in MatLab’s Robust Control 

Toolbox [23]. Finally, an illustrative example of de-

signing an interconnected electric drive [8] is present-

ed. 

1. PROBLEM STATEMENT 

Consider a plant described by the state-space equa-

tions    

1 2 ,   x Ax B f B u z Cx    ,                 (1) 

where nx R , mu R , and 1mz R  denote the plant’s 

state vector, the control vector, and the vector of con-

trolled variables, respectively; 3m
f R  is the vector of 

unmeasured exogenous disturbances. 

Let the plant (1) be looped by a stabilizing output-

feedback controller 

ε,   ε,   εc c c c c c cx A x B u C x D g z      ,   (2) 

where сn

сx R  ( cn n ), 1mg R , and 1ε mR  denote 

the controller’s state vector, the vector of reference 

signals, and the vector of measured tracking errors; 

,  ,  ,c c cA B C  and  cD  are numerical matrices.  

The exogenous disturbance vector has bounded 

components of the form 

3

1

( ) sin(ω ψ ),   1,i ik k ik

k

f t f t i m




   ,         (3) 

where the amplitudes 0ikf  , the initial phases ψik , 

and the frequencies ω k  ( 31, ,   1,i m k   ) are un-

known, and the number of harmonics is infinite.  

Assume that the exogenous disturbance is bounded: 

*

3

1

,   1,ik i

k

f f i m




  ,                      (4) 

where 
*

30,   1,if i m  , are given numbers. 

Conditions (3) and (4) mean the inequalities 
*

3( ) ,   ( 1, )i if t f i m  . The model (3) and (4) covers a 
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wide applications-relevant class of continuous exoge-

nous disturbances with piecewise continuous time de-

rivatives [8]. Therefore, such disturbances can be ex-

panded into an absolutely convergent Fourier series 

[9], representing a special case of (3) with multiple 

frequencies. In addition, the series (3) is not necessari-

ly a periodic function of time. For example, choosing 

all frequencies in (3) equal to 0 and the initial phases 

equal to (2 1)π / 2,k   where  0,k   , we arrive at a 

step function. 

The tracking errors caused by the exogenous dis-

turbance (3), (4) are defined as  

set

, 1ε sup | ε ( ) |,   1,i st i
t t

t i m


  , 

where sett  denotes the settling time. A requirement 

common in practice is  
*

, 1ε ε ,   1,i st i i m  ,                         (5) 

where 
*ε 0i   are given numbers (the desired tracking 

errors). 

The settling time in the closed loop system (1) and 

(2) can be approximately estimated as set 3 / βt  , 

where β  specifies the system’s degree of stability (the 

minimum distance from the eigenvalues of the closed 

loop system matrix 

2 2c c

cl

c c

A B D C B C
A

B C A

 
  

 
 

to the imaginary axis).  

Problem. Find a stabilizing controller (2) under 

which: 

The system’s accuracy requirements 

*

, 1 1ε γ ε ,   1,i st i i m  ,                        (6) 

hold, where 1γ  is a given number or the minimand.  

The oscillation indices do not exceed a given num-

ber (or the minimand) 2γ , 

2 1γ ,   1,i iM t i m


   ,                    (7) 

where ( )it s  is the transfer function of the closed loop 

system relating the ith reference signal gi to the ith 

controlled variable iz , and it 
denotes its Н∞ norm.  

The eigenvalues of the matrix clA  of the closed 

loop system (1) and (2) satisfy the condition 

Re  λ ( ) β,   1,i cl cA i n n    ,                (8) 

where β 0  is a given number.  

Let us comment on this problem, further referred to 

as the original problem. 

If the plant (1) is non-minimum-phase in the con-

trol variable (has zeros in the right half-plane), then the 

initial accuracy requirement (5) cannot be satisfied for 

any 
*εi ; therefore, the requirements (6) should be con-

sidered instead. Moreover, if the plant is also unstable 

[14], then the value 
2γ  on the right-hand side of ine-

quality (7) always exceeds 1, and it has a lower bound 

on 
iM  that cannot be overcome by any linear control-

ler. And finally, the degree of stability β  cannot be 

made greater than the plant’s zero closest to the imagi-

nary axis, which sharply decreases the stability mar-

gin: the high accuracy requirement contradicts the re-

quirement of low oscillation indices, and high perfor-

mance (a large value of β ) contradicts the requirement 

for stability margins (small values of 
iM ). 

This paper seeks a reasonable compromise between 

the mutually contradictory engineering performance 

indices based on the Н∞ optimization technique, which 

became a very convenient tool for designing applica-

tions-relevant controllers.  

2. SOLUTION BASED ON Н∞ APPROACH 

For solving the original problem, we first establish 

a connection between the oscillation indices 

1,   1,iM i m , and the Н∞ norm of the transfer function 

( )T s  of the closed loop system relating the reference 

signal vector g to the controlled variable vector z. The 

following result is true.  

Lemma. If 

γT

 ,                                  (9) 

then 

1γ,   1,iM i m  .                        (10) 

Note that due to (9), a similar inequality will hold 

for any element of the matrix ( )T s  [24], particularly 

for any diagonal element ( )it s : γit 
 . Since the 

transfer function ( )it s  relates the ith reference signal gi 

to the ith controlled variable iz , by definition we ob-

tain i iM t


  and consequently (10). 

At its input, the closed loop system (1) and (2) re-

ceives two exogenous signals, g and f. We form the 

augmented vector T T Tw g f     and choose the 

vector z as the controlled output. In the closed loop 

system, these vectors are connected via the transfer 

function ( )zwT s : 

( ) ( ) ( )zw fz T s w T s T s w     ,             (11) 

where ( )T s  denotes the transfer function of the closed 

loop system relating the vector g to the vector z;  ( )fT s  

denotes the transfer function of the closed loop system 

relating the vector f to the vector z. 
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Consider an auxiliary Н∞ optimization problem of 

the form 

γzwT

 ,                             (12) 

where γ  is a given number or the minimand. 

Due to the transfer function structure (11), condi-

tion (12) can be written in the equivalent frequency 

representation 
T T 2( ω) ( ω) ( ω) ( ω) γ ,   

ω [0, ),

f fT j T j T j T j I   

 
     (13) 

where I  denotes an identity matrix of compatible di-

mensions. Hence, 
T 2

T 2

( ω) ( ω) γ     

( ω) ( ω) γ ,     ω [0, ),f f

T j T j I

T j T j I

 

   
,       (14) 

where the former condition is equivalent to (9), and the 

latter one means that γfT

 .  

Thus, with the controller (2) obtained by solving 

problem (12) numerically, we satisfy the target re-

quirement (7) for 
2γ γ , where γ  is the value real-

ized during the calculations.  

Next, consider the accuracy requirements (6). To 

account for them when solving problem (12), we re-

place the matrix 1B  of the plant (1) by 1/2

1B Q , where 

1/2Q  is a scalar weight specified below. Then the se-

cond condition of (14) takes the form 
T 2( ω) ( ω) γ ,    ω [0, )f fT j QT j I    . 

Using the lemma on the working process from [8], 

for the steady-state values of the controlled variables 

, 1sup | ( ) |,   1,
p

i st i
t t

z z t i m


  , we get 

3
2

2 2 *

, 1

1

γ ,   1,
m

i st j

j

Qz f i m


 
  

 
 ,             (15) 

where 
*

jf  are known bounds on the exogenous dis-

turbance components from (4). In contrast to the paper 

[8], formula (15) involves the common weight Q  for 

all variables 
,i stz . Therefore, we choose it based on the 

least error  
1

* * *

min min 1 2ε min ε , ε , , εmz   : 

 
3

2

2
* *

min

1

ε
m

j

j

Q f


 
  
 
 .                   (16) 

In this case, the tracking error due to the exogenous 

disturbance f  satisfies the relation , ,εi st i stz . It fol-

lows from inequality (15) that  
*

, min 1ε γε ,   1,i st i m  , 

and the accuracy requirements (6) are satisfied. 

Now, we account for the stability requirements (8) 

to the closed loop system, which determine the settling 

time. Following the paper [8], when solving problem 

(12), we replace the matrix A of the plant (1) by 

βA A I  , where β  is the desired degree of stability. 

Then the solution of the shifted problem (12) with A  

yields a shifted controller with matrices ,  ,  c c cA B C , 

and 
cD . According to [8], the desired controller (2) 

solving the original problem has the matrices   

β ,  ,  ,  c c c c cA A I B C D  .                  (17) 

Summarizing the considerations above, we formu-

late the following result. 

Theorem. The controller (2) and (17) solves the 

original problem if the weight Q in the shifted Н∞ 

problem (12) satisfies condition (16). In this case, the 

values of 1γ  and 2γ  (see the target requirements (6) 

and (7)) coincide with the value of γ  realized when 

solving problem (12) and (13) numerically. 

Note that transition from inequality (12) to inequal-

ities (14) makes this result sufficient. 

3. NUMERICAL SOLUTION 

Since the controlled variable vector of the system 

(11) contains no controls, problem (12) is singular and 

cannot be solved numerically using the 2-Riccati 

method [19]. A preferable approach is based on the 

LMI technique [21, 22] and calculations in MatLab 

[23]; see the details below. As noted earlier, an exces-

sive increase in the degree of stability β  sharply raises 

the oscillation indices, causing large overshoots in the 

step response of the closed loop system. Therefore, the 

design algorithm presented below involves the princi-

ple of gradually increasing the response speed or the 

value of β . This algorithm includes the following 

steps. 

1. Replace the plant’s matrix A  by the matrix 

β ,A A I   first letting β 0 .  

2. Choose a weight from equality (16) and con-

struct the four matrices gen gen gen,  ,  ,A B C  and genD  of 

the state-space equations of the generalized plant: 

genA A , 1/2

gen 1 20B B Q B    , gen

С
C

С

 
  

 
, and 

11 12

gen

21 22

D D
D

D D

 
  
 

, where  11 0 0D  ,  21 0D I , 

22 120, 0D D  , and all matrices have compatible di-

mensions.  

3. Form the generalized plant’s system matrix us-

ing the procedure  

gen gen gen genltisys( , , , )P A B C D . 
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4. Find the optimal value 0 2γ hinflmi( , [ , ])P m m  

in problem (12), where 2m  and m  are the numbers of 

the controller’s inputs and outputs. 

5. Choose 
0γ γ  and construct a controller’s sys-

tem matrix K  that solves problem (12) using the pro-

cedure 
2[γ, ] hinflmi( , [ , ], γ, ε)K P m m , where ε  is 

the accuracy of calculating γ .  

6. Using the procedure [ , , , ] ltiss( )c c c cA B C D K , 

extract the state-space matrices of the shifted controller 

from the system matrix K . 

7. Find the matrices β ,  ,  ,c c c cA A I B C   and 
cD  

of the desired controller (17). 

8. Construct the step response of the closed loop 

system under the exogenous disturbances (3) and (4), 

and find the tracking errors, the settling time, and the 

oscillation indices iM . If the accuracy requirements 

(6) and (or) the oscillation requirements (7) do not 

hold, the problem is unsolvable by the proposed ap-

proach. Otherwise, proceed to Step 9. 

9. If the response speed requirements do not hold, 

increase the value of β  and get back to Step 1. Other-

wise, the problem is solved. 

For the first iteration of the algorithm, a natural 

choice is 
0γ γ . If the requirements (6) and (or) (7) do 

not hold, consider separate controller design problems 

with the oscillation index ( ( ) ( )zwT s T s ) or with a 

given accuracy ( ( ) ( )zw fT s T s  with the weight from 

formula (16)). These problems have a necessary and 

sufficient character, yielding 0γ  that determines the 

achievable accuracy (6) or oscillation indices 0γiM  . 

4. CONTROLLER DESIGN FOR AN INTERCONNECTED 

ELECTRIC DRIVE 

Consider an interconnected electric drive model 

described in the paper [8]. In [25], it was classified as a 

parallel system. The structural diagram of the model is 

shown in Fig. 1. 

 

 
 

Fig. 1. The structural diagram of plant.  

This diagram has the following notations: 
1x  and 

2x  are the deviations of the output voltages of the thy-

ristor converters from the rated ones supplied to the 

armature circuits of the motors; 
3x  and 

4x  are the de-

viations of the armature currents of the drive motors; 

5x  is the deviation of the angular rate of rotation of the 

motor shaft; 
1u  and 

2u  are the deviations of the con-

trol voltages supplied to the thyristor converters from 

the drive control system; 
MOT1M  and 

MOT2M  are the 

deviations of the electromagnetic moments developed 

by the motors from the rated values; RESM  is the devi-

ation of the moment of resistance (load); 
TC1T  and 

TC2T  are the time constants of the thyristor converters; 

TC1k  and TC2k  are the gains of the thyristor converters; 

М1с , M2с , е1с , and 
е2с  are the design constants of the 

motors; 
AC1R  and AC2R  are the active resistances of 

the armature circuits of the motors; E1T  and E2T  are 

the electromagnetic constants of the armature circuits 
of the motors; J  is the total moment of inertia reduced 
to one of the motor shafts. 

The model parameters in this diagram have the fol-

lowing numerical values: 
М1

N m
c 8.1

A


 ,

М2

N m
c 8.262 ,

A


  

е1

V s
c 8.15

rad


 , 

е2

V s
c 8.313

rad


 , 

E1Т 0.0886s , 

E2Т 0.090372s , 
TC1Т 0.01 s , 

TC2Т 0.012 s , 

AC1R 0.0819 Ohm , 
AC2R 0.08358 Ohm , 

TC1k 161.2 , 

TC2k 164.424 , and 
2J 32.5 kg m  . 

The exogenous disturbance 
cf M  is the devia-

tion of the moment of resistance (load) from the rated 

value. It does not exceed 
* 600f   Nm (20% of the 

rated motor moment). The measured variables for this 

plant are related to the physical variables: 
1 3xy  , 

2 4xy  , and 
3 5xy  . The exogenous disturbance f  

and the controls 
1u  and 

2u  are applied at different 

points. The main controlled variable of the plant is the 

angular rate of rotation of the motors: 
3 3 5xz у  . In 

addition, an important practical requirement to parallel 
systems is an equal load of the motors (close values of 
their armature currents) when operating on a common 
load. This requirement is often not satisfied when us-
ing standard PI controllers [25]. According to experi-
mental evidence, if the angular rate of rotation of the 
motors is chosen as the only controlled variable           

( 3 5xz  ), then the equal load requirement may not 

hold, and most importantly, the stability margins for 

the measured variables 1 3xy   and 2 4xy   (the motor 

currents) at the plant’s output may be very small, 
which is unacceptable in applications. Therefore, we 
will consider all measured variables of the plant as the 
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controlled variables: 
1 1 3xz y  , 

2 2 4xz y  , and 

3 3 5xz y   (the currents and the angular rate of rota-

tion of the motors). Thus, the reference signals 1g  and 

2g  will be fictitious and used for controller design 

only. Note that the behavior of the motor currents in 
the rated mode is completely determined by the varia-
tions in the load moment (disturbance). 

The plant’s matrices (1) have the following form 

[8]: 

100 0 0 0 0

0 83.333 0 0 0

,137.811 0 11.287 0 1123.155

0 132.459 0 11.065 1101.133

0 0 0.2487 0.254 0

A

 
 


 
   
 

  
  

1

0

0

0

0

0.031

B

 
 
 
 
 
 
  

, 2

16120 0

0 13702

,0 0

0 0

0 0

B

 
 
 
 
 
 
  

 

0 0 1 0 0

0 0 0 1 0 .

0 0 0 0 1

C

 
 


 
  

 

The system requirements are: 
• The tracking error in the angular rate of rotation 

should be 
3

*

3, 3,ε 1st stz z    rad/s, and the current de-

viations in the transient modes should be 1 375z   A 

and 
2 375z  A. 

• The oscillation indices for the plant’s measured 

outputs ( 1 2,  ,y y , and 
3y ) should not exceed 1. 

• The settling time should be 
set 0.25t   s. 

We will design an appropriate controller using the 

algorithm from Section 3. For this purpose, we find the 

weight 1/2 * *

3/ 600 /1 600Q f z    from formula 

(16) and let β 0 . The resulting controller matrices (2) 

and the realized value of γ  are:  

387.822 91.669 421.791 902.372 4003.386

18.692 371.046 82.211 1772.776 7073.098

,74.743 12.302 65.282 170.106 613.257

6.386 24.3 3.326 10.924 135.406

0.0525 0.0697 0.066 484.352 484.698

сA 

   
 
   

 
     
 
    

   

0.00119 0.00132 0.000937

0.000693 0.000701 0.00003

0.00223 0.00252 0.000215

0.552 0.579 4.817

63.954 62.713 13.418

cB

 
 


 
  
 
 
  

, 

0.00639 0.0118 0.0162 0.0697 0.265
,

0.0197 0.0161 0.0237 0.12 0.506
cС

  
  

  

2x30cD  , γ 51.86 . 

 
Note that the response of the closed loop system (1) 

and (2) (
3 3g z ) to the reference signal 

3 3g z  

gives a large static error in the angular rate of rotation. 
To eliminate it, we rescale the reference signal by a 
value inverse to this error (the closed loop system gain, 
easily found from the open loop Nyquist contour for 
the angular rate of rotation; see below). After such 
scaling, the amplitude-frequency response of the 
closed loop system for the reference signal is presented 
in Fig. 2b, and the system’s response in the angular 
rate-of-rotation channel is shown in Fig. 3b. The am-
plitude-frequency response of the closed loop system 

  
 

Fig. 2. The amplitude-frequency response of the closed loop system:  

(а) disturbance and (b) reference signal 

in the disturbance channel       

( 3f z ) scaled by 600 Nm 

is demonstrated in Fig. 2a. 

This response is monotonically 

decreasing: for the closed loop 

system, the worst disturbance 

from the class (3) and (4) is the 

step function. In the angular 

rate-of-rotation channel, the 

corresponding response to 

such a disturbance of 600 Nm 

is shown in Fig. 3a. Clearly, 

the accuracy requirements are 

satisfied, like the response 

speed requirements to the 

closed loop system (
set 0.25t 

s). The motor currents in the 

transient modes are very close  
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(the motors are equally loaded), 
and their deviations from the 
rated value are much less than 
the admissible value of 375 A. 

Figure 4 provides the 
Nyquist contour of the open 
loop system in the correspond-
ing measured variables: the mo-
tor currents (on the left) and the 
angular rate of rotation (on the 
right). Obviously, the system 
has an infinite phase margin for 
the measured variables - since 

the curves ( ω)iw j  are entirely 

inside the unit circle. The 
modulus margins for the first 
and second measured variables 
(the currents of the first and se-
cond motors) are 1.6 and 1.4, 
respectively. The modulus mar-
gin for the main controlled vari-
able (the angular rate of rotation 
of the motors) is 833. Thus, the 
system has significant stability 
margins for the measured varia-
bles. Moreover, the contours do 
not encircle the critical point 

( 1, 0)j : the open loop systems 

are stable, which is important 
from a practical viewpoint. 
Checking the stability margins 
at the plant’s physical input, we 
establish that the stability mar-

gins for the control variables 
1u  

and 
2u  have radii 0.46 and 

0.42, respectively, and open 
loop systems are stable in the 

control variable 
1u  or 

2u . 

 
 

Fig. 3. The system’s response to step disturbance and reference signal: 

 (a) output under f(t) = 600 and (b) output under g3(t) = 85.47.  

 
 

 
 

Fig. 4. The Nyquist contour of the closed loop system for different outputs:  

(a) w1(jω) and w2(jω), (b) w3(jω). 

 
 

CONCLUSIONS 

This paper has presented an approach to design 

multivariable tracking systems based on engineering 

performance indices: the tracking errors due to un-

measured exogenous disturbances, a set of oscillation 

indices 
iM  for the ith closed loop relating the ith ref-

erence signal 
ig  to the ith controlled variable 

iz , and 

the settling time. Note some features of the approach 

that are attractive from an engineering viewpoint: 

- Clear engineering performance indices are ap-

plied. 

- The controller design procedure reduces to the 

standard H∞ optimization problem, solved by powerful 

software tools. 

- The controller’s order does not exceed that of the 

original physical object. 

- An applications-relevant class of continuous dis-

turbances with piecewise continuous time derivatives 

is considered. 

If the oscillation indices should be provided at the 

physical input of a plant, then extra (fictitious) exoge-

nous disturbances have to be introduced additively 

with the controls, and the controls have to be treated as 

the controlled variables. 
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